HTMOSTM高温产品

高温 N 沟道电源场效应晶体管

HTANFET

特点

- 额定温度: -55°C 至+225°C
- 持续输出电流可达 1Amp
- 典型输入电压可达 90V
- 绝缘层上覆硅(SOI)
- ●4引脚电源带式封装或
- 带整体散热器的 8 引脚陶瓷 Dip

应用

- 井下油井, 气体和地热井
- 航空宇宙和航空电子设备
- 涡轮发动机控制
- 工业过程控制
- 核反应堆
- 电力转换
- 重型内燃机

一般说明

HTANFET 是一种可靠性极强的 N 通道电源场效应 晶体管(FET),专门为在极其广泛的温度范围用途而 设计的,例如诸如井下使用仪器、航空电子设备、 涡轮发动机和工业控制。该电源 FET 是用绝缘层上 覆硅工艺生产的,在高温时大大降低了漏电。 直流大电流能力和低 Rds-ON 是这一部件适合用在直流电和开关用途。如果零件在高达+300℃的温度下工作一年,其性能会下降。所有的零件都经过 250℃老化,以防止生产次品。此外每个零件都在-55 到+225℃的温度范围内性能可靠。HTANFET 是 AlliedSignal 公司和霍尼韦尔公司共同推出的。

功能图 封装图 带整体散热器的 8 引脚陶瓷 Dip 4 引脚电源带式封装 漏极 漏极 [🗓 ■源极 栅极] 漏极 [▋ァ栅极 ┓栅极。□ ▮ 源极 **HTANFET** ℎ₅源极 源极 漏极。

HTANFET

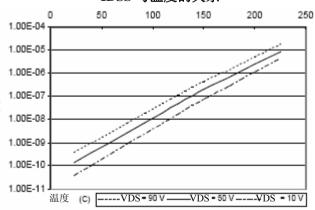
电气特性

-55°C 至+225°C, 除非有另外规格

符号	参数	测试条件	典型(1)	最糟情况		单位
1/1 /2		侧风来什		最小	最大	平 仏
V(BR)DSS	漏极-源极击穿电压	$VGS = 0$, $ID = 100\mu ADC$		90		V
RDS(on)	静态漏极到源极导通电阻, Ta=25℃	VGS = +5VDC, $ID = 0.1A$	0.4			Ω
VGS(th)	栅极阈值电压, Ta = 25℃	$VGS = VDC$, $ID = 100\mu A$	1.6		2.4	V
IGSS	栅极到漏极正向泄漏	VGS = +5VDC			100.	nA
	栅极到漏极反向泄漏	VGS = -5VDC			-100	nA

设计保证

Qg	总栅极充电(CGS+CGD)	VDD=+50V, VGS=+5V(VGS, 扫频= 0 到+10V); d = 10%; τ = 1ms	4.3		nC
td(on)	接通延迟时间	VDD = +50V,	10		ns
tr	上升时间	VGS,扫频 = 0 到+10V	20		ns
td (off)	断开延迟时间	$d = 0.1\%$; $\tau = 1$ ms	64		ns
t f	下降时间	$RD = 15\Omega$, $RG = 30\Omega$	20		ns
Ciss	输入容量	VCC = 0 VDC = +20V	290		pF
Coss	输出容量	VGS = 0, VDS = +28V F = 1.0 MHz(0.1V 振动)	87		pF
Crss	反向输出容量	1 - 1.0 MHZ(0.1 V 1)K231)	14		pF


- (1) 典型操作条件:VDS=+10V, TA=25℃
- (2) 最糟情况操作条件: VDS = +50V, TA =-55℃到 225℃

绝对最大额定值 (1,2)

符号	参数	条件	值	单位	
ID	连续漏极电流	@Tj = 25° C		Α	
ID	连续漏极电流	@Tj = 200° C		Α	
V_{GS}	栅极到源极电压		10	٧	
dv/dt	最高二极管恢复				SS(A)
T _J	操作接点		-55 to +300	°C	Ä
Tstg	储存温度范围		-55 to +300	°C	
Pd	操作电源	@Tj = 250° C	50	W (3)	

- (1) 如果强度超过上述额定值,将会导致永久损坏。这些只是额定强度,并不意味着能在这些等级进行操作。经常或长期在最大绝对条件下工作可能会影响装置的可靠性。
- (2) ESD 敏感性由栅极电容决定; 额外的 ESD 电容保护会降 低性能。
- (3) 省电电源 1W/C 到 Tj = 300℃

IDSS 与温度的关系

