

4-Component Dynamometer

for Cutting Force Measurement in Drilling

Four-component dynamometer for measuring a torque M_z and the three orthogonal components of a force.

The dynamometer has a great rigidity and consequently a high natural frequency. Its high resolution enables the smallest dynamic changes in large forces and torques to be measured.

- Compact and robust multicomponent force measuring instrument
- Suitable for cutting force measurements when drilling
- Universal use

Description

The dynamometer consists of a four component sensor fitted under high preload between a base plate and a top plate.

The four components are measured practically without displacement.

It must be taken into account that combined and eccentric loads may reduce the measuring ranges.

The sensor is mounted ground-isolated. Therefore ground loop problems are largely eliminated.

The dynamometer is rustproof and protected against penetration of splash water and cooling agents.

Together with the connecting cable Type 1677A5/1679A5 it corresponds to the protection class IP 67.

Application Examples

- Measuring feed force, deflective force and moment when drilling, threadcutting etc.
- Cutting force measurements while milling and grinding
- Cutting force measurements while turning
- Testing torque wrenches
- Testing springs (torsion)
- Measurements on small thrust bearings, friction clutches etc.
- Measuring starting torques on fractional horsepower and stepping motors
- Ergonomic measurements

Technical Data

Measuring range	F_{x} , F_{y}	kN	-5 5 ¹⁾
	Fz	kN	-5 20 ²⁾
	Mz	N∙m	-200 200
Calibrated measuring rang	ge		
100 %	F _x , F _y	kN	0 5
	Fz	kN	0 20
	Mz	N∙m	0 200
			0 –200
10 %	F _× , F _y	kN	0 0,5
	Fz	kN	0 2
	Mz	N∙m	0 20
			0 –20
Overload	F _× , F _y	kN	-6/6
	Fz	kN	-6/24
	Mz	N∙m	-240/240
Max. bending moment	M_{x} , M_{y}	N∙m	-400 400
Threshold	F _× , F _y	Ν	<0,01
	Fz	Ν	<0,02
	Mz	mN∙m	<0,2
Sensitivity	F _× , F _y	pC/N	≈–7,8
	Fz	pC/N	≈–3,5
	Mz	pC/N·m	≈–160
Linearity, all ranges		% FSO	≤±1
Hysteresis, all ranges		% FSO	≤1

Page 1/3

This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.

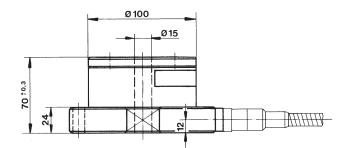
©2005, Kistler Instrumente AG, PO Box, Eulachstr. 22, CH-8408 Winterthur Tel +41 52 224 11 11, Fax +41 52 224 14 14, info@kistler.com, www.kistler.com

9272_000-153e-11.05

Type 9272

4-CostINGTAR传感与控制-for tputting/imancesensorrenienteon/illiTELT:0753783376549 FAX:0755-83376182E-WAT

measure. analyze. innovate.

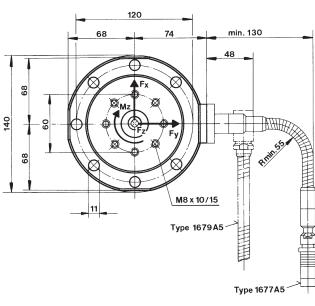
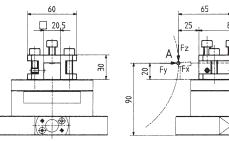

Crosstalk	$F_{x} \leftrightarrow F_{y}$	%	≤±2
	$F_z\toF_{x,y}$	%	≤±1
	$F_{x,y}\toF_z$	%	≤±2
	$F_z \to M_z$	mN⋅m/N	≤±0,2
	$M_z\toF_z$	N/N⋅m	≤±1
	$F_{x,y} \to M_z$	mN⋅m/N	≤±0,7
	$M_z\toF_{x,y}$	N/N⋅m	≤±0,5
Rigidity	C _x , C _y	kN/µm	≈0,4
	Cz	kN/µm	≈2
	cMz	N·m/µrad	≈0,7
Natural frequency	f _n (x,y)	kHz	≈3,1
(mounted on rigid base)	f _n (z)	kHz	≈6,3
	f _n (M _z)	kHz	≈4,2

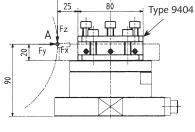
Operating temperature range		°C	0 70
Temperature coefficie	ent	%/°C	-0,02
of sensitivity			
Capacitance	F _× , F _y , F _z	pF	185
	Mz	pF	420
Insulation resistance (20 °C)		Ω	>1013
Ground isolated		Ω	>10 ⁸
Connector		Fischer flange 9-pole neg.	
Degree of protection EN60529		_	IP67 3)
Weight		kg	4,2

 $^{1)}\,$ Force application point inside and max. 25 mm above top plate area

²⁾ Force application point max. 20 mm from center

³⁾ With connecting cable Types 1677A5, 1679A5


Fig. 1: Dimensions Dynamometer Type 9272

Technical Data

Dynamometer Type 9272 with Mounted Tool Holder Type 9404 for turning; force acting onto point A

Range	F _x , F _y	kN	-2 2
	Fz	kN	0 4
Crosstalk	$F_{x} \leftrightarrow F_{y}$	%	≤±5
	$F_z \rightarrow F_{x,y}$	%	≤±2
	$F_{x,y} \rightarrow F_z$	%	≤±5
Natural frequency	f _n (x,y)	kHz	≈1,5
(mounted on flanges) with tool holder	f _n (z)	kHz	≈4

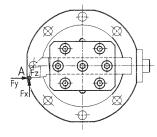
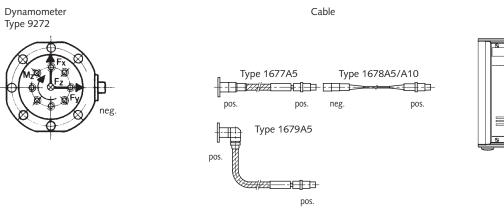


Fig. 2: Dimensions Dynamometer Type 9272 with mounted tool holder Type 9404

Page 2/3


This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.

©2005, Kistler Instrumente AG, PO Box, Eulachstr. 22, CH-8408 Winterthur Tel +41 52 224 11 11, Fax +41 52 224 14 14, info@kistler.com, www.kistler.com

measure. analyze. innovate.

4-Component Force-Torque Measurement M_z , F_z , F_y , F_x with 4-Channel Charge Amplifier

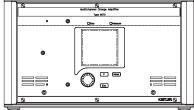


Fig. 3: Example of a measuring system with dynamometer Type 9272

Mounting

The dynamometer may be mounted with screws or claws on any clean, face-ground supporting surface, such as the table of a machine tool for example. Uneven supporting surface may set up internal stresses, which will impose severe additional loads on the sensor and may also increase crosstalk.

For mounting the force-introducing components, such as lathe tools and workpieces, eight M8 mm threaded holes in the cover plate are available. The supporting surfaces for the force-introducing parts must be face-ground to obtain good mechanical coupling to the cover plate.

For satisfactory mounting of lathe tools up to 20x20 mm shank cross section, the tool holder Type 9404 may be used.

This holder is not included in the standard accessories and must therefore be ordered separately.

Signal Conditioning

In addition to the dynamometer, a four-component measuring system needs a multi-core high-insulation connecting cable and four charge amplifier channels.

These convert the charge signals from the dynamometer into output voltages. The output voltage is proportional to the forces and moments occurring.

The multichannel charge amplifier Type 5070A... is ideal for this purpose. For details, see the data sheet 5070A_000-485.

Data Acquisition and Evaluation

Kistler DynoWare is an easy to use universal software and is ideal for multi-component force measurement with dynamometers. For details, see the data sheet 2825A_000-371.

Optional Accessories	Туре
 Connecting cable (8 leads) 	1677A5
	1679A5
Extension cable (8 leads)	1678A5
	1678A10
Tool holder	9404

Ordering KeyType• 4-Component Dynamometer9272

for Cutting Force Measurement in Drilling

Page 3/3

This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.

©2005, Kistler Instrumente AG, PO Box, Eulachstr. 22, CH-8408 Winterthur Tel +41 52 224 11 11, Fax +41 52 224 14 14, info@kistler.com, www.kistler.com