SUNSTAR微波光电 http://www.rfoe.net/ TEL:0755-83396822 FAX:0755-83376182 E-MAIL: szss20@163.com

US MICROWAVES

Advanced Microwave Components

FEATURES

APPLICATIONS

Output switch current in excess of 1.5A

2% reference accuracy; Low quiescent current 2.5mA (TYP.) Operating from 3V to 40V Frequency operation 100KHz Addive current limiting In DIE form, this device is an excellent selection for many chip and wire HYBRID CIRCUITS DC-DC CONVERTER CONTROL CIRCUITS

DC-DC CONVERTER CONTROL CIRCUITS

USM MC34063A

PRODUCT DESCRIPTION AND SHORT APPLICATION NOTE

The USM MC34063A series is a monolithic control circuit delivering the main functions for DC-DC voltage converting. The device contains an internal temperature compensated reference, comparator, duty cycle controlled oscillator with an active current limit circuit, driver and high current output switch. Output voltage is adjustable through two external resistors with a 2% reference accuracy.

MAXIM	IUM RATINGS		
PARAMETER	SYMBOL	VALUE	UNITS
Power Supply Voltages	V _{cc}	40	Vdc
Comparator Input Voltage Range	VIR	-0.3 to +40	Vdc
Switch Collector Voltage	V _C (switch)	40	Vdc
Switch Emitter Voltage (VPin1= 40V)	V _E (switch)	40	Vdc
Switch Collector to Emitter Voltage	V _{CE} (switch)	40	Vdc
Driver Collector Voltage	V _C (driver)	40	Vdc
Driver Collector Current (Note 1.)	I _C (driver)	100	mA
Switch Current	I _{SW}	1.5	А
Operating Junction Temperature	Τ _J	150	°C
Operating Ambient Temperature Range	T _a	0 to +70	°C
Storage Temperature Range	Tstg	-65 to +150	°C

ONLY Proper die handling equipment and procedures should be employed. Stresses beyond listed absolute maximum ratings may cause permanent damage to the device.

	ELECTRICAL CHARACTERISTIC					
PARAMETER	TEST CONDITIONS	SYMBOL	MIN	TYP	MAX	UNITS
OSCILATOR						
Frequency	VPin5=0V, C _T =1.0nF, T _A =25°C	fosc	24	33	42	KHZ
Charge Current	V _{CC} =5.0V to 40V, T _A =25°C	Ichg	24	35	42	μA
Discharge Current	V_{CC} =5.0V to 40 V, T_A =25°C	Idischg	140	220	260	μA
Discharge to Charge Current Ratio	Pin 7 to V _{CC} , T _A =25°C	Idischg/Ichg	5.2	6.5	7.5	
Current Limit Sense Voltage	Ichg=Idischg, TA=25°C	VIpk(sense)	250	300	360	mV
OUTPUT SWITCH (Note 1)						
Saturation Voltage, Darlington Connection	I _{SW} =1.0A, Pins 1, 8 connected	V _{CE} (sat)		1.0	1.3	V
Saturation Voltage	I _{SW} =1.0A, RPin8=82 to V _{CC} , Forced 820	V _{CE} (sat)		0.45	0,7	V
DC Current Gain	I _{SW} =1.0A,V _{CE} =5.0V,T _A =25°C	h _{FE}	50	75		
Collector Off-State Current	V _{CE} =40V	I _C (off)		0.01	100	μA
COMPARATOR						
Threshold Voltage	T _A =25°C; TA=Tlow to Thigh	Vth	1.225 1.21	1,25	1.275 1.29	v
Threshold Voltage Line Regulation	V _{CC} =3,0 V to 40 V	Regline		1.4	5.0	mV
Input Bias Current	Vin=0V	IIB		-20	-400	пA
TOTAL DEVICE						
Supply Current	V _{CC} =5.0 V to 40 V, C _T =1.0 nF, Pin 7=V _{CC} , VPin5>Vth, Pin2=GND, Remaining pins open	Icc			4.0	mA

(NOTE 1)Low duty cycle pulse techniques are used during test to maintain junction temperature as close to

ampient temperature as possible.

		GEN	NERAL DIE INFORMATI	ON
Substrate	Thickness (mils)	Die size (mils) [mm]	Bonding pads	Backside metal
Silicon	10±1	(67.7×71.6) [1.72×1.82]	min 4x4 mils, 1µm thick, aluminium	Backside of the die is coated with 0.5µm GOLD, which makes it compatible with AuSi or AuGe die attach.

All US Microwaves products are available in die form. Typical delivery for die products is 2-3 weeks ARO. For Custom designs, delivery is 3-4 weeks ARO. Certain items may be available from stock. Inventory is periodically updated. All devices for chip and wire applications are 100% tested, visual inspected and shipped in waffle packs (WP). For high volume automated assembly, MIS chip capacitors are supplied as 4" wafers 100% tested, inked and diced on expanded film frame (FF).

TECHNOLOGY DESCRIPTION: SEMICONDUCTOR-MANUFACTURING

These integrated Circuits are manufactured with medium voltage junction isolated bipolar process, junction isolated bipolar processes allow integration of high performance NPN, PNP and JFET transistors, MOS capacitors, diffused resistors and precision thin film resistors. The bond pad metallization is standard 1µm Aluminium. The backside of the die is coated with 0.5µm GOLD, which makes it compatible with AuSi or AuGe die attach.

All US Microwaves products are manufactured using GOLDCHIP TECHNOLOGY™ a trade mark of Semiconix Corporation.

WD #	FUNCTION	1 1 8
1	Switch collector	Tanana Tanan Tanan Tanana Tanana Tanana Tanana Tanana Tanana Tanana Tanana Tanana Tanana Tanana Tanana Tanana Tanana Tanana Tanana Tanana Tana
2	Switch emitter	le suite suite suite suite suite
3	Timing capacitor	
4	GND	6
5	Comparator Inverting Input	3
6	Vcc	
7	Ipk sense	
8	Driver Collector SUNSTAR射频通信 http://www.rfoe.net/ TEL:0755	-83397033 FAX:0755-83376182 E-MAIL: szss20@163.com