
1

CC665S
User's Manual

Program Development Support Software

FIRST EDITION
ISSUE DATE:Mar. 1999

NOTICE
1. The information contained herein can change without notice owing to product and/or technical

improvements. Before using the product, please make sure that the information being referred to is
up-to-date.

2. The outline of action and examples for application circuits described herein have been chosen as an
explanation for the standard action and performance of the product. When planning to use the
product, please ensure that the external conditions are reflected in the actual circuit, assembly, and
program designs.

3. When designing your product, please use our product below the specified maximum ratings and
within the specified operating ranges including, but not limited to, operating voltage, power
dissipation, and operating temperature.

4. OKI assumes no responsibility or liability whatsoever for any failure or unusual or
unexpected operation resulting from misuse, neglect, improper installation, repair,
alteration or accident, improper handling, or unusual physical or electrical stress
including, but not limited to, exposure to parameters beyond the specified
maximum ratings or operation outside the specified operating range.

5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is
granted by us in connection with the use of the product and/or the information and drawings
contained herein. No responsibility is assumed by us for any infringement of a third party's right
which may result from the use thereof.

6. The products listed in this document are intended for use in general electronics equipment for
commercial applications (e.g., office automation, communication equipment, measurement
equipment, consumer electronics, etc.). These products are not authorized for use in any system or
application that requires special or enhanced quality and reliability characteristics nor in any system
or application where the failure of such system or application may result in the loss or damage of
property, or death or injury to humans. Such applications include, but are not limited to, traffic and
automotive equipment, safety devices, aerospace equipment, nuclear power control, medical
equipment, and life-support systems.

7. Certain products in this document may need government approval before they can be exported to
particular countries. The purchaser assumes the responsibility of determining the legality of export of
these products and will take appropriate and necessary steps at their own expense for these.

8. No part of the contents contained herein may be reprinted or reproduced without our prior
permission.

9. MS-DOS is a registered trademark of Microsoft Corporation.

Copyright 1999 Oki Electric Industry Co., Ltd.

CC665S User's Manual

Part 1. CC665S Ver.2.01 User Guide
Part 2. CC665S Ver.2.01 Language Reference

Part1.
CC665S Ver.2.01
User Guide

Table Of Contents

Table Of Contents

1. OVERVIEW ...1

2. OPERATING ENVIRONMENT..3

2.1 HARDWARE AND MEMORY REQUIREMENT..3

2.2 SYSTEM CONFIGURATION..3

2.3 ENVIRONMENT VARIABLES...3

3. INVOKING CC665S AND COMMAND LINE OPTIONS...5

3.1 INVOCATION OF CC665S..5

3.2 COMMAND LINE OPTIONS ...8
3.2.1 Machine Model Options...8
3.2.2 ‘C’ Memory Model Options ..9
3.2.3 Mixed Memory Model Options..11
3.2.4 ‘C’ And Mixed Memory Model Combination..13
3.2.5 Optimization Options...14
3.2.6 Code Generation...22
3.2.7 Output Files...23
3.2.8 Preprocessor Options..25
3.2.9 Stack...28
3.2.10 Debugging Options ...29
3.2.11 Miscellaneous Options ...31
3.2.12 Invalid Combination Of Options..34

4. MEMORY MODELS..35

4.1 C MEMORY MODELS...35

4.2 HARDWARE MEMORY MODELS...36

4.3 OBJECTS AFFECTED BY MEMORY MODELS..36
4.3.1 Memory Model Qualifiers ...37
4.3.2 Data Variables ...37
4.3.3 Tables...38
4.3.4 Strings..39
4.3.5 Functions...39

4.4 COMBINATION OF C AND MIXED MEMORY MODEL OPTIONS..40
4.4.1 Small C Memory Model...40
4.4.2 Effective Medium C Memory Model...41
4.4.3 Medium C Memory Model..42
4.4.4 Compact C Memory Model...43
4.4.5 Effective Large C Memory Model..44
4.4.6 Large C Memory Model..45

CC665S User Guide

5. PRAGMAS...47

5.1 INTERRUPT PRAGMA...47
5.1.1 Preserving Register Contents ..50

5.2 INTVECT PRAGMA..52

5.3 VCAL PRAGMA ..53

5.4 ACAL PRAGMA..56

5.5 CAL PRAGMA...58

5.6 INLINE PRAGMA..60

5.7 ABSOLUTE PRAGMA..63

5.8 SFR PRAGMA..65

5.9 INPAGE PRAGMA ..66

5.10 SBAINPAGE PRAGMA..68

5.11 USINGINPAGE PRAGMA..70

5.12 GROUP PRAGMA..73

5.13 WINDOW PRAGMA ..76

5.14 ROMWINDOW PRAGMA...76

5.15 FIXED PAGE PRAGMA..78

5.16 DUAL PORT PRAGMA..79

5.17 EDATA PRAGMA...80

5.18 SBAFIX PRAGMA ..81

5.19 COMMONVAR PRAGMA...82

5.20 COMMON PRAGMA..83

5.21 STACKSIZE PRAGMA...83

5.22 STACK CHECK PRAGMAS..84

5.23 LOOP OPTIMIZATIONS PRAGMAS..85

5.24 ASM and ENDASM PRAGMAS...85

6. OUTPUT FILES..89

6.1 ASSEMBLY OUTPUT...90
6.1.1 Comment Section ...90
6.1.2 Assembler Initialization Pseudo Instructions..91
6.1.3 Procedure Section..94
6.1.4 Symbol Declarations Section ...99

6.2 ERROR LISTING...102

6.3 CALLTREE LISTING...106

6.4 DEBUGGING INFORMATION FILE...107

Table Of Contents

7. OPTIMIZATIONS ...111

7.1 GLOBAL OPTIMIZATIONS...111
7.1.1 Constant Propagation..112
7.1.2 Common Sub-Expression Elimination..113
7.1.3 Code Sinking...114
7.1.4 Code Hoisting...115

7.2 LOOP OPTIMIZATIONS ..116
7.2.1 Loop Invariant Code Motion..117
7.2.2 Loop Variant Code Motion...118
7.2.3 Induction Variable Elimination ...119
7.2.4 Strength Reduction..120
7.2.5 Loop Unrolling..121

7.3 OTHER OPTIMIZATIONS ...122
7.3.1 Dead Code Elimination ..122
7.3.2 Dead Variable Elimination ...123
7.3.3 Algebraic Transformation...124
7.3.4 Optimizing Jumps ...125

7.4 PEEPHOLE OPTIMIZATIONS...125
7.4.1 Removal Of Redundant Transfer Instructions...125
7.4.2 Optimizing Relative Jumps..125

7.5 LOCAL OPTIMIZATIONS ...126
7.5.1 Constant Propagation..126
7.5.2 Common Sub-Expression Elimination..127
7.5.3 Use Of Algebraic Identities ..128

7.6 EFFECT OF ALIASING ON OPTIMIZATIONS ..128

8. IMPROVING COMPILER OUTPUT..131

8.1 CONTROLLING OPTIMIZATIONS ..131

8.2 USING REGISTER VARIABLES...132

8.3 REMOVING STACK PROBES..133

8.4 CONTROLLING ALLOCATION OF VARIABLES..133

8.5 MIXED LANGUAGE PROGRAMMING...134
8.5.1 Combining Assembly And ‘C’ Programs ...134
8.5.2 Calling Conventions Of CC665S ..140
8.5.3 Return Values..140
8.5.4 Interrupt Handling Routines In Assembly ...143
8.5.5 Referring C Variables ...143

8.6 QUALIFYING FUNCTIONS WITH ‘__accpass’ AND ‘__noacc’ ...143

8.7 BUILT-IN FUNCTIONS...145
8.7.1. Higher Precision Multiplication ..145
8.7.2. Higher Precision Division ..147
8.7.3. Higher Precision Remainder...150

8.8 RUNTIME STACK PREPARATION...152

CC665S User Guide

8.9 REGISTER USAGE...153

8.10 STARTUP ROUTINE...154

9. EMULATION LIBRARIES ...155

10. ASSEMBLING AND LINKING..157

11. EXIT CODES ..159

12. ERROR MESSAGES..161

12.1 FATAL ERROR MESSAGES..161
12.1.1 Command Line..161
12.1.2 General...164
12.1.3 Preprocessor...165
12.1.4 Lexical..167
12.1.5 Syntax And Semantic ..167

12.2 ERROR MESSAGES...167
12.2.1 Preprocessor...167
12.2.2 Lexical..169
12.2.3 Syntactic And Semantic..170
12.2.4 Expression...175
12.2.5 Control Statements ..179

12.3 WARNING MESSAGES..180
12.3.1 Preprocessor...180
12.3.2 Lexical..181
12.3.3 Syntactic And Semantic..181
12.3.4 Expression...184
12.3.5 Pragmas ...185

Overview

Page 1

1. OVERVIEW

The C language is a powerful general purpose programming language that can generate efficient, compact
and portable code. C is manageable because of its small size, flexible because of its ample supply of
operators and powerful in its utilization of modern control flow and data structures.

CC665S is an optimizing C Compiler. It incorporates the features that are fundamental to the ‘C’ language
and that exist in most C compilers.

Salient features of CC665S are listed below:

1. ‘C’ language supported by CC665S is implemented according to ANSI standard. Variations
from the standard are imposed due to architectural constraints.

2. Variety of command line options are provided.

3. Facilities to write interrupt handling routines are available.

4. Set of pragmas are provided to utilize the architectural features.

5. Emulation libraries are provided to support long, float and double types.

6. Facilities to access any memory location in RAM and ROM are provided.

7. Mixed language programming can be done.

Operating Environment

Page 3

2. OPERATING ENVIRONMENT

2.1 HARDWARE AND MEMORY REQUIREMENT

MACHINES : NEC PC-9801 series, IBM-AT compatible and clones

OPERATING SYSTEM : MS-DOS Ver. 5.0 and above

PC MEMORY : 640K with at least 384K extended RAM

2.2 SYSTEM CONFIGURATION

CC665S requires the following information to be included in the CONFIG.SYS file.

files=20

This information must be added to the CONFIG.SYS file before invoking CC665S. It allows the compiler
to open atlas 20 files at a time.

2.3 ENVIRONMENT VARIABLES

CC665S uses two environment variables INCL66K and TMP.

INCL66K can be used to specify a directory to search the include files, specified with #include
preprocessor directive.

CC665S Ver.2.01 User Guide

Page 4

The INCL66K environment variable can be defined using the DOS command SET. The SET command
has the following format:

SET INCL66K=path

CC665S uses temporary files during the process of compilation, the path for these temporary files can be
specified in the TMP environment variable. The following line may be included in the file autoexec.bat that
enables CC665S to create temporary files during compilation in the given path.

SET TMP=PATH

Example :

SET TMP=C:\RAMDRIVE
CC665S uses ‘C:\RAMDRIVE’ as the path for its temporary files

If the environment variable TMP is not specified, compiler creates temporary files in the current directory.

Invoking CC665S And Command Line Options

Page 5

3. INVOKING CC665S AND
COMMAND LINE OPTIONS

3.1 INVOCATION OF CC665S

CC665S may be invoked by specifying the following command line:

C:\> CC665S [options....] file [file] <CR>

Each filename is an input 'C' source file and the name should have either “.C”, “.c”, “.H” or “.h” extension.
If CC665S encounters any other extension a fatal error message is issued and the compilation process is
terminated. The file may have pathname.

CC665S creates an assembly file as output for each of the files specified in the command line. The output
file contains MSM66K “500” core assembly mnemonics or assembly mnemonics that are valid only in
“500S” core, depending on the core option specified in the command line.

By default, the output file has the same name as the input file with an extension “.asm”. The output file is
always created in the current working directory even if the input file resides in some other directory.

CC665S Ver.2.01 User Guide

Page 6

Following are the command line options:

/T specify the operand string for TYPE instruction
/MS small C memory model
/MEM effective medium C memory model
/MM medium C memory model
/MC compact C memory model
/MEL effective large C memory model
/ML large C memory model
/mixC compact mixed memory model
/mixL large mixed memory model
/mixM medium mixed memory model
/Ot optimize for speed
/Ol enable loop optimizations
/Om optimize for space
/Og enable global optimizations
/Od disable optimizations
/Oa ignore aliasing
/nX500generate code for nX-8/500
/nX500S generate code for nX-8/500S
/LE generate list file
/Fa assembly listing file
/CT list calltree in a file
/LP preprocessed output in a file
/I include file directory
/PC preprocessed output with comment
/D define macro
/ST generate stack probe routine
/SS change stack size
/SD generate debug information with ‘calls menu’ option enabled
/OSD generate debug information with ‘calls menu’ option disabled
/SL change maximum identifier length
/J default char type is unsigned
/PF use comma as delimiter for pragma arguments
/REG use register for argument/ return value
/WIN assign window attribute to table
/AWIN assign awin attribute to table
/SYS change compiler segment naming strategy

Command line options are explained in more detail in section 3.2.

Invoking CC665S And Command Line Options

Page 7

On invocation, following copyright message is displayed.

CC665S C Compiler, Ver.2.01 Apr 1996
Copyright (C) 1992, Oki Electric Ind. Co., Ltd.

For the command line,

C:\> CC665S <CR>

the following usage is displayed.

CC665S C Compiler, Ver.2.01 Apr 1996
Copyright (C) 1992, Oki Electric Ind. Co., Ltd.

Usage: CC665S /T string [option ...] filename...
/T string Specify the operand string for TYPE instruction

-C MEMORY MODEL-
/MS small model /MC compact model
/MEM effective medium model /MEL effective large model
/MM medium model /ML large model

-MIXED MEMORY MODEL-
/mixC compact model /mixL large model
/mixM medium model

-OPTIMIZATION-
/Ot optimize for speed /Ol enable loop optimizations
/Om optimize for space /Og enable global optimizations
/Od disable optimizations /Oa ignore aliasing

-CODE GENERATION-
/nX500 generate code for nX-8/500 /nX500S generate code for nX-8/500S

-OUTPUT FILES-
/LE generate list file /Fa[filename] assembly listing file
/CT <filename> list calltree in a file
(Press <return> to continue)

-PREPROCESSOR-
/LP preprocessed output in a file /I <directory> include file directory
/PC preprocessed output with comments /D<identifier>[=[string]] define macro

-STACK-
/ST generate stack probe routine /SS <constant> change stack size

-DEBUG-
/SD generate debug information with ‘calls menu’ option enabled
/OSD generate debug information with ‘calls menu’ option disabled

CC665S Ver.2.01 User Guide

Page 8

-MISCELLANEOUS-
/SL<constant> change maximum identifier length
/J default char type is unsigned
/PF use comma as delimiter for pragma arguments
/REG use register for argument/ return value
/WIN assign window attribute to table
/AWIN assign awin attribute to table
/SYS change compiler segment naming strategy

3.2 COMMAND LINE OPTIONS

This section describes various options that may be specified in the command line. All command line
options are case sensitive. Options /I, /Fa and /D may be specified more than once in the command line. If
any option other than /I, /Fa or /D is specified more than once in the command line, CC665S issues fatal
error message. Options /Fa and /D may also be specified between source files in the command line.

3.2.1 Machine Model Options

This section describes the machine model option /T.

3.2.1.1 TYPE STRING

Syntax : /T string

Any string may be specified with /T option. The string is not validated by CC665S. CC665S outputs the
specified string in the assembly file using TYPE pseudo instruction. This parameter is compulsory unless
one of the preprocessor options /LP or /PC is specified.

Example 3.1

C:\> CC665S /T m66589 test.c <CR>

/T m66589 in the above example, instructs CC665S to output TYPE pseudo instruction as follows:

type (m66589)

Invoking CC665S And Command Line Options

Page 9

3.2.2 ‘C’ Memory Model Options

CC665S supports the following ‘C’ memory models:

1. Small C memory model

2. Effective medium C memory model

3. Medium C memory model

4. Compact C memory model

5. Effective large C memory model

6. Large C memory model

Memory model can be specified by the corresponding command line options. One of these options may
be specified in the command line. If more than one option is specified, CC665S issues a fatal error
message. The C memory model options are described in detail in this section.

3.2.2.1 /MS OPTION

Syntax : /MS

/MS option instructs CC665S to compile programs in small C memory model. The small C memory model
uses one physical data segment for data variables and one physical code segment for both functions and
tables. This option is the default C memory model option. If no memory model option is specified in the
command line, programs are compiled in this model.

Example 3.2

C:\> CC665S /T m66589 /MS test1.c <CR>

The command line option /MS in the above example, instructs CC665S to compile the source file “test1.c”
in small memory model.

3.2.2.2. /MEM OPTION

Syntax : /MEM

/MEM option instructs CC665S to compile programs in effective medium C memory model. The effective
medium C memory model uses one physical data segment for data variables, one physical code segment
for functions and one separate physical code segment for tables. This memory model is an extension of
small memory model.

CC665S Ver.2.01 User Guide

Page 10

Example 3.3

C:\> CC665S /T m66589 /MEM test2.c <CR>

The command line option /MEM in the above example, instructs CC665S to compile the source file
“test2.c” in effective medium memory model.

3.2.2.3 /MM OPTION

Syntax : /MM

/MM option instructs CC665S to compile programs in medium C memory model. The medium C memory
model uses one physical data segment for data variables and one or more physical code segments for
functions. In this model, tables are allocated in one of the physical code segments used by functions.

Example 3.4

C:\> CC665S /T m66589 /MM test3.c <CR>

The command line option /MM in the above example, instructs CC665S to compile the source file
“test3.c” in medium memory model.

3.2.2.4 /MC OPTION

Syntax : /MC

/MC option instructs CC665S to compile programs in compact C memory model. The compact C
memory model uses one or more physical data segments for data variables and one physical code segment
for both functions and tables.

Example 3.5

C:\> CC665S /T m66589 /MC test4.c <CR>

The command line option /MC in the above example, instructs CC665S to compile the source file
“test4.c” in compact memory model.

3.2.2.5 /MEL OPTION

Syntax : /MEL

/MEL option instructs CC665S to compile programs in effective large C memory model. The effective
large C memory model uses one or more physical data segments for data variables, one physical code
segment for functions and one separate physical code segment for tables. This memory model is an
extension of compact memory model.

Invoking CC665S And Command Line Options

Page 11

Example 3.6

C:\> CC665S /T m66589 /MEL test5.c <CR>

The command line option /MEL in the above example, instructs CC665S to compile the source file
“test5.c” in effective large memory model.

3.2.2.6 /ML OPTION

Syntax : /ML

/ML option instructs CC665S to compile programs in large C memory model. The large C memory model
uses one or more physical data segments for data variables and one or more physical code segments for
functions. In this model, tables are allocated in one of the physical code segments used by functions.

Example 3.7

C:\> CC665S /T m66589 /ML test6.c <CR>

The command line option /ML in the above example, instructs CC665S to compile the source file “test6.c”
in large memory model.

Example 3.8

C:\> CC665S /T m66589 /MC /MM test.c <CR>

For the above command line option, CC665S issues a fatal error because more than one memory model
option is specified.

3.2.3 Mixed Memory Model Options

Mixed memory model options specify the available memory in the hardware. Hardware supports the
following memory models:

1. Small memory model

2. Medium memory model

3. Compact memory model

4. Large memory model

CC665S Ver.2.01 User Guide

Page 12

The mixed memory model options are described in this section.

3.2.3.1 /mixM OPTION

/mixM option instructs the compiler that the hardware supports medium hardware memory model.
Medium hardware memory model contains one physical data segment and more than one physical code
segment.

Example 3.9

C:\>CC665S /T m66589 /MEM /mixM test2.c <CR>

For the above command line, CC665S compiles “test2.c” in medium mixed memory model.

3.2.3.2 /mixC OPTION

/mixC option instructs the compiler that the hardware supports compact hardware memory model.
Compact hardware memory model contains more than one physical data segment and one physical code
segment.

Example 3.10

C:\>CC665S /T m66589 /MS /mixC test3.c <CR>

For the above command line, CC665S compiles “test3.c” in compact mixed memory model.

3.2.3.3 /mixL OPTION

/mixL option instructs the compiler that the hardware supports large hardware memory model. Large
hardware memory model contains more than one physical data segment and more than one physical code
segment.

Example 3.11

C:\>CC665S /T m66589 /MS /mixL test3.c <CR>

For the above command line, CC665S compiles “test3.c” in large mixed memory model.

Invoking CC665S And Command Line Options

Page 13

3.2.4 ‘C’ And Mixed Memory Model Combination

A mixed memory model option may be specified with a C memory model option. If it is specified without
a C memory model option, CC665S issues a fatal error message. Some combinations of C and mixed
memory models are not allowed.

The valid and invalid combinations of C and mixed memory models are shown in the following table:

TABLE 3.1
/mixM /mixC /mixL

/MS Valid Valid Valid
/MEM Valid Invalid Valid
/MM Valid Invalid Valid
/MC Invalid Invalid Valid

/MEL Invalid Invalid Valid
/ML Invalid Invalid Valid

CC665S Ver.2.01 User Guide

Page 14

In the absence of a mixed memory model option in the command line, mixed memory model is set based
on C memory model option. The following table specifies how C and mixed memory models are assumed
based on C and mixed memory model options specified in the command line:

TABLE 3.2

MEMORY MODEL
OPTIONS

C MEMORY
MODEL

MIXED MEMORY
MODEL

none small small

/MS small small

/MS /mixM small medium

/MS /mixC small compact

/MS /mixL small large

/MEM /mixM effective medium medium

/MEM effective medium medium

/MEM /mixL effective medium large

/MM medium medium

/MM /mixM medium medium

/MM /mixL medium large

/MC compact compact

/MC /mixL compact large

/MEL effective large large

/MEL /mixL effective large large

/ML large large

/ML /mixL large large

3.2.5 Optimization Options

The optimizing capabilities available with CC665S can reduce the target storage space and/or target
execution time. This is achieved by eliminating unnecessary instructions and rearranging the code.

By default, CC665S performs all optimizations. One of the following optimization options may be used to
suppress the optimization or to control the optimization.

Invoking CC665S And Command Line Options

Page 15

The various optimization options are shown in the following table:

TABLE 3.3
OPTION OPTIMIZING PROCEDURE

/Od Disables optimization
/Ol Enables loop optimization
/Og Enables global optimization
/Oa Enables alias checks
/Om Maximizes optimization
/Ot Speed optimization

Following optimizations are performed by default.

1. Common subexpression elimination

2. Constant folding.

3. Peephole optimizations.

The above mentioned optimizations are performed by examining only short sections of the input program.
These optimizations cannot be suppressed by specifying /Od option.

The following optimizations will be performed always unless suppressed by /Od option.

TABLE 3.4

1. Eliminating dead code

2. Eliminating dead blocks

3. Optimizing jumps

4. Optimization using algebraic identities

5. Global Register allocation and assignment

Other options have no control over these optimizations.

CC665S Ver.2.01 User Guide

Page 16

3.2.5.1 /Od OPTION

Syntax : /Od

/Od option instructs the compiler not to perform any optimization. This option may be useful when a source
program is compiled for debugging. Some of the optimizations will still be performed.

This option increases the size of the generated code and executable time.

Other optimization options cannot be specified with this option. If specified, a fatal error message
indicating the illegal combination of optimization options is issued.

Example 3.12

C:\> CC665S /Od /T m66589 test.c <CR>

For the above command line, output file “test.asm” with unoptimized code is created.

Example 3.13

C:\> CC665S /Od /Ol /T m66589 test.c <CR>

A fatal error “Illegal combination of optimization options” is issued for the above command line.

3.2.5.2 /Og OPTION

Syntax : /Og

When /Og option is specified, CC665S performs only the global optimizations. The global optimizations
performed by CC665S are

1. Global common subexpression elimination

2. Global constant folding

3. Code sinking

4. Code hoisting.

/Og option enables CC665S to perform common subexpression elimination and constant folding by
examining an entire function.

Example 3.14

C:\> CC665S /Og /T m66589 test.c <CR>

Loop optimizations and alias checks are not performed for the above command line. However, other
optimizations shown in table 3.4 are performed.

Invoking CC665S And Command Line Options

Page 17

3.2.5.3 /Ol OPTION

Syntax : /Ol

When /Ol option is specified, CC665S performs only those optimizations that involve loops.

Loops involve sections of code that are executed repeatedly. These sections of code are targets for
optimization. These optimizations involve moving code or rearranging code so that it executes faster.

Following loop optimizations are performed:

1. Loop invariant code motion

2. Loop variant code motion

3. Strength reduction in loops

4. Induction variable elimination

5. Loop unrolling.

Example 3.15

C:\> CC665S /Ol /T m66589 test.c <CR>

/Ol option enables CC665S to perform loop optimizations. Global optimizations and alias checks are not
performed for the above command line. However, other optimizations shown in table 3.4 are performed.

Example 3.16

C:\> CC665S /Ol /Og /T m66589 test.c <CR>

/Ol option enables CC665S to perform loop optimizations and /Og enables global optimizations. Alias
checking is not performed for the above command line. Other optimizations shown in table 3.4 are
performed.

3.2.5.4 /Oa OPTION

Syntax : /Oa

/Oa option enables the compiler to perform alias checks which results in safe optimization.

Aliases are multiple names (that is, symbolic references) for the same memory location in a program. When
/Oa option is specified, CC665S detects and maintains the information about aliases. It then uses this
information, during optimizations.

CC665S Ver.2.01 User Guide

Page 18

If /Oa option is not specified, the size of the output may be reduced or the speed of the output may be
increased. However, the user is highly recommended to use the /Oa option to get a safe output. The user
may ignore this option, only when, aliases are not used in the program.

Example 3.17

C:\> CC665S /Oa /T m66589 test.c <CR>

/Oa option enables CC665S to perform alias checks. Loop optimizations and global optimizations are not
performed for the above command line. Optimizations shown in table 3.4 are performed.

3.2.5.5 /Om OPTION

Syntax : /Om

/Om option enables CC665S to perform maximum possible optimizations. When /Om option is specified,
CC665S performs all the optimizations iteratively until no more optimization can be performed. When
/Om is specified, /Og and /Ol options are redundant. Global optimizations and loop optimizations will be
carried out, when /Om is specified.

Example 3.18

C:\> CC665S /Om /T m66589 test.c <CR>

/Om option enables CC665S to perform all the optimizations iteratively. Alias checks are not performed.

Example 3.19

C:\> CC665S /Om /Og /T m66589 test.c <CR>

/Om option enables CC665S to perform all optimizations iteratively. /Og option in the above command
line is redundant since global optimizations are also performed because of /Om option.

3.2.5.6 /Ot OPTION

Syntax : /Ot

/Ot option enables CC665S to perform optimization for speed. This also enables CC665S to perform
global optimization, loop optimizations. By default, alias checks are not performed. Sometimes, the speed
optimization increases the output code size. The options /Om , /Ot and /Od are mutually exclusive.

Invoking CC665S And Command Line Options

Page 19

Example 3.20

C:\> CC665S /Ot /T m66589 test.c <CR>

/Ot option enables CC665S to perform optimization for speed.

3.2.5.7 SUMMARY OF OPTIMIZATION OPTIONS

The actions performed when the above optimization options are specified is summarized in the following
table :

TABLE 3.5
Optimization
Options

Loop Optimizations Global
Optimizations

Default no /Oa performed - unsafe performed - unsafe
/Oa performed - safe performed - safe

/Od no /Oa not performed not performed
/Oa Error Error

/Ol no /Oa performed - unsafe not performed
/Oa performed - safe not performed

/Og no /Oa not performed performed - unsafe
/Oa not performed performed - safe

/Om no /Oa performed - unsafe performed - unsafe
/Oa performed - safe performed - safe

/Ot no /Oa performed - unsafe performed - unsafe
/Oa performed - safe performed - safe

A combination of /Ol, /Og and /Oa optimization options may be specified.

CC665S Ver.2.01 User Guide

Page 20

3.2.5.8 COMBINATION OF OPTIMIZATION OPTIONS

The following table summarizes the combination of the optimization options.

TABLE 3.6
No. Combinations Validity Optimizations Performed If

The Combination Is Valid
1. /Od /Og Invalid -
2. /Od /Ol Invalid -
3. /Od /Oa Invalid -
4. /Od /Om Invalid -
5. /Od /Ot Invalid -
6. /Om /Ot Invalid -
7. /Og /Ol Valid Loop Optimizations

Global Optimizations
Other Optimizations

8. /Og /Oa Valid Global Optimizations
Alias Checking
Other Optimizations

9. /Og /Om Valid Loop Optimizations
Global Optimizations
Other Optimizations

10. /Og /Ot Valid Loop Optimizations
Global Optimizations
Speed Optimization
Other Optimizations

11. /Ol /Oa Valid Loop Optimizations
Alias Checking
Other Optimizations

12. /Ol /Om Valid Loop Optimizations
Global Optimizations
Other Optimizations

13. /Ol /Ot Valid Loop Optimizations
Global Optimizations
Speed Optimization
Other Optimizations

Invoking CC665S And Command Line Options

Page 21

No. Combinations Validity Optimizations Performed If
The Combination Is Valid

14. /Oa /Om Valid Loop Optimizations
Global Optimizations
Alias Checking
Other Optimizations

15. /Oa /Ot Valid Loop Optimizations
Global Optimizations
Speed Optimization
Alias Checking
Other Optimizations

16. /Og /Ol /Oa Valid Loop Optimizations
Global Optimizations
Alias Checking
Other Optimizations

17. /Og /Ol /Om Valid Loop Optimizations
Global Optimizations
Other Optimizations

18. /Ol /Oa /Om Valid Loop Optimizations
Global Optimizations
Alias checking
Other Optimization

19. /Ol /Og /Oa /Om Valid Loop Optimizations
Global Optimizations
Alias checking
Other Optimizations

20. /Og /Ol /Ot Valid Loop Optimizations
Global Optimizations
Speed Optimization
Other Optimizations

21. /Ol /Oa /Ot Valid Loop Optimizations
Global Optimizations
Speed Optimization
Alias checking
Other Optimization

22. /Ol /Og /Oa /Ot Valid Loop Optimizations
Global Optimizations
Speed Optimization
Alias checking
Other Optimizations

CC665S Ver.2.01 User Guide

Page 22

3.2.6 Code Generation

3.2.6.1 /nX500 OPTION

Syntax : /nX500

The /nX500 option instructs CC665S to generate code for nX-8/500 core.

Example 3.21

C:\> CC665S /nX500 /T m66589 test.c <CR>

This option cannot be specified along with the other core option (/nX500S). If specified, CC665S issues
a fatal error message “Duplicate core option”.

Example 3.22

C:\> CC665S /nX500S /nX500 test.c <CR>

A fatal error message is generated for the above command line, since the core options /nX500 and
/nX500S are mutually exclusive.

3.2.6.2 /nX500S OPTION

Syntax : /nX500S

The option /nX500S instructs CC665S to generate code for nX-8/500S core. This is the default option. If
no core is specified in the command line, CC665S generates code for nX-8/500S core.

Example 3.23

C:\> CC665S /nX500S /T m66589 test.c <CR>

This option cannot be specified along with the other core option (/nX500). If specified, CC665S issues a
fatal error message : “Duplicate core option”.

Example 3.24

C:\> CC665S /nX500 /nX500S test.c <CR>

A fatal error message is generated for the above command line, as the core options /nX500 and /nX500S
are mutually exclusive.

Invoking CC665S And Command Line Options

Page 23

3.2.7 Output Files

3.2.7.1 ERROR LISTING OPTION

Syntax : /LE

/LE option enables CC665S to generate listing of source files along with error messages, if any. The
complete source code is listed with line numbers. The name of the listing file is the same as input file with an
extension “.LST”.

This option cannot be specified along with one of the preprocessor options /LP or /PC. If specified, fatal
error is issued.

Information about the size of stack used in each function is also output in the list file, if no error messages
or fatal error messages are generated.

Example 3.25

C:\> CC665S /LE /T m66589 test.c <CR>

CC665S generates a listing file “test.lst” for the above command line. The output listing file contains the
source with line numbers and the generated errors, if any.

3.2.7.2 CALLTREE OPTION

Syntax : /CT filename

This option enables CC665S to generate a listing of function calls. Calltree listing file contains an indented
listing showing function names at the left margin and calls in each function.

Filename must be specified along with the option /CT. If file name is not specified CC665S issues an error
message. No default extension is assumed by CC665S.

This option cannot be specified along with one of the preprocessor options /LP or /PC. If specified, fatal
error is issued.

Example 3.26

C:\> CC665S /CT test.cal /T m66589 test.c <CR>

/CT option in the above command line enables CC665S to generate a calltree listing file “test.cal”. An
indented listing of function names and the calls in each function is output in “test.cal”.

CC665S Ver.2.01 User Guide

Page 24

Example 3.27

C:\> CC665S /CT test.cal /T m66589 t1.c t2.c <CR>

/CT option in the above command line enables CC665S to generate a calltree listing file “test.cal”. Calltree
listing of both the files t1.c and t2.c is output in “test.cal” one after the other. However, the function
information is not carried from one file to another.

Example 3.28

C:\> CC665S /CT test.cal /LP test.c <CR>

A fatal error is issued by CC665S for the above command line, since /CT and /LP options are mutually
exclusive.

3.2.7.3 ASSEMBLY LISTING FILE

Syntax : /Fa[path]

/Fa option enables CC665S to generate assembly listing file in the specified name, path or a directory . If
a file name with or without path is specified with /Fa option then assembly listing will be output in that file.
If the specified file name has no extension then the output file will have “.ASM” extension.

If a directory is alone specified with /Fa option, then the assembly listing will be created in that specified
directory with the default file name.

The argument ‘path’ is optional. If no argument is specified with /Fa option, then the assembly listing will be
created in the current directory with the default file name.

If the file or path specified with /Fa option is invalid, CC665S issues fatal error message

If a directory is specified with /Fa option then that will be considered for all the source files following that
/Fa option if no other /Fa option is specified in between.

/Fa option can be specified any number of times in the command line for a source file. If more than one /Fa
option is specified before a source file then only the latest /Fa option will be considered for that source file.

/Fa option may also be specified between source files in the command line.

Example 3.29

C:\> CC665S /Fa..\ /T m66589 test.c <CR>

For the above command line, assembly list file “test.asm” will be created in the parent directory of the
current working directory.

Invoking CC665S And Command Line Options

Page 25

Example 3.30

C:\> CC665S /Fad:\asm\ /T m66589 test1.c test2.c<CR>

For the above command line, the assembly listing output files “test1.asm” and “test2.asm” will be created
in “d:\asm” directory.

Example 3.31

C:\> CC665S /Faout1 /Faout2 /T m66589 test.c <CR>

For the above command line, the assembly listing will be in the name “out2.asm”.

3.2.8 Preprocessor Options

3.2.8.1 /LP OPTION

Syntax : /LP

This option enables CC665S to generate listings of preprocessed output of each of the input files. When
this option is specified CC665S acts as a text processor that manipulates the text of the source files. It
performs the following functions :

1. Macro expansion

2. Comment removal

3. File inclusion

4. Conditional compilation

5. Line control

6. Error generation

by processing the preprocessor directives inside the source files.

The name of the preprocessed file is same as the input file with an extension “.P66”. When this option is
specified, source files are not compiled.

List file option (/LE) and calltree option (/CT) cannot be specified with /LP option. The input filename may
have any extension (including empty extension) when this option is specified.

Example 3.32

C:\> CC665S /LP test.c <CR>

CC665S Ver.2.01 User Guide

Page 26

/LP in the above example instructs the compiler to create a preprocessed output file test.p66. Comments
will be stripped.

Example 3.33

C:\> CC665S /LP /LE test.c <CR>

A fatal error is generated for the above command line, since /LE option and /LP option are mutually
exclusive.

3.2.8.2 /PC OPTION

Syntax : /PC

The preprocessor, while preprocessing, normally removes all comments present in the source file. /PC
option instructs the compiler to preserve comments during preprocessing. CC665S produces a
preprocessed output listing with the comments specified in the source file. All other functions are similar to
that of /LP option.

The preprocessor options /PC and /LP are mutually exclusive. Only one of these options may be specified
in the command line. When both these options are specified together, CC665S issues a fatal error
“Duplicate preprocessor option”.

The name of the preprocessed file is the same as input file but with an extension “.P66”. When this option
is specified, source files are not compiled.

List file option (/LE) and calltree option (/CT) cannot be specified with /PC option. The input filename may
have any extension (including empty extension) when this option is specified.

Example 3.34

C:\> CC665S /PC test10.inp <CR>

/PC in the above example instructs the compiler to create a preprocessed output file test10.p66.
Comments are preserved in the output file.

Example 3.35

C:\> CC665S /PC /LP key.c <CR>

A fatal error message is generated for the above command line, since the options /LP and /PC are mutually
exclusive.

Invoking CC665S And Command Line Options

Page 27

3.2.8.3 /I OPTION

Syntax : /I directory

A directory to search the included files can be given with /I option. This option temporarily overrides or
changes the effect of environment variable INCL66K. CC665S searches the directory specified in this
option first, before searching the standard places given in INCL66K environment variable.

Only one directory name shall be specified with an /I option. If more than one directory names are to be
specified, /I option may be used repeatedly.

Example 3.36

C:\> CC665S /I \include /T m66589 test.c <CR>

The above command line instructs CC665S to search the included files in the directory “\include” before
searching in the directories specified using the environment variable INCL66K.

Example 3.37

C:\> CC665S /I include /I lib /LP test.c <CR>

For the above command line, CC665S searches the included file in the directory “include” first. And if not
found, it searches in the directory “lib”. If still not found, CC665S searches in the directories specified by
the environment variable INCL66K.

3.2.8.4 /D OPTION

Syntax : /D<identifier>[=[string]]

where ‘identifier’ is the macro and ‘string’ is the replacement text.

A macro without argument can be defined in the command line using /D option. The macro processing is
same as if it is specified in the source file.

If the argument specified with /D option is not an identifier then CC665S ignores /D option without giving
warning message.

Example 3.38

C:\> CC665S /Tm66589 /DVALUE(a) test14.c <CR>

For the above command line, CC665S ignores /D option since ‘VALUE(a)’ is not an identifier.

CC665S Ver.2.01 User Guide

Page 28

Whitespaces may or may not be specified in between ‘/D’ and the macro. If only identifier is specified with
/D option then the replacement text for the macro is ‘1’.

Whitespaces cannot be specified between the identifier and ‘=’. If the argument ends with ‘=’ then the
replacement text for the macro is empty.

Whitespaces cannot be specified between ‘=’ and the replacement string.

/D option can be specified before each source file name in the command line. The macro defined with /D
option is considered for all the files specified after that /D option in the command line.

Example 3.39

C:\> CC665S /Tm66589 /DVALUE1 test15.c /DVALUE2= test16.c <CR>

The macro ‘VALUE1’ is defined as 1 and it is considered for both ‘test15.c’ and ‘test16.c’. Whereas, the
macro ‘VALUE2’ is defined with no replacement text and it is considered only for the file ‘test16.c’.

3.2.9 Stack

3.2.9.1 STACK SIZE OPTION

Syntax : /SS constant

/SS option sets the size of the program stack. CC665S outputs the size specified in this option using the
pseudo instruction STACKSEG. This enables the linker RL66K, at a later stage, to allocate memory for
the program stack.

If this option is not specified, CC665S sets a default stack size of 1024 bytes.

The constant must be a decimal constant. The valid range of the constant is between 2 and 65534,
inclusive of both. If an odd number is specified, a fatal error is issued. The space between /SS and the
constant is optional.

Example 3.40

C:\> CC665S /SS 2048 /T m66589 test.c <CR>

STACKSEG pseudo instruction with size 2048 is output by CC665S for the above command line.

Example 3.41

C:\> CC665S /SS0x0800 /T m66589 test.c <CR>

Invoking CC665S And Command Line Options

Page 29

A fatal error is issued by CC665S for the above command line, since only a decimal constant is expected
as a parameter for /SS option.

Example 3.42

C:\> CC665S /SS 1023 /T m66589 test.c <CR>

A fatal error is issued for the above command line, since an even number is expected as a parameter for
/SS option.

3.2.9.2 STACK CHECKING OPTION

Syntax : /ST

When /ST option is specified, stack probes are added in the assembly output by CC665S.

A “stack probe” is a short routine called on entry to function, to verify if there is enough room in the
program stack to allocate local variables required by the function. The stack probe routine jumps to a C
function ‘_stack_error’, when it determines that the required size is not available in the stack. The function
‘_stack_error’ has to be defined by the user.

When this option is not specified, stack probe routine is not called, and stack overflow may occur without
being diagnosed.

Example 3.43

C:\> CC665S /ST /T m66589 test.c <CR>

Calls to stack probe routine is generated at the entry code of each function in “test.c” for the above
command line.

3.2.10 Debugging Options

3.2.10.1 /SD OPTION

Syntax : /SD

If /SD option is specified, CC665S generates the necessary information for the ‘C’ source level debugger
CDB665S. Files compiled without /SD or /OSD option cannot be debugged using the debugger
CDB665S at source level.

Debugging information are stored in a separate file. The name of the debugging information file is the same
as input file with an extension “.DBG”.

CC665S Ver.2.01 User Guide

Page 30

This option cannot be specified along with the other debugging option /OSD. If specified, fatal error is
issued.

Example 3.44

C:\> CC665S /SD /T m66589 test.c <CR>

For the above command line, a debug information file is created. The name of the debug information file is
“test.dbg”. This file will not be created when CC665S issues error message or a fatal error message.

Example 3.45

C:\> CC665S /SD /OSD test.c <CR>

A fatal error is generated for the above command line, since /SD and /OSD options are mutually exclusive.

3.2.10.2 /OSD OPTION

Syntax : /OSD

This option is same as /SD option except that the source level debugger CDB665S does not support ‘calls
menu’ option if /OSD option is used in compilation. /SD and /OSD options are mutually exclusive.

If both /SD and /OSD options are specified together, fatal error is issued.

Example 3.46

C:\> CC665S /OSD /T m66589 test.c <CR>

For the above command line, a debug information file is created. The name of the debug information file is
“test.dbg”. This file will not be created when CC665S issues error message or a fatal error message.

Example 3.47

C:\> CC665S /OSD /SD test.c <CR>

A fatal error is generated for the above command line, since /SD and /OSD options are mutually exclusive.

Invoking CC665S And Command Line Options

Page 31

3.2.11 Miscellaneous Options

3.2.11.1 /SL OPTION

Syntax : /SL constant

/SL option sets the maximum length of an identifier. The constant must be an integer in the range 31 to 254,
inclusive of both.

If this option is not specified, CC665S assumes the maximum length of an identifier as 31.

Example 3.48

C:\> CC665S /SL 40 /T m66589 test.c <CR>

In the above example, CC665S takes maximum length of an identifier as 40 characters. If in “test.c” any
identifier is encountered whose length exceeds 40 characters, only first 40 characters will be considered as
identifier name and a warning message will be given.

Example 3.49

C:\> CC665S /T m66589 test.c <CR>

In the above example, CC665S takes maximum length of an identifier as 31 characters (default maximum
identifier length).

Example 3.50

C:\> CC665S /SL 1023 /T m66589 test.c <CR>

A fatal error is issued for the above command line, since the expected range of the constant value is
between 31 and 254, inclusive of both.

Example 3.51

C:\> CC665S /SL /T m66589 test.c <CR>

A fatal error is issued for the above command line, since a constant value is expected after /SL.

3.2.11.2. /J OPTION

Syntax : /J

/J option instructs CC665S to treat default ‘char’ type as ‘unsigned char’ type. If /J option is specified in
the command line, CC665S treats all ‘char’ type without ‘signed’ specifier as ‘unsigned char’ type.

CC665S Ver.2.01 User Guide

Page 32

Example 3.52

char chr ;

By default, CC665S treats the variable ‘chr’ as ‘signed char’ type. If /J option is specified in the
command line, CC665S treats the variable ‘chr’ as ‘unsigned char’ type.

3.2.11.3 /PF OPTION

Syntax : /PF

The default pragma argument delimiter is whitespace. This can be changed to “,” (comma) by specifying
/PF option in the command line.

The following is the pragma syntax, when /PF option is not specified:

#pragma pragma_keyword [argument1 argument2 ...]

If /PF option is specified in the command line, the pragma syntax is as follows:

#pragma pragma_keyword [argument1, argument2, ...]

Example 3.53

#pragma inpage seg1 int_var1, int_var2, int_var3

The above pragma syntax is valid if /PF is specified in the command line. Otherwise, CC665S issues a
warning message and ignores pragma.

3.2.11.4 /REG OPTION

Syntax : /REG

/REG option instructs the compiler to treat all the functions except ‘__noacc’ specified functions as
‘__accpass’ functions. The first argument and return value may be passed through the accumulator to and
from ‘__accpass’ function.

Example 3.54

C:\> CC665S /REG /T m66589 test.c <CR>

In the above example, all the functions that are not qualified with ‘__noacc’ will be assumed to be qualified
with ‘__accpass’ qualifier.

Invoking CC665S And Command Line Options

Page 33

3.2.11.5 /WIN OPTION

/WIN option directs the compiler to assign all non-far tables to ROMWINDOW region. Data memory
addressing is used to access non-far tables.

Example 3.55

C:\> CC665S /WIN /T m66589 test.c <CR>

In the above example, all the non-far tables in source file “test.c” are allocated in ROMWINDOW region.

3.2.11.6 /AWIN OPTION

/AWIN option instructs the compiler to output the pseudo instruction “awin” in the assembly listing.
/AWIN option may be used while compiling library routines as they may be invoked from both programs
compiled using /WIN option and programs compiled without /WIN option.

/WIN and /AWIN options are mutually exclusive. If both options are specified in command line, CC665S
issues fatal error message.

Example 3.56

C:\> CC665S /AWIN /T m66589 test.c <CR>

In the above example, “awin” pseudo is output in the assembly listing file “test.asm”.

Example 3.57

C:\> CC665S /AWIN /T m66589 /WIN test.c <CR>

In the above example, CC665S outputs fatal error message as /WIN and /AWIN options are mutually
exclusive.

3.2.11.7 /SYS OPTION

/SYS option directs the compiler to change the segment naming strategy. This option may be used during
compiling system files.

Example 3.58

C:\> CC665S /SYS /T m66589 test.c <CR>

In the above example, CC665S uses a different segment naming strategy while compiling “test.c”.

CC665S Ver.2.01 User Guide

Page 34

3.2.12 Invalid Combination Of Options

The following are invalid combinations of command line options.

1. Both preprocessor options (/LP and /PC)
2. Both debugging options (/SD and /OSD)
3. /WIN and /AWIN
4. /LE and preprocessor options (/LP or /PC).
5. /CT and preprocessor options (/LP or /PC).
6. /Fa and preprocessor options (/LP or /PC).
7. /Om and /Ot.
8. /Od and other optimization options (/Ol, /Og, /Oa, /Om and /Ot).
9. Both core options (/nX500 and /nX500S)
10. Invalid C and mixed memory model combinations as given in table 3.1.

Memory Models

Page 35

4. MEMORY MODELS

This section describes about the various memory models supported by CC665S and the additional
memory model qualifiers provided.

4.1 C MEMORY MODELS

CC665S supports the following C memory model options:

1. Small C memory model

2. Effective medium C memory model

3. Medium C memory model

4. Compact C memory model

5. Effective large C memory model

6. Large C memory model

Command line options corresponding to the C memory models are as follows:

1. /MS option for Small C memory model

2. /MEM option for Effective medium C memory model

3. /MM option for Medium C memory model

4. /MC option for Compact C memory model

5. /MEL option for Effective Large C memory model

6. /ML option for Large C memory model

CC665S Ver.2.01 User Guide

Page 36

4.2 HARDWARE MEMORY MODELS

MSM665xx chips can be classified into the following four types based on memory availability:

1. Small Memory Model

2. Medium Memory Model

3. Compact Memory Model

4. Large Memory Model

Small Memory Model architecture supports one physical data segment and one physical code segment. In
Medium Memory Model, one physical data segment and more than one physical code segment are
available. Compact Memory Model chips contain more than one physical data segment and one physical
code segment. Large Memory Model architecture supports more than one physical data segment and
more than one physical code segment.

Command line options to specify the hardware memory model options are as follows:

1. /mixM to specify Medium hardware memory model

2. /mixC to specify Compact hardware memory model

3. /mixL to specify Large hardware memory model

4.3 OBJECTS AFFECTED BY MEMORY MODELS

The objects of a C program that are affected by memory models may be divided into the following four
major divisions:

1. Data Variables

2. Tables

3. Strings

4. Functions

Variables that are allocated in data memory are called Data Variables. Variables that are allocated in
code memory are called Tables.

Memory Models

Page 37

4.3.1 Memory Model Qualifiers

The following memory model qualifiers are supported by CC665S:

1. __far

2. __nfar

__far qualifier may be used with data variables, tables and functions. __nfar qualifier may be used only
with functions.

4.3.2 Data Variables

4.3.2.1 NEAR DATA VARIABLES

If the C memory model option instructs the compiler to use at most one physical data segment, then
CC665S allocates all the data variables which are not qualified by __far in physical segment #0. These
data variables are called near data variables. CC665S will not consider Data Segment Register for
accessing near data variables. The size of pointer to a near data variable is 2 bytes.

4.3.2.2 LARGE DATA VARIABLES

If the C memory model option instructs the compiler to use more than one physical data segment, then
CC665S allocates data variables in any physical data segment. These data variables are called large data
variables. CC665S will switch the Data Segment Register accordingly before each access of large data
variables. The size of pointer to a large data variable is 4 bytes.

4.3.2.3 FAR DATA VARIABLES

If the C memory model option instructs the compiler to use at most one physical data segment, but the
hardware memory model supports more than one physical data segments, then the __far qualified data
variables will be allocated in any physical data segment. Such data variables are called far data variables.
CC665S will switch the Data Segment Register accordingly before and after each access of far data
variables. The size of pointer to a far data variable is 4 bytes.

CC665S Ver.2.01 User Guide

Page 38

4.3.3 Tables

4.3.3.1 NEAR TABLES

If the C memory model option instructs the compiler to use at most one physical code segment and one
physical data segment, then the non __far qualified tables will always be allocated in physical code
segment #0. Such tables are called near tables. CC665S will not consider Table Segment Register while
accessing near tables. The size of pointer to a near table is 2 bytes.

4.3.3.2 EFFECTIVE NEAR TABLES

If the C memory model option instructs the compiler to use more than one physical code segment and at
most one physical data segment, then the non __far qualified tables will be allocated in any physical
segment. However, only one physical segment will be used for all the non far qualified tables in the
program. Total size of the tables cannot exceed 64 Kilobytes. The startup routine initializes the Table
Segment Register with the number of the segment allocated for tables. CC665S will not consider Table
Segment Register while accessing effective near tables. The size of pointer to a effective near table is 2
bytes.

4.3.3.3 XNEAR TABLES

If the C memory model option instructs the compiler to use at most one physical code segment and more
than one physical data segment, then the non __far qualified tables will be allocated in physical segment
#0. Such tables are called xnear tables. CC665S will not consider Table Segment Register while accessing
xnear tables. The size of pointer to a xnear table is 4 bytes. In these C memory models, the compiler
assumes the data variables as large data variables. If the table is allocated in ROMWINDOW region data
memory instructions are used to access these tables. As the size of pointers to data memory is 4 bytes, the
size of pointers to a xnear tables are also 4 bytes.

4.3.3.4 EFFECTIVE XNEAR TABLES

If the C memory model option instructs the compiler to use more than one physical code segment and
more than one physical data segment, then the non __far qualified tables will be allocated in any physical
segment. However, all non __far qualified tables will be restricted to one physical code segment. Such
tables are called effective xnear tables.

Memory Models

Page 39

The startup routine initializes the Table Segment Register with the number of the segment allocated for
tables. CC665S will not consider Table Segment Register while accessing effective xnear tables. The size
of pointer to a effective xnear table is 4 bytes. In these C memory models, the compiler assumes the data
variables as large data variables. If the table is allocated in ROMWINDOW region data memory
instructions are used to access these tables. As the size of pointers to data memory is 4 bytes, the size of
effective xnear tables are also 4 bytes.

4.3.3.5 FAR TABLES

If the hardware memory model supports more than one physical code segment, then __far qualified tables
will be allocated in any physical code segment. These tables are called far tables. CC665S will switch
Table Segment Register accordingly before and after each access to the far table. The size of pointer to a
far table is 4 bytes.

4.3.4 Strings

Irrespective of memory models, a string type is same as default type of table. Strings cannot be qualified by
__far. All strings are restricted to one physical segment only. Size of pointers to strings is 2 bytes if the C
memory model options instructs the compiler to use at most one physical data segment. Otherwise, the size
of pointers to strings is 4 bytes. Allocations of strings are similar to that of tables.

4.3.5 Functions

4.3.5.1 NEAR FUNCTIONS

If C memory model option instructs the compiler to use at most one physical code segment, then all non
__far qualified functions will be allocated in physical code segment #0. These functions are called near
functions. Calls to these functions is through “cal” instruction. These functions return using “rt” instruction.
Size of pointer to a near function is 2 bytes.

4.3.5.2 LARGE FUNCTIONS

If C memory model option instructs the compiler to use more than one physical code segment, then
CC665S allocates functions in any physical code segment. These functions are called large functions.
Large functions are called using “fcal” instruction. These functions return using “frt” instruction. Size of
pointer to a large function is 4 bytes.

CC665S Ver.2.01 User Guide

Page 40

4.3.5.3 FAR FUNCTIONS

If the hardware memory model supports more than one physical code segment, then CC665S allocates
__far qualified functions in any physical segment. __far qualified functions are called far functions. Far
functions are called using “fcal” instruction. Far functions return through “frt” instruction. Size of pointer to
a far function is 4 bytes.

Far functions can be called by any other function. But far functions cannot call near functions.

4.3.5.4 NFAR FUNCTIONS

CC665S allocates all __nfar qualified functions in physical code segment #0. __nfar qualified functions
are called nfar functions. Nfar functions are called using “fcal” instruction. Nfar functions return through
“frt” instruction. Size of pointer to a nfar function is 4 bytes.

Nfar functions may be called by any other function. Nfar function may call any other function. Nfar
functions act as a bridge between far functions and near functions. Calls to near functions from far functions
must be through nfar functions.

4.4 COMBINATION OF C AND MIXED MEMORY MODEL OPTIONS

4.4.1 Small C Memory Model

CC665S generates output code for Small C memory model option when /MS option is specified in
command line or when no C memory model option is specified in command line. Small C memory model
option instructs the compiler to use one physical code segment and one physical data segment. Under this
memory model, default data variables are near data variables, default tables are near tables and default
functions are near functions.

4.4.1.1 WITHOUT ANY MIXED MEMORY MODEL OPTIONS

Under Small C memory model option, if no mixed memory model option is specified in command line, then
CC665S assumes the hardware memory model option to be Small memory model. As the hardware
supports only one physical code segment and one physical data segment, far and nfar objects are not
allowed in this memory model. CC665S issues warning message, if a data, a table or a function is qualified
by __far or if a function is qualified by __nfar.

Memory Models

Page 41

4.4.1.2 WITH /mixM OPTION

Mixed memory model option /mixM specifies that the hardware supports Medium memory model.
Medium hardware memory model contains more than one physical code segment and one physical data
segment. Under this option, CC665S allows far tables, far functions and nfar functions. CC665S issues
warning message, if a data variable is qualified by __far.

4.4.1.3 WITH /mixC OPTION

Mixed memory model option /mixC specifies that the hardware supports Compact memory model.
Compact hardware memory model contains one physical code segment and more than one physical data
segment. Under this option, CC665S allows far data variables. CC665S issues warning message, if table
or function is qualified by __far or if function is qualified by __nfar.

4.4.1.4 WITH /mixL OPTION

Mixed memory model option /mixL specifies that the hardware supports Large memory model. Large
hardware memory model contains more than one physical code segment and more than one physical data
segment. Under this option, CC665S allows far data variables, far tables, far functions and nfar functions.

4.4.2 Effective Medium C Memory Model

Command line option /MEM instructs CC665S to generate code for Effective medium C memory model.
In effective medium C memory model, CC665S uses at most one physical data segment for data variables,
one separate physical code segment for functions and a separate physical code segment for tables and
strings. Under this option, default data variables are near data variables, default tables are effective near
tables and default functions are near functions.

4.4.2.1 WITHOUT ANY MIXED MEMORY MODEL OPTIONS

If no mixed memory model option is specified along with Effective medium C memory model option,
CC665S assumes the hardware memory model to be Medium memory model. Under this combination,
CC665S issues warning message, if data, table or function is qualified by __far or if function is qualified by
__nfar.

CC665S Ver.2.01 User Guide

Page 42

4.4.2.2 WITH /mixM OPTION

Under this memory model, CC665S allows far functions, nfar functions and far tables. CC665S issues
warning message, if data is qualified by __far

4.4.2.3 WITH /mixC OPTION

If /MEM and /mixC options are specified in command line, CC665S issues the fatal error message
indicating illegal combination of C and mixed memory model options.

4.4.2.4 WITH /mixL OPTION

Under this memory model, CC665S allows far data variables, far functions, nfar functions and far tables.

4.4.3 Medium C Memory Model

Command line option /MM instructs the compiler to generate code for Medium C memory model option.
Under this option, CC665S uses one physical data segment for variables, more than one physical code
segment for functions and one physical code segment for tables and strings. In this option, default data
variables are near data variables, default functions are large functions, default tables are effective near
tables.

As all functions are large functions, if a function is qualified by __far, irrespective of mixed memory model
option, CC665S ignores the __far qualifier without giving any warning message.

4.4.3.1 WITHOUT ANY MIXED MEMORY MODEL OPTIONS

If no mixed memory model option is specified along with Medium C memory model option, CC665S
assumes the hardware memory model to be Medium memory model. Under this combination, CC665S
issues warning message, if a data or a table is qualified by __far.

4.4.3.2 WITH /mixM OPTION

Under this memory model, CC665S allows far tables. CC665S issues warning message, if a data variable
is qualified by __far.

Memory Models

Page 43

4.4.3.3 WITH /mixC OPTION

If /MM and /mixC options are specified in command line, CC665S outputs the fatal error message
indicating illegal combination of C and mixed memory model options.

4.4.3.4 WITH /mixL OPTION

Under this memory model, CC665S allows far data variables and far tables.

4.4.4 Compact C Memory Model

Command line option /MC instructs the compiler to generate code for Compact C memory model option.
Under this option, CC665S uses more than one physical data segment for variables and one physical
code segment for functions, tables and strings. In this option, default data variables are large data variables,
default functions are near functions, default tables are xnear tables.

As all data variables are large data variables, if a data variable is qualified by __far, irrespective of mixed
memory model option CC665S ignores the __far qualifier without giving any warning message.

4.4.4.1 WITHOUT ANY MIXED MEMORY MODEL OPTIONS

If no mixed memory model option is specified along with Compact C memory model option, CC665S
assumes the hardware memory model to be Compact memory model. Under this combination, CC665S
outputs warning message if a table or a function is qualified by __far or if a function is qualified by __nfar.

4.4.4.2 WITH /mixM OPTION

If /MC and /mixM options are specified in command line, CC665S outputs the fatal error message
indicating illegal combination of C and mixed memory model options.

4.4.4.3 WITH /mixC OPTION

If /MC and /mixC options are specified in command line, CC665S outputs the fatal error message
indicating illegal combination of C and mixed memory model options.

CC665S Ver.2.01 User Guide

Page 44

4.4.4.4 WITH /mixL OPTION

Under this memory model, CC665S allows far functions, nfar functions and far tables.

4.4.5 Effective Large C Memory Model

Command line option /MEL instructs CC665S to generate code for Effective large C memory model. In
effective large C memory model, CC665S uses more than one physical data segment for variables, one
separate physical code segment for functions and a separate physical code segment for tables and strings.
Under this option, default data variables are large data variables, default tables are effective xnear tables
and default functions are near functions.

As all data variables are large data variables, if a data variable is qualified by __far, irrespective of mixed
memory model option CC665S ignores the __far qualifier without giving any warning message.

4.4.5.1 WITHOUT ANY MIXED MEMORY MODEL OPTIONS

If no mixed memory model option is specified along with Effective large C memory model option,
CC665S assumes the hardware memory model to be Large memory model. Under this combination,
CC665S outputs warning message if a table or a function is qualified by __far or if a function is qualified
by __nfar.

4.4.5.2 WITH /mixM OPTION

If /MEL and /mixM options are specified in command line, CC665S outputs the fatal error message
indicating illegal combination of C and mixed memory model options.

4.4.5.3 WITH /mixC OPTION

If /MEL and /mixC options are specified in command line, CC665S outputs the fatal error message
indicating illegal combination of C and mixed memory model options.

Memory Models

Page 45

4.4.5.4 WITH /mixL OPTION

Under this memory model, CC665S allows far functions, nfar functions and far tables.

4.4.6 Large C Memory Model

Command line option /ML instructs CC665S to generate code for Large C memory model. In Large C
memory model, CC665S uses more than one physical data segment for variables, more than one physical
code segment for functions and one physical code segment for tables and strings. Under this option, default
data variables are large data variables, default tables are effective xnear tables and default functions are
large functions.

As all data variables are large data variables, if a data variable is qualified by __far, irrespective of mixed
memory model option CC665S ignores the __far qualifier without giving any warning message. Similarly,
as all functions are large functions, if a function is qualified by __far or __nfar, irrespective of mixed
memory model option, CC665S ignores the qualifier without giving any warning message.

4.4.6.1 WITHOUT ANY MIXED MEMORY MODEL OPTIONS

If no mixed memory model option is specified along with Large C memory model option, CC665S
assumes the hardware memory model to be large memory model. Under this combination, CC665S
outputs warning message if a table is qualified by __far.

4.4.6.2 WITH /mixM OPTION

If /ML and /mixM options are specified in command line, CC665S outputs the fatal error message
indicating illegal combination of C and mixed memory model options.

4.4.6.3 WITH /mixC OPTION

If /ML and /mixC options are specified in command line, CC665S outputs the fatal error message
indicating illegal combination of C and mixed memory model options.

4.4.6.4 WITH /mixL OPTION

Under this memory model, CC665S allows far tables.

Pragmas

Page 47

5. PRAGMAS

Syntax :

#pragma pragma_keyword arguments

The directive #pragma directs CC665S to define architecture specific instructions in the assembly listing
file. Pragma with instructions not recognized by the compiler are ignored after issuing a warning message.
Pragma keywords are not case sensitive. The pragmas supported by CC665S are explained in this
section.

By default, the delimiter which separates the pragma arguments is whitespace. This default delimiter can be
changed to “,” (comma) by specifying /PF option in the command line.

5.1 INTERRUPT PRAGMA

Syntax:

a. /PF option specified:

#pragma INTERRUPT function_name, address

b. /PF option not specified:

#pragma INTERRUPT function_name address

The pragma interrupt is used to specify interrupt handling functions coded in ‘C’. If a function is defined
in ‘C’ source program with function_name specified in this pragma, then it is treated as an interrupt
handling routine. This pragma must appear before definition of the function specified in the pragma. If this
pragma appears after the definition, pragma is ignored after issuing a warning message. Extern functions
may be specified in interrupt pragma.

CC665S Ver.2.01 User Guide

Page 48

The function_name in this pragma specifies the name of the interrupt handling function. The
function_name must be followed by an interrupt vector address. The value must be an even address in
the range, 0x8 and 0xfffe, inclusive of both. The interrupt vector address range 0x0 to 0x06, inclusive of
both, is reserved.

If this pragma is used more than once with the same interrupt vector address but different function names,
compiler issues a warning and takes the first pragma as valid. However, same function name may be
specified with different interrupt vector addresses.

CC665S pushes all registers used in interrupt handling function at the entry to this function and it pops the
corresponding registers at the exit. “rti” instruction is used to return from the interrupt handling routine.

CC665S issues warning for the following cases:

• If the specified symbol is not a function.

• If function “main” is specified in this pragma.

• If a function specified in this pragma is not declared in the file being compiled.

• If a function specified in this pragma has arguments or returns a value.

• If a function specified in this pragma is already specified in a pragma directive other than interrupt and
usinginpage.

• If a __far or __nfar qualified function is specified in this pragma.

• If the pragma is specified after the function definition.

• If a function specified in this pragma is used in an expression.

• If the specified address is not in range 0x8 to 0xfffe, inclusive of both.

• If an odd address is specified.

• If the function is called in source file.

Example 5.1

INPUT

pragma interrupt fn 0x10

void fn (void)

{
output_fn () ;

}

Pragmas

Page 49

OUTPUT

$$INTERRUPTCODE segment code #0h

rseg $$INTERRUPTCODE

CFUNCTION 0
_fn :

;;{
CLINE 4

pushs pr
pushs er

;; output_fn () ;
CLINE 5

cal _output_fn

;;}
CLINE 6

pops er
pops pr
rti

extrn code : _output_fn
public _fn
extrn code : _main

cseg #0h at 010h
dw _fn

The following are erroneous cases :

Example 5.2

INPUT

int a ;

pragma interrupt a 0x10

In the above example, variable ‘a’ is not a function.

Example 5.3

INPUT

pragma interrupt function 9

In the above example, an odd address is specified.

CC665S Ver.2.01 User Guide

Page 50

Example 5.4

INPUT

int int10 (void) ;

pragma interrupt int10 0x10

In the above example, ‘int10’ has return value.

5.1.1 Preserving Register Contents

To ensure that a program runs correctly after an interrupt is serviced, CC665S pushes the registers that
may be used during the interrupt handling process in the entry code. The registers pushed, are dependent
on the use of floating point emulation routines and function calls in the interrupt routine. The pushed
registers are popped in the exit code.

5.1.1.1 INTERRUPT FUNCTION HAS NO FUNCTION CALL AND EMULATION ROUTINE
CALL

When an interrupt function has no function calls and emulation routine calls, local registers and pointing
registers used in the interrupt function are pushed and popped.

Example 5.5

INPUT

int a ;

pragma interrupt fn 0x10

void fn ()
{

a = a * a ;
}

The following is the code generated for the above interrupt function definition:

OUTPUT

$$INTERRUPTCODE segment code #0h

rseg $$INTERRUPTCODE

CFUNCTION 0
_fn :

Pragmas

Page 51

;;{
CLINE 6

pushs er0

;; a = a * a ;
CLINE 7

l a, dir _a
sqr a
mov dir _a, er0

;;}
CLINE 8

pops er0
rti

public _fn
_a comm data 02h #00h
extrn code : _main

cseg #0h at 010h
dw _fn

In the above assembly code for the interrupt function “fn” which has no function calls and emulation routine
calls, er0 register is pushed and popped since it is used in the interrupt function.

5.1.1.2 INTERRUPT FUNCTION HAS FUNCTION CALL OR EMULATION ROUTINE CALL

When an interrupt function calls a function or an emulation routine, all local registers and pointing registers
are pushed and popped.

Example 5.6

INPUT

int a ;

pragma interrupt fn 0x10

void fn ()
{

a = a * output_fn () ;
}

CC665S Ver.2.01 User Guide

Page 52

OUTPUT

$$INTERRUPTCODE segment code #0h

rseg $$INTERRUPTCODE

CFUNCTION 0
_fn :

;;{
CLINE 6

pushs pr
pushs er

;; a = a * output_fn () ;
CLINE 7

mov x2, dir _a
cal _output_fn
l a, x2
mul dp
mov dir _a, er0

;;}
CLINE 8

pops er
pops pr
rti

extrn code : _output_fn
public _fn
_a comm data 02h #00h
extrn code : _main

cseg #0h at 010h
dw _fn

In the above assembly code, all local registers and pointing registers are pushed and popped since the
interrupt function has a function call.

5.2 INTVECT PRAGMA

Syntax:

a. /PF option specified:

#pragma INTVECT function_name, address

a. /PF option not specified:

#pragma INTVECT function_name address

Pragmas

Page 53

The pragma intvect is same as interrupt pragma except for the following :

1. Intvect pragma may also be specified after the function definition.

2. The function specified in intvect pragma should be qualified by the keyword __interrupt.

Example 5.7

INPUT

pragma intvect func 0x40

void __interrupt func (void)
{

output_fn () ;
}

In the above example, function “func” is specified in pragma intvect and is also qualified by the keyword
‘__interrupt’. The function “func” is treated as interrupt service routine.

The following examples show erroneous cases :

Example 5.8

INPUT

void func (void) ;
pragma intvect func 0x10

In the above example, function “func” is not qualified by the keyword ‘__interrupt’.

5.3 VCAL PRAGMA

Syntax:

a. /PF option specified:

#pragma VCAL function_name, address

b. /PF option not specified:

#pragma VCAL function_name address

The pragma vcal is used to specify functions, coded in ‘C’, which can be invoked by VCAL instructions.
The addresses of such functions are placed in the VCAL table area in code memory.

If a function is defined in ‘C’ source program with function_name same as that specified along with this
pragma, then it is treated as a VCAL routine.

CC665S Ver.2.01 User Guide

Page 54

The function_name in this pragma specifies the name of the vcal function. The function_name must be
followed by a vcal table address. The table address must be an even number between 0x4a and 0x68,
inclusive of both. The appropriate VCAL table address in code memory is initialized with the address of
the function. Extern functions may be specified in vcal pragma.

This pragma must appear before the definition of function specified in the pragma. CC665S issues a
warning message if this pragma appears after the definition of the function and ignores it.

If this pragma is used more than once with the same VCAL address but different function names, compiler
issues a warning and takes the first pragma as valid. However, same function name may be specified with
different VCAL addresses.

CC665S issues warning for the following cases:

• If the specified symbol is not a function.

• If function “main” is specified in this pragma.

• If a function specified in this pragma is not declared in the file being compiled.

• If a function specified in this pragma is already specified in a pragma other than vcal and usinginpage.

• If a __far or __nfar function is specified in this pragma.

• If the pragma is specified after the function definition.

• If the specified address is not in range 0x4a to 0x68, inclusive of both.

• If an odd address is specified.

• If an ‘__interrupt’ qualified function is specified in this pragma.

Example 5.9

INPUT

pragma vcal fn 0x64

void fn (void)
{

output_fn () ;
}

void fn1 (void)
{

fn () ;
}

Pragmas

Page 55

OUTPUT

$$NCODUE509 segment code #0h
$$VCALSEG segment code #0h

rseg $$VCALSEG

CFUNCTION 0
_fn :

;; output_fn () ;
CLINE 5

j _output_fn

;;}
CLINE 6

rseg $$NCODUE509

CFUNCTION 2
_fn1 :

;; fn () ;
CLINE 10

vcal 064h

;;}
CLINE 11

rt

extrn code : _output_fn
public _fn1
public _fn
extrn code : _main

cseg #0h at 064h
dw _fn

Following examples illustrates erroneous cases:

Example 5.10

INPUT

pragma interrupt function 0x10
pragma vcal function 0x50

In the above example, function is specified in vcal pragma as well as in interrupt pragma.

Example 5.11

INPUT

pragma vcal fn 0x24

In the above example, the specified address is not in vcal range.

CC665S Ver.2.01 User Guide

Page 56

5.4 ACAL PRAGMA

Syntax:

a. /PF option specified:

#pragma ACAL function_name [, function_name ...]

b. /PF option not specified:

#pragma ACAL function_name [function_name ...]

The pragma acal is used to specify functions, coded in ‘C’, which can be invoked using ACAL
instructions. The entry points to such functions would be placed in the ACAL area in code memory.

If a function is defined in ‘C’ source program with function_name same as that specified along with this
pragma, then it is treated as a ACAL routine.

A near, static far or static large function can be specified in acal pragma. If any other function is specified
in acal pragma, CC665S outputs warning message. If near and static far functions are specified in same
acal pragma, CC665S outputs warning message. Extern functions may be specified in this pragma.

This pragma must appear before the definition of function specified in the pragma. CC665S issues a
warning message if this pragma appears after the definition of the function and ignores it.

A list of function names may be specified in this pragma. CC665S issues warning message if symbols other
than functions are specified in this pragma.

CC665S issues warning for the following cases:

• If the specified symbol is not a function.

• If “function “main” is specified in this pragma.

• If a function specified in this pragma is not declared in the file being compiled.

• If a function specified in this pragma is already specified in a pragma other than usinginpage.

• If the specified function is not a near, static far or static large function.

• If both near and static far functions are specified in same acal pragma.

• If the pragma is specified after the function definition.

• If an ‘__interrupt’ qualified function is specified in this pragma.

Pragmas

Page 57

Example 5.12

INPUT

pragma acal fn

void fn()
{

output_fn () ;
}

fn1 ()
{

fn () ;
}

In the above program, near function “fn” is called using ACAL instruction as shown in the following output :

OUTPUT

$$NCODUE512 segment code #0h
$$NACODUE512 segment code inacal #00h

rseg $$NACODUE512

CFUNCTION 0
_fn :

;; output_fn () ;
CLINE 5

j _output_fn

;;}
CLINE 6

rseg $$NCODUE512

CFUNCTION 2
_fn1 :

;; fn () ;
CLINE 10

acal _fn

;;}
CLINE 11

rt

extrn code : _output_fn
public _fn1
public _fn

CC665S Ver.2.01 User Guide

Page 58

The following example shows an erroneous case:

Example 5.13

INPUT

pragma ACAL fn1
int __nfar fn1 (void) ;

For the above example, CC665S issues a warning message because, nfar function cannot be specified in
acal pragma.

5.5 CAL PRAGMA

Syntax:

a. /PF option specified:

#pragma CAL function_name [, function_name ...]

b. /PF option not specified:

#pragma CAL function_name [function_name ...]

The pragma cal is used to specify functions, which can be invoked using CAL instructions. A static far or
static large function can be specified in cal pragma. If any other function is specified in this pragma,
CC665S outputs warning message.

CC665S issues a warning message if this pragma appears after the definition of the function and ignores it.

A list of function names may be specified in this pragma. CC665S issues warning message if symbols other
than functions are specified in this pragma.

CC665S issues warning for the following cases:

• If the specified symbol is not a function.

• If function “main” is specified in this pragma.

• If a function specified in this pragma is not declared in the file being compiled.

• If a function specified in this pragma is already specified in a pragma other than usinginpage.

Pragmas

Page 59

• If the specified function is not a static far or static large.

• If an ‘__interrupt’ qualified function is specified in this pragma.

Example 5.14

INPUT

pragma cal fun1
static int __far fun1 (void) ;

int __far fun1 (void)
{

return (1) ;
}

void main (void)
{

fun1 () ;
}

In the above program, static far function “fun1” is called using CAL instruction as shown in the following
output :

OUTPUT

$$NCODUE514 segment code #0h
$$FCODUE514 segment code
STACKSEG 0400h

rseg $$FCODUE514

CFUNCTION 0
_fun1 :

;; return (1) ;
CLINE 6

mov dp, #01h

;;}
CLINE 7

rt

rseg $$NCODUE514

CFUNCTION 2
_main :

;; fun1 () ;
CLINE 11

cal _fun1

CC665S Ver.2.01 User Guide

Page 60

;;}
CLINE 12
_$$end_of_main :

sj $

public _fun1
public _main
extrn code : $$start_up

cseg #0h at 0h
dw $$start_up

The following example shows an erroneous case:

Example 5.15

INPUT

pragma cal fun1 fun2
void fun1 (void) ;
void __nfar fun2 (void) ;

In the above example, both “fun1” and “fun2” cannot be specified in cal pragma since “fun2” is a nfar
function and “fun1” is a near function.

5.6 INLINE PRAGMA

Syntax:

a. /PF option specified:

#pragma INLINE function_name [, function_name ...]

b. /PF option not specified:

#pragma INLINE function_name [function_name ...]

The pragma inline is used to specify functions, which can be inlined instead of calling that function.

This pragma must appear before the definition of that function. If this pragma appears after the definition of
the function, CC665S issues a warning message.

A list of function names may be specified in this pragma. CC665S issues warning message if symbols other
than functions are specified in this pragma. The functions specified in this pragma are treated as static
function. So, functions specified in inline pragma should be defined in the same file.

Pragmas

Page 61

A function specified in this pragma is not expanded (inlined) in the following cases:

• If the function is recursive.

• If the function has variable number of arguments.

• If the function is defined before the inline pragma specification.

• If the function contains loop, branch, label or “goto” statements.

• If there is any asm block in the function.

• If the function is too big.

If all the inline function calls are expanded then code for the function body will not be generated. CC665S
outputs warning message if an inline function call is not expanded.

CC665S issues warning for the following cases:

• If the specified symbol is not a function.

• If function “main” is specified in this pragma.

• If a function specified in this pragma is not defined in the file being compiled.

• If a function specified in this pragma is already specified in a pragma other than inline .

• If a call to inline function is not expanded (inlined).

• If the pragma is specified after the function definition.

• If an ‘__interrupt’, ‘__far’ or __nfar’ qualified function is specified in this pragma.

Example 5.16

INPUT

int var ;
pragma inline fn

int fn (int arg)
{

return (arg*arg) ;
}

void fn1()
{

var = fn (var) ;
}

CC665S Ver.2.01 User Guide

Page 62

OUTPUT

$$NCODUE516 segment code #0h

rseg $$NCODUE516

CFUNCTION 1
_fn1 :

;; var = fn (var) ;
CLINE 11

l a, dir _var
sqr a
mov dir _var, er0

;;}
CLINE 12

rt

public _fn1
_var comm data 02h #00h
extrn code : _main

Example 5.17

INPUT

pragma inline fn

void fn ()
{

fn () ;
}

fn1 ()
{

fn () ;
}

The inline function “fn” is not expanded since it is recursive. CC665S outputs warning message in this case.

Pragmas

Page 63

5.7 ABSOLUTE PRAGMA

Syntax:

a. /PF option specified:

#pragma ABSOLUTE name, [segment:]offset

b. /PF option not specified:

#pragma ABSOLUTE name [segment:]offset

The pragma absolute assigns an absolute address to a global variable or static local variable.

Variables declared in ‘C’ will be allocated in re-locatable segments. So pointers in ‘C’ are normally used
to access specific addresses. But this requires a two byte pointer or four byte pointer depending on the
memory model and it is inefficient. In MSM66K “500” core and “500S” core, the addresses of Special
Function Registers (SFR) are fixed. To access a SFR it is preferable to use direct specification of
addresses. This pragma is used to specify absolute addresses for global variables and static local
variables.

If physical segment address is not specified, it is considered as zero. CC665S issues a warning message
when physical segment address other than zero is specified for near variables.

The physical segment address can take any value between 0 and 0xff, while the offset can take a value
between 0 and 0xffff.

Absolute pragma can be specified for a variable before or after its declaration. Variables already initialized
cannot be used in this pragma, however, this pragma can appear before the variable’s initialization. If this
pragma is used more than once for the same variable, CC665S flags a warning and assigns the address
specified with the first pragma. Extern variables may be specified in this pragma.

Physical segment address must be specified in the absolute pragma directive for effective near and
effective xnear variables.

An odd address cannot be specified for initialized variables. However, odd address within SFR region can
be specified for any type of uninitialized variables. Both, odd and even addresses can be specified for
variables of type char and array of char.

The valid range of absolute address is as follows:

• Segment address 0x0 (for near variables)
 0x0 to 0xff (for far and large variables)

• Offset address 0x0 to 0xffff

CC665S Ver.2.01 User Guide

Page 64

CC665S issues warnings for the following cases :

• If the symbol specified in this pragma is not a global or static local variable.

• If the variable is already specified in any pragma.

• If the variable specified in this pragma is not declared within the same file.

• If an odd address is specified for initialized variables.

• If an odd address outside SFR region is specified for uninitialized variables other than char and array
of char.

• If segment address is not specified for ‘effective near’ and ‘effective xnear’ variables.

• If specified address is not in absolute range.

• If the pragma is specified after variable initialization.

Example 5.18

INPUT

int acc ;
pragma absolute acc 0x40

OUTPUT

_acc data 040h

Example 5.19

INPUT

long __far la ;
pragma absolute la 0x2:0x1000

OUTPUT

public _la

dseg #02h at 01000h
_la :

ds 04h

Pragmas

Page 65

Following example illustrates an erroneous case:

Example 5.20

INPUT

pragma absolute abs_data_var 100

void fn (void)
{

int abs_data_var ;
}

In the above example, local variable “abs_data_var” is specified in the pragma.

5.8 SFR PRAGMA

Syntax:

a. /PF option specified:

#pragma SFR name, [segment:]offset

b. /PF option not specified:

#pragma SFR name [segment:]offset

This pragma is similar to absolute pragma except for the following :

• Only data variables can be specified in this pragma.

• The address specified in this pragma should be in sfr region (0x0 to 0xff) or in xsfr region (0x100 to
0x1ff). The physical segment address specified in this pragma is always ignored since sfr and xsfr
region is in COMMON area.

• CC665S will not output debug information for sfr variables.

CC665S issues warnings for the following cases :

• If the specified symbol is not a global variable or static local variable.

• If the specified variable is qualified by ‘const’.

• If the variable is already specified in any pragma.

CC665S Ver.2.01 User Guide

Page 66

• If the variable specified in this pragma is not declared within the same file.

• If specified address is not in sfr region or in xsfr region.

• If an odd address is specified for initialized variables.

• If the pragma is specified after variable initialization.

Example 5.21

INPUT

int acc ;
pragma sfr acc 0x40

OUTPUT

_acc data 040h

Following example illustrates an erroneous case:

Example 5.22

INPUT

pragma sfr a 0x400

In the above example, the address specified in the pragma is not in sfr area.

5.9 INPAGE PRAGMA

Syntax:

a. /PF option specified:

#pragma INPAGE [(no)] segment_name, name [, name ...]

b. /PF option not specified:

#pragma INPAGE [(no)] segment_name name [name ...]

Pragmas

Page 67

This pragma instructs the compiler to allocate one or more global variables or static local variables, given
by the list of names in an inpage segment.

If the ‘no’ which indicates the page number is specified, then the segment would be allocated in the
indicated page. ‘no’ being optional, if omitted, the segment would be allocated in any one of the 256
pages. ‘no’ is an integer constant, takes value between 0 and 255 (inclusive of both). Segment name
specified in this pragma, must not be specified in a sbainpage pragma earlier, however, same page number
‘no’ can be specified in both inpage and sbainpage pragmas.

If more than one inpage pragma appears with same segment name , then all variables specified in the list of
names in each of these pragmas, are allocated in the same segment.

CC665S issues warning for the following cases:

• If the symbol specified in this pragma is not a global or static local variable.

• If the variable specified in this pragma is qualified by ‘const’.

• If the variable is already specified in any pragma.

• If the segment name specified in this pragma is already specified in sbainpage pragma.

• If two different page numbers are specified for same segment.

• If both, near and far variables are specified with same segment name

• If the pragma is specified after variable initialization.

Example 5.23

INPUT

int a ;
pragma inpage page1 a

OUTPUT

page1 segment data 2h inpage #00h
public _a

rseg page1
_a :

ds 02h

In the above example, variable ‘a’ is allocated in an inpage segment. Page number is not specified in the
pragma, so, it will be allocated in any one of the 256 pages.

CC665S Ver.2.01 User Guide

Page 68

Example 5.24

INPUT

int a ;
pragma inpage (5) page1 a

OUTPUT

page1 segment data 2h inpage(5) #00h
public _a

rseg page1
_a :

ds 02h

In the above example, page number is specified. Therefore, the variable ‘a’ is output in a segment which
will be allocated in page 5.

Following example illustrates an erroneous case:

Example 5.25

INPUT

int a ;
int __far b ;
pragma inpage (5) page1 a b

In the above code, both near and far variables are specified with inpage segment ‘page1’.

5.10 SBAINPAGE PRAGMA

Syntax:

a. /PF option specified:

#pragma SBAINPAGE [(no)] segment_name, name [, name ...]

b. /PF option not specified:

#pragma SBAINPAGE [(no)] segment_name name [name ...]

The pragma sbainpage specifies the variables to be allocated in a segment with SBA attribute. SBA is a
Special Bit Addressable Area.

Pragmas

Page 69

This pragma instructs CC665S to allocate one or more global variables or static local variables given by
the list of names in a segment with SBA attribute. All the variables specified with the same segment name
are allocated in the same SBA segment. If optionally, a ‘no’ which indicates the page number is given, then
the segment would be allocated in the indicated page. The ‘no’ can take any value between 0 and 255.
Segment name specified in this pragma, must not be specified in a inpage pragma earlier, however, same
page number ‘no’ can be specified in both inpage and sbainpage pragmas.

If more than one sbainpage pragma appears with same segment name , then all variables specified in the list
of names in each of these pragmas, are allocated in the same SBA segment.

Variables qualified by const cannot be specified in this pragma.

CC665S issues warning for the following cases:

• If the symbol specified in this pragma is not a global or static local variable.

• If the variable specified in this pragma is qualified by ‘const’.

• If the variable is already specified in any pragma.

• If the segment name specified in this pragma is already specified in inpage pragma.

• If two different page numbers are specified for same segment.

• If both, near and far variables are specified with same segment name.

• If the pragma is specified after variable initialization.

Example 5.26

INPUT

pragma SBAINPAGE SEG1 bit_var
struct tag
{

unsigned int bit1 : 1 ;
unsigned int bit2 : 1 ;
unsigned int bit3 : 1 ;

} bit_var ;

OUTPUT

SEG1 segment data 2h sba #00h
public _bit_var

rseg SEG1
_bit_var :

ds 02h

CC665S Ver.2.01 User Guide

Page 70

Example 5.27

INPUT

pragma SBAINPAGE (5) seg2 bit_var

struct tag
{

unsigned int a : 1 ;
unsigned int b : 1 ;

} bit_var ;

OUTPUT

seg2 segment data 2h sba(5) #00h
public _bit_var

rseg seg2
_bit_var :

ds 02h

Following example illustrates an erroneous case:

Example 5.28

INPUT

int a, b ;
int __far c ;
pragma sbainpage sba_page a b
pragma sbainpage sba_page c

In the above code, both near and far variables are specified with sbainpage segment ‘sba_page’. CC665S
ignores second pragma with a warning message.

5.11 USINGINPAGE PRAGMA

Syntax:

a. /PF option specified:

#pragma USINGINPAGE [-lrb] function_name, segment_name
#pragma USINGINPAGE [-lrb] function_name, pageno

Pragmas

Page 71

b. /PF option not specified:

#pragma USINGINPAGE [-lrb] function_name segment_name
#pragma USINGINPAGE [-lrb] function_name pageno

This pragma specifies an inpage or sbainpage segment “segment_name” or page number “pageno” to be
used in a function specified by “function_name”. In such cases the pageno is used to initialize the Local
Register Base (LRB). “pageno” is an integer constant that takes value between 0 and 255, inclusive of
both.

CC665S uses current page addressing for the variables allocated in the same page, which is used in this
function.

If ‘-lrb’ option is not specified in the pragma, then LRB register is saved in the entry code and restored in
the exit code of the usinginpage function. If ‘-lrb’ option is specified, CC665S will not save and restore the
LRB register. The ‘-lrb’ option is intended to save unnecessary manipulation of the LRB register when the
function and its caller use the same page.

Either ‘segment_name’ or ‘page_number’ specified in this pragma must be specified in inpage or
sbainpage pragma prior to this directive. Extern functions and function “main” may be specified in this
pragma.

This pragma must appear before the definition of function specified in the pragma. CC665S issues a
warning message if this pragma appears after the definition of the function and ignores it.

CC665S issues warning for the following cases:

• If the specified symbol is not a function.

• If the function specified in this pragma is not declared in the file being compiled.

• If the segment name or page number specified in the pragma is not defined in inpage or sbainpage
pragma prior to this directive.

• If the function specified in this pragma is already specified in a pragma other than interrupt, intvect,
vcal, acal and cal.

• If the pragma is specified after the function definition.

Example 5.29

INPUT

pragma inpage seg1 var1 var2
pragma usinginpage fun1 seg1
pragma usinginpage -lrb fun2 seg1
int var1, var2 ;

CC665S Ver.2.01 User Guide

Page 72

void fun1()
{

var1 = 10 ;
fun2 () ;

}

fun2 ()
{

var2 = var1 * var1 ;
}

The following is the code generated for functions “fun1” and “fun2”.

OUTPUT

$$NCODue529 segment code #0h
seg1 segment data 2h inpage #00h

rseg $$NCODue529

CFUNCTION 0
_fun1 :

;;{
CLINE 7

pushs lrb
movb ALRBH, #page seg1
using page seg1

;; var1 = 10 ;
CLINE 8

mov off _var1, #0ah

;; fun2 () ;
CLINE 9

cal _fun2

;;}
CLINE 10

pops lrb
using page any
rt

CFUNCTION 2
_fun2 :

;;{
CLINE 13

using page seg1

Pragmas

Page 73

;; var2 = var1 * var1 ;
CLINE 14

l a, off _var1
sqr a
mov off _var2, er0

;;}
CLINE 15

using page any
rt

public _fun2
public _fun1
public _var2
public _var1
extrn code : _main

rseg seg1
_var2 :

ds 02h
_var1 :

ds 02h

5.12 GROUP PRAGMA

Syntax:

a. /PF option specified:

#pragma GROUP segment_name [, segment_name ..]

b. /PF option not specified:

#pragma GROUP segment_name [segment_name ..]

The pragma group instructs the compiler to allocate the specified segments in the same physical segment
by using the pseudo instruction group. Segment names specified in the group pseudo instruction must have
been specified earlier in pragma inpage or sbainpage.

All segments specified in a group pragma should be either near segments or far segments. If mix of near
and far segments are specified in a group pragma, then near segments will be ignored with warning
message.

The following defines the three types of segments based on the variables specified with that segment in
inpage/sbainpage pragma :

• A segment specified in inpage/sbainpage pragma is said to be a near segment if, only near variables
are specified with that segment name.

CC665S Ver.2.01 User Guide

Page 74

• A segment is said to be a far segment if, only far variables are specified with that segment name in
inpage/sbainpage pragma.

• A segment is said to be undefined segment if, all the variables specified with that segment name is not
declared in the source file.

CC665S issues warning for the following cases :

• If both near and far segments are specified in the same group pragma.

• If the segment is not defined in inpage or sbainpage pragma prior to the group pragma.

• If the segment is “undefined”.

Example 5.30

INPUT

pragma INPAGE seg1 var1 var2
pragma SBAINPAGE (2) seg2 var3 var4
pragma GROUP seg1 seg2
int var1, var2, var3, var4 ;

fn ()
{

var1 = var2 + var3 + var4 ;
var2 = var1 + var3 + var4 ;
var3 = var1 + var2 + var4 ;
var4 = var1 + var2 + var3 ;

}

This example shows how group pragma can be used with inpage or sbainpage pragmas. If the above
program is compiled in large data memory model, DSR switching will be done only once to compute the
values of var1, var2, var3 and var4, because, the segments “seg1” and “seg2” are in same physical
segment, so these four variables are in the same physical segment.

Pragmas

Page 75

The following code is output for the function “fn”:

OUTPUT

CFUNCTION 0
_fn :

;; var1 = var2 + var3 + var4 ;
CLINE 8

movb DSR, #SEG _var2
l a, OFFSET _var2
add a, OFFSET _var3
add a, OFFSET _var4
st a, OFFSET _var1

;; var2 = var1 + var3 + var4 ;
CLINE 9

add a, OFFSET _var3
add a, OFFSET _var4
st a, OFFSET _var2

;; var3 = var1 + var2 + var4 ;
CLINE 10

l a, OFFSET _var1
add a, OFFSET _var2
st a, er0
add a, OFFSET _var4
st a, OFFSET _var3

;; var4 = var1 + var2 + var3 ;
CLINE 11

add a, er0
st a, OFFSET _var4

;;}
CLINE 12

frt

group seg1 seg2

The following examples show erroneous cases:

Example 5.31

INPUT

pragma INPAGE inpage_seg var1 var2
pragma SBAINPAGE sba_seg var3 var4
pragma GROUP inpage_seg sba_seg
int __far var3, __far var4 ;
int var1, var2 ;

CC665S Ver.2.01 User Guide

Page 76

For the above example, CC665S outputs warning message and ignores the near segment “inpage_seg”
specification in the group pragma with far segment “sba_seg”.

Example 5.32

INPUT

pragma INPAGE SEG5 var1 var2
pragma GROUP SEG5 SEG6
int var1, var2 ;

For the above example, CC665S issues a warning message as segment SEG6 was not specified either in
INPAGE or SBAINPAGE pragmas.

5.13 WINDOW PRAGMA

window pragma is not supported by CC665S from version 1.70. If window pragma is specified, it is
ignored with a warning message.

5.14 ROMWINDOW PRAGMA

Syntax:

a. /PF option specified:

#pragma ROMWINDOW variable [, variable ..]

b. /PF option not specified:

#pragma ROMWINDOW variable [variable ..]

The pragma romwindow instructs the compiler to allocate one or more global variables given by the list of
variables within the ROMWINDOW area, but excluding the EEPROM, DUAL PORT and internal RAM
ranges.

Local variables cannot be allocated in ROMWINDOW, because they are allocated in stack. CC665S
issues a warning message if a variable specified in this pragma is not qualified by ‘const’, because
ROMWINDOW area is in ROM.

This pragma is ignored when /WIN or /AWIN option is specified in the command line.

Pragmas

Page 77

Romwindow pragma can be specified to a variable before or after its declaration. Variables already
initialized cannot be used in this pragma, however, this pragma can appear before the variable’s
initialization.

CC665S accesses variables allocated in ROMWINDOW area using RAM addressing modes and not
through ROM addressing modes.

CC665S issues warning for the following cases :

• If the specified symbol is not a global or static local variable.

• If a variable specified in this pragma is not declared in the file being compiled.

• If the variable is not qualified by ‘const’.

• If the variable is already specified in any pragma.

• If the variable is initialized before specifying in this pragma directive.

Example 5.33

INPUT

const int romvar ;
pragma romwindow romvar

OUTPUT

$$NWINUE533 segment code window #0h
public _romvar

rseg $$NWINUE533
_romvar :

dw 00h

The following case is erroneous because, romwindow variables must be qualified by ‘const’.

Example 5.34

INPUT

int var ;
pragma romwindow var

CC665S Ver.2.01 User Guide

Page 78

5.15 FIXED PAGE PRAGMA

Syntax:

a. /PF option specified:

#pragma FIX variable [, variable ..]

b. /PF option not specified:

#pragma FIX variable [variable ..]

The pragma fix instructs the compiler to allocate one or more global variables given by the list of variables
within the FIXED PAGE area in RAM.

Local variables cannot be allocated in FIXED PAGE area, because they are allocated in stack. CC665S
issues a warning message if a variable specified in this pragma is qualified by ‘const’, because FIXED
PAGE area is in RAM.

CC665S accesses the variables allocated in FIXED PAGE area using fixed page addressing modes.

CC665S issues warning for the following cases :

• If the specified symbol is not a global or static local variable.

• If a variable specified in this pragma is not declared in the file being compiled.

• If the variable is qualified by ‘const’.

• If the variable is already specified in any pragma.

• If a far variable is specified.

• If the variable is initialized before this pragma directive.

Example 5.35

INPUT

int fix_var ;
pragma fix fix_var

OUTPUT

_fix_var comm data 02h fix #00h

Pragmas

Page 79

5.16 DUAL PORT PRAGMA

Syntax:

a. /PF option specified:

#pragma DUAL variable [, variable ..]

b. /PF option not specified:

#pragma DUAL variable [variable ..]

The pragma dual instructs the compiler to allocate one or more global variables or static local variables
given by the list of variables within the DUAL PORT area in RAM.

Local variables cannot be allocated in DUAL PORT area, because they are allocated in stack.

Since DUAL PORT area is RAM, CC665S issues a warning message if a variable specified in this pragma
is qualified by ‘const’.

CC665S issues warning for the following cases :

• If the specified symbol is not a global or static local variable.

• If a variable specified in this pragma is not declared in the file being compiled.

• If the variable is qualified by ‘const’.

• If the variable is already specified in any pragma.

• If a far variable is specified.

• If the variable is initialized before this pragma directive.

Example 5.36

INPUT

int dual_var ;
pragma dual dual_var

OUTPUT

_dual_var comm data 02h dual #00h

CC665S Ver.2.01 User Guide

Page 80

5.17 EDATA PRAGMA

Syntax:

a. /PF option specified:

#pragma EDATA variable [, variable ..]

b. /PF option not specified:

#pragma EDATA variable [variable ..]

The pragma edata instructs the compiler to allocate one or more global variables or static local variables
given by the list of variables within the EEPROM area in RAM.

Local variables cannot be allocated in EEPROM area, because they are allocated in stack. CC665S
issues a warning message if a variable specified in this pragma is qualified by ‘const’, because EEPROM
area is in RAM.

CC665S issues warning for the following cases :

• If the specified symbol is not a global or static local variable.

• If a variable specified in this pragma is not declared in the file being compiled.

• If the variable is qualified by ‘const’.

• If the variable is already specified in any pragma.

• If a far variable is specified.

• If the variable is initialized before this pragma directive.

Example 5.37

INPUT

int edata_var ;
pragma edata edata_var

OUTPUT

$$NEDATAUE537 segment edata 02h
public _edata_var

rseg $$NEDATAUE537
_edata_var :

dw 00h

Pragmas

Page 81

5.18 SBAFIX PRAGMA

Syntax:

a. /PF option specified:

#pragma SBAFIX variable [, variable ..]

b. /PF option not specified:

#pragma SBAFIX variable [variable ..]

The pragma sbafix instructs the compiler to allocate one or more global variables or static local variables
given by the list of variables within the SBA AREA in the fixed page.

Local variables cannot be allocated in SBA area in fixed page because, they are allocated in stack.
CC665S issues a warning message if a variable specified in this pragma is qualified by ‘const’, because
SBA area is in RAM.

CC665S issues warning for the following cases :

• If the specified symbol is not a global or static local variable.

• If a variable specified in this pragma is not declared in the file being compiled.

• If the variable is qualified by ‘const’.

• If the variable is already specified in any pragma.

• If a far variable is specified.

• If the variable is initialized before this pragma directive.

Example 5.38

INPUT

int sbafix_var ;
pragma sbafix sbafix_var

OUTPUT

_sbafix_var comm data 02h sba fix #00h

CC665S Ver.2.01 User Guide

Page 82

5.19 COMMONVAR PRAGMA

Syntax:

a. /PF option specified:

#pragma COMMONVAR variable [, variable ..]

b. /PF option not specified:

#pragma COMMONVAR variable [variable ..]

The pragma commonvar instructs the compiler to allocate one or more global variables or static local
variables given by the list of variables within the COMMON AREA in RAM.

This pragma is valid only in large data C memory model programs (compact, effective large and large
models). CC665S issues a warning if it is specified in other memory model programs.

Local variables cannot be allocated in COMMON area because, they are allocated in stack. CC665S
issues a warning message if a variable specified in this pragma is qualified by ‘const’, because COMMON
area is in RAM.

CC665S issues warning for the following cases :

• If the data memory model is not large.

• If the specified symbol is not a global or static local variable.

• If a variable specified in this pragma is not declared in the file being compiled.

• If the variable is qualified by ‘const’.

• If the variable is already specified in any pragma.

• If a far variable is specified.

• If the variable is initialized before this pragma directive.

Pragmas

Page 83

Example 5.39

INPUT

int com_var ;
pragma commonvar com_var

CC665S generates the following when the above code is compiled in large data memory model:

OUTPUT

_com_var comm data 02h #00h

5.20 COMMON PRAGMA

common pragma is not supported by CC665S from version 1.70. If common pragma is specified, it is
ignored with a warning message.

5.21 STACKSIZE PRAGMA

Syntax :

 #pragma STACKSIZE constant

The pragma stacksize sets stacksize. The constant specifies the size of the stack in bytes. Any even value
between 0x1 and 0xffff may be specified as the stack size. This pragma and the command line option /SS
behave in the same way.

If /SS option is specified in the command line then this pragma will be ignored without giving warning
message. This pragma is valid only if the source file has “main” function definition.

CC665S issues warning for the following case :

• If the pragma is specified more than once in the source file.

The following example shows erroneous case:

Example 5.40

INPUT

pragma STACKSIZE 3001

For the above pragma, CC665S issues warning message since the stacksize pragma specifies an odd
number as stacksize.

CC665S Ver.2.01 User Guide

Page 84

5.22 STACK CHECK PRAGMAS

Syntax :

 #pragma CHECKSTACKON

#pragma CHECKSTACKOFF

The pragma checkstackon instructs the compiler to add a call to stack probe routine in entry code of
functions defined after this pragma.

The pragma checkstackoff instructs the compiler not to add a call to the stack probe routine in entry code
of functions defined after this pragma.

These two pragmas are processed irrespective of /ST option in the command line.

Example 5.41

INPUT

pragma CHECKSTACKON
void fn (void)
{

fn1 (0) ;
}

CC665S generates the following code for function “fn” in /MM option :

OUTPUT

CFUNCTION 0
_fn :

;;{

CLINE 3
mov dp, #06h
fcal __chsts50m

;; fn1 (0) ;
CLINE 4

clr a
pushs a
fcal _fn1
pops a

;;}
CLINE 5

frt

Pragmas

Page 85

5.23 LOOP OPTIMIZATIONS PRAGMAS

Syntax :

#pragma LOOPOPTON
#pragma LOOPOPTOFF

The pragma loopopton instructs the compiler to perform loop optimizations in functions that are defined
after this pragma. This pragma is ignored if the command line option /Od is specified.

The pragma loopoptoff instructs the compiler not to perform loop optimizations in functions defined after
this pragma. This pragma is ignored if the command line option /Od is specified.

5.24 ASM and ENDASM PRAGMAS

Syntax :
pragma ASM
... /* assembly instruction block */
#pragma ENDASM

The pragmas “asm” and “endasm” are similar to the directives “#asm” and “#endasm”. Any text can be
given inside “#pragma asm” and “#pragma endasm”. CC665S does not process this block of text. This
block will be output in the assembly listing file as given in the source file.

CC665S issues warning for the following case:
• If an endasm pragma is specified without its corresponding asm pragma.

CC665S issues fatal error message for the following case:

• If an asm pragma is specified without its corresponding endasm pragma.

CC665S Ver.2.01 User Guide

Page 86

The following example shows the usage of “#pragma asm - # pragma endasm”

Example 5.42

INPUT

fn ()
{
pragma asm

clrb TSR ;; clear table segment register
clrb DSR ;; clear data segment register

pragma endasm
}

CC665S generates the following function body for function “fn”:

OUTPUT

CFUNCTION 0
_fn :

;;# pragma asm
CLINE 3

clrb TSR ;; clear table segment register
clrb DSR ;; clear data segment register

;;}
CLINE 7

rt

The following are erroneous cases:

Example 5.43

INPUT

fn ()
{
pragma endasm
pragma asm

clrb TSR ;; clear table segment register
clrb DSR ;; clear data segment register

pragma endasm
}

Pragmas

Page 87

CC665S issues a warning message for the first endasm pragma because, it is specified without its
corresponding asm pragma.

Example 5.44

INPUT

fn ()
{
pragma asm

clrb TSR ;; clear table segment register
clrb DSR ;; clear data segment register

}

CC665S issues a fatal error message for the asm pragma because, its corresponding endasm pragma is
not specified.

Output Files

Page 89

6. OUTPUT FILES

The different output files with their default extensions are listed below.

TABLE 6.1
Output File Extension

*Assembly Output .ASM
Source/Error Listing .LST
**Calltree Listing -
Debug Information File .DBG
Preprocessed Output .P66

* indicates that the assembly file name extension may be changed using /Fa option in the command line.

** indicates that calltree listing file has no default extension.

Command line options to obtain corresponding output file is listed below.

TABLE 6.2
Output File Command Line

Option
*Assembly Output /Fa
Source/Error Listing /LE
Calltree Listing /CT
Debug Information File /SD or /OSD
Preprocessed Output /LP or /PC

* indicates that CC665S generates assembly file with default assembly file name, if /Fa option is not
specified in the command line.

CC665S Ver.2.01 User Guide

Page 90

6.1 ASSEMBLY OUTPUT

The output file produced by CC665S is an assembly file which contains MSM66K “500” core or “500S”
core assembly mnemonics.

This section explains the conventions followed by the compiler in generating the output code.

6.1.1 Comment Section

The start of the output assembly file has a comment section. It contains the following information:

1. Compile Options

2. Version Number

3. File Name

6.1.1.1 Compile Options

The compile options specified along with the file name in the command line are listed in a sequence.

Example 6.1

COMMAND LINE

C:\>CC665S /Tm66589 /MS /mixC /SS 10000 test.c

For the above command line, the compile options are output in the comment section as follows:

OUTPUT

;; Compile Options : /Tm66589 /MS /mixC /SS 10000

6.1.1.2 Version Number

The compiler version in which the source file is compiled, is output in the comment section.

Example 6.2

;; Version Number : Ver.2.01 Apr 1996

Output Files

Page 91

6.1.1.3 File Name

The source file name, as specified by the user in the command line, is output in the comment section.

Example 6.3

COMMAND LINE

C:\>CC665S /Tm66589 /MS ..\source\test.c

For the above command line, the source file name is output in the comment section as follows:

OUTPUT

;; File Name : ..\source\test.c

6.1.2 Assembler Initialization Pseudo Instructions

This section contains the pseudo instructions output by CC665S, which are required by RAS66K.

6.1.2.1 TYPE INSTRUCTION

The TYPE pseudo instruction is generated at the beginning of the output. The string specified with /T
option is output with this pseudo instruction.

Example 6.4

COMMAND LINE

C:\>CC665S /Tm66589 test.c <CR>

For the above command line, the following pseudo instruction is output in “test.asm”:

OUTPUT

type (m66589)

CC665S Ver.2.01 User Guide

Page 92

6.1.2.2 CMODEL PSEUDO INSTRUCTION

The CMODEL pseudo instruction is used to specify the C memory model in the assembly listing file. One
of the following is output based on the C memory model:

small for small C memory model
emedium for effective medium C memory model
medium for medium C memory model
compact for compact C memory model
elarge for effective large C memory model
large for large C memory model

Example 6.5

COMMAND LINE

C:\>CC665S /MC /Tm66589 test.c <CR>

For the above command line, the following pseudo instruction is output in “test.asm”:

OUTPUT

cmodel compact

6.1.2.3 MODEL PSEUDO INSTRUCTION

The MODEL pseudo instruction is used to specify the mixed memory model in the assembly listing file.
One of the following is output based on the mixed memory model:

small for small mixed memory model
medium for medium mixed memory model
compact for compact mixed memory model
large for large mixed memory model

Example 6.6

COMMAND LINE

C:\>CC665S /MM /mixL /Tm66589 test.c <CR>

For the following command line, the following pseudo instruction is output in “test.asm”:

OUTPUT

model large

Output Files

Page 93

6.1.2.4 WIN/AWIN PSEUDO INSTRUCTION

The WIN pseudo instruction is output by CC665S when /WIN option is specified in the command line.

Example 6.7

COMMAND LINE

C:\>CC665S /Tm66589 /WIN test.c

For the above command line, the following pseudo instruction is output in “test.asm”:

win

The AWIN pseudo instruction is output by CC665S when /AWIN option is specified in the command
line.

Example 6.8

COMMAND LINE

C:\>CC665S /Tm66589 /AWIN test.c

For the above command line, the following pseudo instruction is output in “test.asm”:

awin

6.1.2.5 SEGMENT DEFINITION PSEUDO INSTRUCTION

This section contains the definitions of all the relocatable segments, that have been used in the assembly
output file. Each segment definition contains the name of the segment and the properties associated with
that segment.

Example 6.9

$$NCODfile segment code #0h

The above segment definition indicates that, the segment ‘$$NCODfile’ is allocated in 0th physical code
segment.

CC665S Ver.2.01 User Guide

Page 94

6.1.3 Procedure Section

This section contains the assembly instructions and assembly directives, generated for all the functions
defined in the source file.

The contents of this section can be further classified as follows:

1. relocatable segment definition

2. function name label

3. C source level debug information

• CFILE directive
• CFUNCTION directive
• CBLOCK directive
• C source line
• CLINE directive

4. assembly instructions for each statement

6.1.3.1 RELOCATABLE SEGMENT DEFINITION

A function is placed in a segment which is determined by the type of the function. To specify a function in
a particular segment, ‘rseg’ pseudo instruction is used. For example, to specify that the function should be
allocated in ‘NCODfile’ segment, the following is output:

rseg NCODfile

Example 6.10

INPUT

/* ue610.c*/
void fn ()
{
}

OUTPUT

rseg $$NCODue610

All the functions are output in the assembly file, in the order they appear in the source file. If the segment in
which the current function is to be allocated is same as that for the previous function, ‘rseg’ directive is not
output.

Output Files

Page 95

6.1.3.2 FUNCTION NAME LABEL

Each beginning of a function is marked by the function name followed by a colon (:). This label indicates
that the assembly instructions following this label are part of this function code. The function name is
preceded by a ‘_’.

Example 6.11

INPUT

int func ()
{
}

The function name label is output as follows for the function ‘func’ in the above example:

OUTPUT

_func :

6.1.3.3 C SOURCE LEVEL DEBUG INFORMATION

6.1.3.3.1 CFILE directive

To distinguish the output of include files and source file, CFILE directive is output. CFILE directive is
followed by the file number. On encountering an include file this directive is output along with file number
associated with the include file. CFILE directive is output only when /SD or /OSD option is specified in the
command line.

Example 6.12

INPUT

/* content of ue612.h */

int a, b, c ;

int mul_arg (int a, int b)
{

return (a * b) ;
}

/* content of ue612.c */

#include “ue612.h”

int func1 ()
{

a = b + c ;
}

CC665S Ver.2.01 User Guide

Page 96

OUTPUT

CFILE 0

... code for the function ‘mul_arg’ in file ‘ue612.h’

CFILE 1

...code for the function ‘func1’ file ‘ue612.c’

In the above example ‘CFILE’ directive is output for file ‘ue612.h’ with file number 0 and ‘CFILE’ is
output for ‘ue612.c’ with file number 1.

6.1.3.3.2 CFUNCTION directive

Each function name label is preceded by ‘CFUNCTION’ directive. Each CFUNCTION directive has a
function number associated with it, which is output along with the directive.

Example 6.13

INPUT

int func_id ()
{

fun1 () ;
}

OUTPUT

CFUNCTION 0
_func_id :

In the above example, 0 is assigned as the function number for the function ‘func_id’.

6.1.3.3.3 CBLOCK/CBLOCKEND directives

CBLOCK and CBLOCKEND directives are output only when /SD or /OSD option is specified in the
command line. For each ‘{’ in the source file, a CBLOCK directive is output. Along with CBLOCK the
function id and the block number is also output. Similarly, for each ‘}’ in the source file, a CBLOCKEND
directives is output along with the function id and the corresponding block number (specified in CBLOCK
directive).

Example 6.14

INPUT

int a, b, c ;

void fn ()
{

{
a = b +c ;

}
}

Output Files

Page 97

OUTPUT

....

CBLOCK 0 2

;; a = b +c ;
CLINE 7

l a, dir _b
add a, dir _c
st a, dir _a

CBLOCKEND 0 2

....

6.1.3.3.4 C source line

For each executable line for which assembly instructions are output, the corresponding C statement is
output as comments.

Example 6.15

INPUT

a = fn ();

For the above C statement, the C source line is output in the assembly file as follows:

OUTPUT

;; a = fn () ;

6.1.3.3.5 CLINE directive

CLINE directive is output for each executable statement, for which assembly instructions have been
generated. The CLINE directive is followed by the line number of the C statement in the source file.

Example 6.16

INPUT

int a, b, c ;

void
fn ()
{

a = b * c ; /* line number 06 */
}

CC665S Ver.2.01 User Guide

Page 98

OUTPUT

......

;; a = b * c ; /* line number 06 */
CLINE 6

l a, dir _b
mul dir _c
mov dir _a, er0

.....

In the above example, for the C statement ‘a = b * c’ at line number 6, ‘CLINE 6’ is output.

6.1.3.4 ASSEMBLY INSTRUCTIONS

One or more assembly instructions are generated for a C statement. They are grouped together and output
after the CLINE directive.

Example 6.17

INPUT

int b, c ;

void
fn ()
{

b = fun1 () ;
c += b ;

}

OUTPUT

.....

;; b = fun1 () ;
CLINE 6

cal _fun1
mov dir _b, dp

;; c += b ;
CLINE 7

l a, dp
add dir _c, a

.....

In the above example, the assembly instructions that follow CLINE 6 are generated for ‘b = fun1 () ;’
expression and those following CLINE 7 are for the expression ‘c += b ;’.

Output Files

Page 99

6.1.4 Symbol Declarations Section

This section contains the symbol declarations for different types of variables specified in the source file.

The three types of symbol declarations are as follows:

1. comm

2. public

3. extrn

Uninitialized global data variables, which are not specified in pragmas, are output using the ‘comm’ pseudo
instruction.

Example 6.18

INPUT

long a;

OUTPUT

_a comm data 04h #00h

In the above example, ‘a’ is assigned a location in 0th data segment with size 4 bytes.

Initialized global data variables are output using ‘public’ pseudo instruction.

Example 6.19

INPUT

int a = 7 ;

OUTPUT

public _a

In the above example, the variable ‘a’ is output as public.

A function which has been called but whose body is not defined in the current file, is output as ‘extern’.
Similarly, variables that have been declared as ‘extern’ in source are also output as ‘extrn’.

CC665S Ver.2.01 User Guide

Page 100

Example 6.20

INPUT

extern int a ;

main ()
{

a = 1 ;

fn () ;
}

OUTPUT

.....
extrn code : _fn
.....
extrn data : _a

In the above example, the body of the function ‘fn’ is not defined and therefore, it is output as ‘extrn’. Also,
‘a’ has been declared as ‘extern’. Therefore, no storage is allocated and output as ‘extrn’.

The memory initialization pseudo instructions DW and DB and memory allocation pseudo instruction DS
are used to output the initialized global data variables. CC665S follows similar methods to output static,
non-static and aggregate (array, structure/union) initialized global data variables. Memory initialization
instructions DW and DB are used to allocate and initialize const variables in code memory.

Example 6.21

INPUT

long var = 10 ;
const int cint = 20 ;

OUTPUT

rseg $$NINITTAB
dw 0ah
dw 00h

rseg $$NTABue621
_cint :

dw 014h

rseg $$NINITVAR
_var :

ds 04h

Output Files

Page 101

In the above example, 4 bytes are allocated in ‘$$NINITVAR’ data segment using DS pseudo instruction.
The initial value is output in ‘$$NINITTAB’ using DW pseudo instructions. Similarly, for the const
variable ‘cint’ DW pseudo instruction is used to allocate and initialize in code memory.

Initialization of global data and static variables are performed by allocating memory for these variables in
a RAM segment and defining those initial values in a ROM segment. Startup code copies these initial
values from the ROM segment to the RAM segment before the function “main” is invoked.

A sample output of an assembly file is given below:

Example 6.22

INPUT

int a, b ;
int c = 10 ;

void fn (void)
{

b = fn1 () ;

a = b * c ;

return ;
}

OUTPUT

;; Compile Options : /Tm66589 /MS /mixC /SS 10000
;; Version Number : Ver.2.01 Apr 1996
;; File Name : ue622.c

type (m66589)
cmodel small
model compact
$$NCODue622 segment code #0h
$$NINITTAB segment code
$$NINITVAR segment data 02h #0h

CC665S Ver.2.01 User Guide

Page 102

rseg $$NCODue622

CFUNCTION 0
_fn :

;; b = fn1 () ;
CLINE 6

cal _fn1
mov dir _b, dp

;; a = b * c ;
CLINE 7

l a, dp
mul dir _c
mov dir _a, er0

;;}
CLINE 9

rt

extrn code : _fn1
public _c
public _fn
_a comm data 02h #00h
_b comm data 02h #00h
extrn code : _main

rseg $$NINITTAB
dw 0ah

rseg $$NINITVAR
_c :

ds 02h

end

6.2 ERROR LISTING

Source listings are helpful in debugging programs as they are being developed. These listings are also useful
for documenting the structure of finished programs.

The source listing contains the numbered source code lines of each function in the source file, along with
diagnostic messages that were generated. Any error or warning messages issued during compilation
appear in the listing after the line that caused the error, as shown in the following example:

Output Files

Page 103

Example 6.23

INPUT

int a ;
int b ;

void fn ()
{

output_fn () ;

if (a == b [1])
return a ;

}

The following list file is generated when the above program “ue623.c” is compiled in /LE /Tm66589
options:

OUTPUT

 Page : 1
 Date : 04-23-1996
 Time : 14:02:34
CC665S C Compiler Ver.2.01 Apr 1996, Source List
Source File : ue623.c

 Line # Source Line

 1 int a ;
 2 int b ;
 3
 4 void fn ()
 5 {
 6 output_fn () ;
 7 if (a == b [1])
***** ue623.c(7) : Error : E5003 : Subscript on non array
 8 return a ;
 9 }
***** ue623.c(8) : Error : E5039 : Void function returning value
 10

Error(s) : 2
Warning(s) : 0

If the source file compiles without an error or fatal error, then a list of stack information used in different
functions is issued. The following example shows a complete source listing with stack information.

CC665S Ver.2.01 User Guide

Page 104

Example 6.24

INPUT

int a ;
int b ;

void
begin (x, y)
int x ;
int y ;
{

function () ;
end (x, y) ;
return ;

}

int
end (x, y)
int x ;
int y ;
{

int z ;
z = function1 () ;
function2 () ;
z += x + y ;
return (z) ;

}

OUTPUT

 Page : 1
 Date : 04-23-1996
 Time : 14:12:12
CC665S C Compiler Ver.2.01 Apr 1996, Source List
Source File : ue624.c

 Line # Source Line

 1 int a ;
 2 int b ;
 3

Output Files

Page 105

 4 void
 5 begin (x, y)
 6 int x ;
 7 int y ;
 8 {
 9 function () ;
 10 end (x, y) ;
 11 return ;
 12 }
 13
 14 int
 15 end (x, y)
 16 int x ;
 17 int y ;
 18 {
 19 int z ;
 20 z = function1 () ;
 21 function2 () ;
 22 z += x + y ;
 23 return (z) ;
 24 }
 25

Error(s) : 0
Warning(s) : 0

 Page : 2
 Date : 04-23-1996
 Time : 14:12:12
CC665S C Compiler Ver.2.01 Apr 1996, Source List
Source File : ue624.c

 STACK INFORMATION

 FUNCTION LOCALS ARGUMENTS OTHERS TOTAL
 -------- ------ --------- ------ -----
 _begin 0 4 8 12
 _end 0 4 6 10

OTHERS include the size of stack used for storing the return address of the function and the size of stack
used for pushing the base registers at the entry of the function.

CC665S Ver.2.01 User Guide

Page 106

6.3 CALLTREE LISTING

The calltree listing file produces an indented listing showing the procedure names at the left margin. Calls
are shown indented three spaces per level.

If a path has already been viewed, it is shown as ellipsis (...). A recursive call is shown as an asterisk (*).
If a call to an undefined procedure is made, a question mark(?) appears.

Example 6.25

INPUT

void
fn ()
{
}

void
fn1 ()
{

fn () ;
fn1 () ;
fn2 () ;

}

For the above source file “ue625.c”, the calltree listing generated by CC665S is shown below.

CC665S C Compiler, Ver.2.01 Apr 1996, Calltree Listing

Source File : ue625.c

fn
fn1
| fn...
| fn1*
| fn2?

In the above example, ellipsis follows function “fn” because calltree for function “fn” is listed previously. An
asterisk follows function “fn1” because it is called recursively. A question mark follows “fn2” because
definition of function “fn2” was not encountered prior to that function call.

When more than one source file is specified for compilation, the calltree listing of each source file is output
in the same calltree file. However, the calltree information of one source file is not carried to another source
file.

Output Files

Page 107

Example 6.26

INPUT

/* ue626a.c */
void fn ()
{

fn () ;
}

/* ue626b.c */
void fn1 ()
{

fn () ;
}

In the above code, the function “fn” is defined in source file “ue626a.c” and function “fn1” in “ue626b.c”
calls function “fn”.

OUTPUT

CC665S C Compiler, Ver.2.01 Apr 1996, Calltree Listing

Source File : ue626a.c

fn
| fn*

Source File : ue626b.c

fn1
| fn?

In the calltree listing of function “fn1”, a question mark follows “fn” since function “fn” was not defined in
source file “ue605b.c”.

6.4 DEBUGGING INFORMATION FILE

CC665S creates debug information file with an extension “.dbg” and the base name derived from the
source file when /SD or /OSD option is specified in the command line. Compiler stores symbol
information, line number and block information of source file in debugging information file for the source
level debugger CDB665S.

CC665S Ver.2.01 User Guide

Page 108

Debugging information file is created as a binary file in a predefined format. This file is opened and
processed by RAS66K when /CC option is specified in the command line. Assembler creates the object
file which includes the debugging information. The absolute addresses and values are fixed by the linker
RL66K when the /SD option is specified in the command line of RL66K and transferred to the absolute
file. C source level Debugger CDB665S reads the absolute file to obtain the debugging information.

CC665S also outputs information to support calls menu option in source level debugger CDB665S if
/SD option is specified in the command line. A debugging information file created by specifying /OSD
option in the command line does not contain information to support calls menu option in the debugger
CDB665S.

Example 6.27

INPUT

int a ;

void
fn ()
{

a = 1 ;
}

The following output is generated when the above program “ue627.c” is compiled in /SD option:

CFUNCTION 0
_fn :
CBLOCK 0 1
;;{
CLINE 5

l a, _$baseptr
pushs a
mov _$baseptr, ssp

;; a = 1 ;
CLINE 6

mov dir _a, #01h

;;}
CLINE 7

pops a
mov _$baseptr, a
rt

CBLOCKEND 0 1

Output Files

Page 109

The following output is generated when the above program “ue627.c” is compiled in /OSD option:

CFUNCTION 0
_fn :
CBLOCK 0 1

;; a = 1 ;
CLINE 6

mov dir _a, #01h

;;}
CLINE 7

rt
CBLOCKEND 0 1

Optimizations

Page 111

7. OPTIMIZATIONS

CC665S performs a variety of optimizations that reduce the storage space or execution time required for
a program. This is achieved by eliminating unnecessary instructions and rearranging code.

CC665S performs optimizations of the following types :

1. It modifies or moves sections of code so that fewer and/or faster instructions are used.
2. It eliminates sections of code that are redundant or unused.

CC665S performs all optimizations by default. The optimization options /Od, /Ol, /Oa, /Og, /Ot and /Om
may be used to exercise greater control over the optimizations performed.

7.1 GLOBAL OPTIMIZATIONS

Global optimizations are those that are performed across different basic blocks of code. (A basic block
corresponds to a sequence of executable statements through which control flows from the first statement
to the last statement, sequentially).

The following optimizations are classified as global optimizations :

Constant propagation

1. Common sub-expression elimination
2. Code sinking
3. Code hoisting

The above optimizations may be enabled or disabled, using /Og option.

CC665S Ver.2.01 User Guide

Page 112

7.1.1 Constant Propagation

Variables used in expressions are replaced by their constant values. The resultant constant expressions are
computed at compile time and the computed result is used in the expression.

Example 7.1

int a, b, x, y, m, n ;

const_propagate ()
{

a = 45 ;

if (b < x)
{

m = a + 20 ; /* changed to m = 65 */
}

y = a + m ; /* changed to y = 45 + m */
}

Assembly code generated by CC665S for the above function ‘const_propagate’ is shown below

CFUNCTION 0
_const_propagate :

;; a = 45 ;
CLINE 5

mov dir _a, #02dh

;; if (b < x)
CLINE 7

l a, dir _b
cmp a, dir _x
jges _$L1

;; m = a + 20 ; /* changed to m = 65 */
CLINE 9

mov dir _m, #041h

;; }
CLINE 10
_$L1 :

;; y = a + m ; /* changed to y = 45 + m */
CLINE 12

l a, dir _m
add a, #02dh
st a, dir _y

;;}
CLINE 13

rt

Optimizations

Page 113

7.1.2 Common Sub-Expression Elimination

Sub-expressions that are repeated more than once are eliminated. These are replaced by a temporary that
hold the result of a single evaluation.

Example 7.2

int a, b, x, y, m, n ;

common_sub_exp ()
{

x = a + b ; /* a + b is also assigned to a temporary */

if (a < b)
m = a + b + y ; /* a + b is replaced by the temporary */

else
n = (a + b) >> 4 ; /* a + b is replaced by the temporary */

}

Assembly code generated by CC665S for the above function ‘common_sub_exp’ is shown below:

CFUNCTION 0
_common_sub_exp :

;; x = a + b ; /* a + b is also assigned to a temporary */
CLINE 5

l a, dir _a
add a, dir _b
st a, dir _x
st a, er0

;; if (a < b)
CLINE 7

l a, dir _a
cmp a, dir _b
jges _$L1

;; m = a + b + y ; /* a + b is replaced by the temporary */
CLINE 8

l a, er0
add a, dir _y
st a, dir _m

;; else
CLINE 9

rt

CC665S Ver.2.01 User Guide

Page 114

_$L1 :

;; n = (a + b) >> 4 ; /* a + b is replaced by the temporary */
CLINE 10

l a, er0
sra a, 04h
st a, dir _n

;;}
CLINE 11

rt

7.1.3 Code Sinking

If control passes to a single point, after executing same sequence of statements along different paths, the
statements are sinked (moved down) to the single common point. The unnecessary copies of statements
are removed.

Example 7.3

int a, b, e, x, y, z, m, n ;

sink ()
{

if (a == b)
{

func () ;
m = e + 25 ; /* two statements are sinked */
return (e) ;

}

x = y + z ;
m = e + 25 ; /* two statements are removed */

return (e) ;
}

Assembly code generated by CC665S for the above function ‘sink’ is shown below :

CFUNCTION 0
_sink :

;; if (a == b)
CLINE 5

l a, dir _a
cmp a, dir _b
jne _$L1

;; func () ;
CLINE 7

cal _func

Optimizations

Page 115

;;}
CLINE 16
_$L0 :

l a, dir _e
add a, #019h
st a, dir _m
mov dp, dir _e
rt

;; }
CLINE 10
_$L1 :

;; x = y + z ;
CLINE 12

l a, dir _y
add a, dir _z
st a, dir _x

;; return (e) ;
CLINE 15

sj _$L0

7.1.4 Code Hoisting

This is similar to code sinking, but the direction of code movement is reversed. If control passes from a
single point, and same sequence of statements are executed along different paths, the statements are
hoisted (moved up) to the single common point. The unnecessary copies of statements are removed.

Example 7.4

int a, b, x, y, z, m ;

hoist ()
{

if (a == b)
{

m = x + y ; /* statement hoisted */
x = z ;

}
else
{

m = x + y ; /* statement removed */
fn1 () ;

}
}

CC665S Ver.2.01 User Guide

Page 116

Assembly code generated by CC665S for the above function ‘hoist’ is shown below:

CFUNCTION 0
_hoist :

l a, dir _x
add a, dir _y
st a, dir _m

;; if (a == b)
CLINE 5

l a, dir _a
cmp a, dir _b
jne _$L1

;; x = z ;
CLINE 8

mov dir _x, dir _z

;; else
CLINE 10

rt
_$L1 :

;; fn1 () ;
CLINE 13

j _fn1

;;}
CLINE 15

7.2 LOOP OPTIMIZATIONS

Loop optimizations are those that are performed on statements within loops.

The following optimizations are classified as loop optimizations:

1. Loop invariant code motion
2. Loop variant code motion
3. Induction variable elimination
4. Strength reduction
5. Loop unrolling

The above optimizations may be enabled or disabled using the /Ol option.

Optimizations

Page 117

7.2.1 Loop Invariant Code Motion

Expressions whose values do not change through each execution of a loop are termed as invariant
expressions. Such expressions are detected and moved to a position outside the loop, so that they are
evaluated only once.

Example 7.5

unsigned int x, m, n, o, p, r, i, y [10] ;

loop_invar ()
{

do
{

p = n / o ; /* moved outside the loop */
x = m * r + i ; /* sub-expression m * r is moved outside the loop */
y [i] += x ;
i ++ ;

} while (x < i) ;
}

Assembly code generated by CC665S for the above function ‘loop_invar’ is shown below:

CFUNCTION 0
_loop_invar :

mov er0, dir _n
clr a
divq dir _o
st a, dir _p
l a, dir _m
mul dir _r
mov er1, er0

;; do
CLINE 5
_$L3 :

;; x = m * r + i ; /* subexpression m * r is moved outside the loop */
CLINE 8

l a, er1
add a, dir _i
st a, er0
st a, dir _x

CC665S Ver.2.01 User Guide

Page 118

;; y [i] += x ;
CLINE 9

l a, dir _i
sll a, 01h
st a, x1
l a, er0
add _y[x1], a

;; i ++ ;
CLINE 10

inc dir _i

;; } while (x < i) ;
CLINE 11

l a, dir _x
cmp a, dir _i
jlt _$L3

;;}
CLINE 12

rt

7.2.2 Loop Variant Code Motion

Expressions whose values change by constant step value through each execution of a loop are termed as
variant expressions. Such expressions are detected and moved to a position outside the loop, so that they
are evaluated once with the final values of the variables (values at loop exit).

Example 7.6

int i, a ;

loop_variant_code_motion ()
{

for (i = 1 ; i < 11 ; i ++)
a += i ;

}

The above loop is replaced by

a += 55 ;
i = 11 ;

Optimizations

Page 119

Assembly code generated by CC665S for the above function loop_variant_code_motion is shown below:

CFUNCTION 0
_loop_variant_code_motion :

add dir _a, #037h
mov dir _i, #0bh

;;}
CLINE 7

rt

7.2.3 Induction Variable Elimination

An induction variable is one whose value changes by a function of another variable or constant, within a
loop. When two or more induction variables are present, variables which are a linear function of another
variable are eliminated and all uses of the eliminated variable are replaced by a function of the other
variable. Eliminated variables are initialized to their final values, if necessary.

Example 7.7

char a [10] ;
int i, j ;

induction_var_elim ()
{

for (i = 0 , j = 0 ; i < 10 ; i ++ , j ++)
{ /* i, j are induction variables */

a [i] = j + 3 ;
}

}

The above loop is transformed to

j = 10 ;

for (i = 0 ; i < 10 ; i ++)
{

a [i] = i + 3 ; /* j is replaced by i */
}

CC665S Ver.2.01 User Guide

Page 120

Assembly code generated by CC665S for the above function ‘induction_var_elim’ is shown below:

CFUNCTION 0
_induction_var_elim :

;; for (i = 0 , j = 0 ; i < 10 ; i ++ , j ++)
CLINE 6

clr dir _i
mov dir _j, #0ah

_$L3 :

;; a [i] = j + 3 ;
CLINE 8

lb a, dir _i
addb a, #03h
mov x1, dir _i
stb a, _a[x1]

;; for (i = 0 , j = 0 ; i < 10 ; i ++ , j ++)
CLINE 6

inc dir _i
cmp dir _i, #0ah
jlts _$L3

;;}
CLINE 10

rt

7.2.4 Strength Reduction

Expressions, in loops, that use costly operations are modified to use cheaper operations.

Example 7.8

int a [10] ;
int i ;

strength_reduction ()
{

for (i = 0 ; i < 10 ; i ++)
{

a [i] = 0 ; /* for accessing ith element of the ‘a’, multiplication by 2 */
/* is necessary, because ‘a’ is an array of ‘int’ */

}
}

Optimizations

Page 121

The above loop is transformed to

for (temp = 0, i = 0; temp < 20 ; temp += 2, i ++)
{

* (a + temp) = 0 ; /* multiplication inside the loop is */
/* removed by varying the loop */
/* control (incremented by 2 instead */
/* of 1) and the exit condition (less */
/* than 20 instead of less than 10), */
/* by using a temporary loop */
/* control variable (temp) */

}

As CC665 Ver.1.52 and later give priority to space optimization over speed optimization, strength
reduction is not performed. Assembly code generated by CC665S for the above function
‘strength_reduction’ is shown below:

CFUNCTION 0
_strength_reduction :

;; for (i = 0 ; i < 10 ; i ++)
CLINE 6

clr dir _i
_$L3 :

;; a [i] = 0 ; /* for accessing ith element of the ‘a’, multiplication by 2*/
CLINE 8

l a, dir _i
sll a, 01h
st a, x1
clr _a[x1]

;; for (i = 0 ; i < 10 ; i ++)
CLINE 6

inc dir _i
cmp dir _i, #0ah
jlts _$L3

;;}
CLINE 11

rt

7.2.5 Loop Unrolling

The body of a loop which would execute a constant number of times, is expanded that many number of
times, if feasible. The loop control statements are removed.

CC665S Ver.2.01 User Guide

Page 122

Example 7.9

loop_unroll ()
{

int i ;

for (i = 0 ; i < 2 ; i ++)
function () ;

}

The above loop is transformed to

function () ;
function () ;

Assembly code generated by CC665S for the above function ‘loop_unroll’ is shown below:

CFUNCTION 0
_loop_unroll :

cal _function
j _function

;;}
CLINE 7

7.3 OTHER OPTIMIZATIONS

The other optimizations performed include :

1. Dead code elimination
2. Dead variable elimination
3. Algebraic transformation
4. Optimizing jumps

7.3.1 Dead Code Elimination

Parts of code that will never be executed are referred to as ‘dead’ code. These can be statements that
could be detected as dead, by looking at the input source program, or those that could be detected
because of prior optimizations such as constant propagation.

Example 7.10

int a, p, q, r ;

dead_code ()
{

a = 10 ;
r = p + q ;

Optimizations

Page 123

if (a < 10) /* if statement removed */
fn1 () ; /* statement removed */

}

Assembly code generated by CC665S for the above function ‘dead_code’ is shown below:

CFUNCTION 0
_dead_code :

;; a = 10 ;
CLINE 5

mov dir _a, #0ah

;; r = p + q ;
CLINE 6

l a, dir _p
add a, dir _q
st a, dir _r

;;}
CLINE 10

rt

7.3.2 Dead Variable Elimination

Variables are assigned values by expressions. The values of some variables may not be used later in the
program. Such variables are referred to as ‘dead variables’. These dead variables are detected and
removed. Dead variables also include variables, that are assigned values, before a previously assigned
value is used. The unnecessary assignment is removed.

Example 7.11

int x, m, n, r, p, q ;

dead_var ()
{

int l ;

x = m + n ; /* statement removed */
r = p * q ;
x = r >> 2 ;
l = x + r ; /* statement is removed variable l is a dead variable */

}

Assembly code generated by CC665S for the above function ‘dead_var’ is shown below:

CFUNCTION 0
_dead_var :

CC665S Ver.2.01 User Guide

Page 124

;; r = p * q ;
CLINE 8

l a, dir _p
mul dir _q
mov dir _r, er0

;; x = r >> 2 ;
CLINE 9

l a, er0
sra a, 02h
st a, dir _x

;;}
CLINE 11

rt

7.3.3 Algebraic Transformation

Expressions are modified, using commutative and associative laws, for optimal use of registers.

Example 7.12

int a, x, b, c ;

alg_transfer ()
{

a = x + (b - c) ; /* requires 2 registers */
}

The above statement is transformed to

a = (b - c) + x ; /* requires 1 register */

Assembly code generated by CC665S for the above function ‘alg_transfer’ is shown below

CFUNCTION 0
_alg_transfer :

;; a = x + (b - c) ; /* requires 2 registers */
CLINE 5

l a, dir _b
sub a, dir _c
add a, dir _x
st a, dir _a

;;}
CLINE 6

rt

Optimizations

Page 125

7.3.4 Optimizing Jumps

Blocks of code are rearranged to minimize use of jump instructions. Jump instructions that jump to jump
instructions are modified to reduce the number of jumps executed.

Example 7.13

LABEL2 :
goto LABEL1 /* LABEL1 is replaced by LABEL2 */

LABEL1 :
goto LABEL2

7.4 PEEPHOLE OPTIMIZATIONS

Peephole optimizations are performed on the output assembly language instructions.

These optimizations include :

1. Removal of redundant transfer instructions

2. Optimizing relative jumps

7.4.1 Removal Of Redundant Transfer Instructions

The generated assembly instructions are scanned for unnecessary transfers to and from registers.

Example 7.14

l a, #20h
st a, _one
l a, #20h ; this instruction is removed
st a, _two

7.4.2 Optimizing Relative Jumps

Relative jump instructions whose targets exceed the allowed range are replaced by pairs of conditional and
unconditional jump instructions. Sequential pairs of conditional and unconditional jumps are replaced by a
single conditional jump instruction.

CC665S Ver.2.01 User Guide

Page 126

Example 7.15

jz L10
j L20

$L10 :

The above instructions are replaced by

jnz L20
$L10 :

7.5 LOCAL OPTIMIZATIONS

These are optimizations that are performed within a basic block :

1. Constant propagation
2. Common sub-expression elimination
3. Use of algebraic identities

These optimizations, within a basic block, are not dependent on any optimization option. These are always
enabled.

7.5.1 Constant Propagation

Variables used in expressions are analyzed and changed to constants if they can be changed.

Example 7.16

int c, d ;

local_constant_prop ()
{

c = 30 ;
d = c ; /* instead of c, 30 is assigned to d */

}

Assembly code generated by CC665S for the above function ‘local_constant_prop’ is shown below

CFUNCTION 0
_local_constant_prop :

;; c = 30 ;
CLINE 5

l a, #01eh
st a, dir _c

Optimizations

Page 127

;; d = c ; /* instead of c, 30 is assigned to d */
CLINE 6

st a, dir _d

;;}
CLINE 7

rt

7.5.2 Common Sub-Expression Elimination

Code containing repeated sub-expressions are modified, so that the sub-expressions are evaluated only
once.

Example 7.17

unsigned int a, b, c, d, x, y ;

local_cse ()
{

a = b + c * d ; /* c *d is evaluated and assigned to a temporary */
x = c * d / y ; /* value of c * stored in the temporary is used not evaluated again */

}

Assembly code generated by CC665S for the above function ‘local_cse’ is shown below:

CFUNCTION 0
_local_cse :

;; a = b + c * d ; /* c *d is evaluated and assigned to a temporary */
CLINE 5

l a, dir _c
mul dir _d
l a, er0
add a, dir _b
st a, dir _a

;; x = c * d / y ; /* value of c * d stored */
CLINE 6

clr a
divq dir _y
st a, dir _x

;;}
CLINE 8

rt

CC665S Ver.2.01 User Guide

Page 128

7.5.3 Use Of Algebraic Identities

Expressions that conform to algebraic laws are modified, so that unnecessary operations are eliminated.

Example 7.18

int a, b, c, d ;

alg_identities ()
{

a = b + 0 ; /* addition is eliminated */
c = d * 1 ; /* multiplication is eliminated */

}

Assembly code generated by CC665S for the above function ‘alg_identities’ is shown below:

CFUNCTION 0
_alg_identities :

;; a = b + 0 ; /* addition is eliminated */
CLINE 6

mov dir _a, dir _b

;; c = d * 1 ; /* multiplication is eliminated */
CLINE 7

mov dir _c, dir _d

;;}
CLINE 8

rt

7.6 EFFECT OF ALIASING ON OPTIMIZATIONS

An ‘alias’ is a name used to refer to a memory location already referred to by a different name.

As a location can be referred to by more than one variable, performing optimization on variables becomes
unsafe. By default CC665S does not check for aliases. The default optimizations performed by CC665S
may result in unsafe code, when the following assumptions are violated :

1. If a variable is used directly, no pointers are used to reference that variable.
2. If a pointer is used to refer to a variable, that variable is not referred to directly.
3. If a pointer is used to modify a memory location, no other pointers are used to access the same

memory location.

The term ‘reference’ means the use of a variable on the right-hand side or left-hand side of an assignment
expression or use of a variable as an argument to a function call.

Optimizations

Page 129

Specifying the command line option /Oa enables CC665S to check for aliases while performing
optimizations. Though this results in correct code, it reduces the extent to which optimizations are
performed.

Example 7.19

int a, b, c, x, y, *ptr ;

alias_check ()
{

a = b + c ;

if (x < a)
{

* ptr = 56 ;
y = b + c ; /* By default, alias are ignored, so */

/* b + c, evaluated earlier is used */
/* if /Oa option is specified b + c is evaluated again */

}
}

In the above code fragment, by default, common sub-expression elimination is performed. Hence the
sub-expression ‘b + c’, is evaluated only once and a temporary containing the value is used instead of the
second evaluation.

Assuming that ‘ptr’ does not point to ‘b’ or ‘c’, the optimization performed is correct. If ‘ptr’ was pointing
to ‘b’ or ‘c’, then performing common sub-expression elimination results in assigning an incorrect value to
‘y’.

When the above code fragment is compiled using /Oa option, evaluation of the sub-expression ‘b + c’ is
not optimized, thus resulting in correct assignment to ‘y’.

Assembly code generated by CC665S for the above function ‘alias_check’ in default command line
option (all optimizations are performed) is shown below (No /Oa option)

CFUNCTION 0
_alias_check :

;; a = b + c ;
CLINE 5

l a, dir _b
add a, dir _c
st a, er0
st a, dir _a

;; if (x < a)
CLINE 7

l a, dir _x
cmp a, er0
jges _$L1

CC665S Ver.2.01 User Guide

Page 130

;; * ptr = 56 ;
CLINE 9

mov dp, dir _ptr
mov [dp], #038h

;; y = b + c ; /* By default, alias are ignored, so */
CLINE 10

mov dir _y, er0

;; }
CLINE 13
_$L1 :

;;}
CLINE 14

rt

Assembly code generated by CC665S for the above function ‘alias_check’, when ‘/Oa’ option (perform
alias check), is specified in the command line, is shown below:

CFUNCTION 0
_alias_check :

;; a = b + c ;
CLINE 5

l a, dir _b
add a, dir _c
st a, er0
st a, dir _a

;; if (x < a)
CLINE 7

l a, dir _x
cmp a, er0
jges _$L1

;; * ptr = 56 ;
CLINE 9

mov dp, dir _ptr
mov [dp], #038h

;; y = b + c ; /* By default, alias are ignored, so */
CLINE 10

mov dir _y, er0

;; }
CLINE 13
_$L1 :

;;}
CLINE 14

rt

Improving Compiler Output

Page 131

8. IMPROVING COMPILER OUTPUT

8.1 CONTROLLING OPTIMIZATIONS

CC665S provides a number of optimization options that can improve program speed. In addition,
CC665S include pragmas to control loop optimizations on a local basis within a source program.

Default Optimization

By default, CC665S performs all optimizations. If no optimization must be performed, the user must
specify /Od option.

Relaxing Alias Checking

By default, CC665S performs unsafe optimizations. Optimizations may be made safe by specifying the
command line option /Oa. But /Oa option may lead to outputs with increased size and which on execution
may be slower.

/Oa option may be omitted safely by the user, if multiple aliases to refer to the same location, either directly
or indirectly, is not used. /Oa may still be omitted safely even if aliases are used in the program, provided
that no memory location is referenced by more than one name, within a function.

CC665S Ver.2.01 User Guide

Page 132

Controlling Loop Optimization On A Local Basis

Loop optimizations may be controlled on local basis by using the pragmas LOOPOPTON and
LOOPOPTOFF. Loop optimizations are turned off for any function following #pragma LOOPOPTOFF
and is turned on for any function following #pragma LOOPOPTON in a source program.

Maximum Optimization

The command line option /Om enables the compiler to perform maximum optimizations. By default, all the
optimizations are performed only once. But when /Om option is specified, a set of optimizations are
performed iteratively, unless CC665S is unable to perform more optimizations.

/Om option with /Oa option enables the user to obtain an output on which maximum and safe optimizations
are performed.

Speed Optimization

The command line option /Ot enables the compiler to perform speed optimization. This optimization is
same /Om option with the only difference that, in /Ot option, stack allocation and deallocation instructions
are optimized.

/Ot option with /Oa option enables the user to obtain an output on which speed and safe optimizations are
performed.

8.2 USING REGISTER VARIABLES

By default, the compiler allocates registers to local variables. If register is not available, stack locations are
used. The order of allocation of these registers is based on the frequency of use of local variables.

Therefore, there is a possibility of not allocating register to a variable that is not used many times, but used
in a portion of code that will be executed many times repeatedly. Inorder to allocate registers for such
variables, the storage class register may be specified. Variables specified with register keyword has more
priority than other variables. In the process of deallocation when register is not available, CC665S
deallocates registers assigned to ordinary variables first and then to the variables declared as register
variables.

Improving Compiler Output

Page 133

However, CC665S does not guarantee that a register specified variable will always be allocated in
registers. The register storage class may be specified to any variable, but register specifications are
ignored for variables whose type is not int or short or for pointer types that are not of the same size as type
int.

8.3 REMOVING STACK PROBES

Program execution may be speed up by removing calls to stack-checking-routines known as stack
probes. Stack probes verify that a program has enough space to allocate required local variables.

The potential disadvantage in removing stack probes is that stack-overflows goes undetected. However,
this technique may be useful for programs that are known not to exceed the available stack space.

By default, stack probe routines are not called. The command line option /ST enables CC665S to call
stack probe routines at the beginning of each function.

Stack checking may be controlled on local basis also by using either #pragma CHECKSTACKON or
#pragma CHECKSTACKOFF. Stack checking is turned off for any function following #pragma
CHECKSTACKOFF and turned on for any function following #pragma CHECKSTACKON.

8.4 CONTROLLING ALLOCATION OF VARIABLES

Pragmas of CC665S may be used in controlling the allocation of variables. This enables CC665S to use
variety of addressing modes in order to improve the assembly output.

#pragma INPAGE instructs CC665S to allocate the variables in the inpage area. And if a function uses the
same inpage area, then CC665S uses current page addressing modes to access the variables specified in
INPAGE pragma, as far as possible.

Using #pragma ABSOLUTE, a variable may be allocated anywhere in code or data memory. This enables
the user to access SFR area also.

Using #pragma SFR, a variable may be allocated anywhere in a data memory. This is similar to
ABSOLUTE pragma, except that only data memory variables can be specified.

Other pragmas like EDATA, SBAINPAGE, SBAFIX, FIX, DUAL, ROMWINDOW etc., enables the
user to allocate the given variable in any part of the memory.

CC665S Ver.2.01 User Guide

Page 134

8.5 MIXED LANGUAGE PROGRAMMING

This section explains how to use MSM66K “500” core or “500S” core assembly language routines with
C programs and functions compiled using CC665S. In particular it explains how to call assembly language
routines from ‘C’ programs and how to call ‘C’ language functions from an assembly language routine.

8.5.1 Combining Assembly And ‘C’ Programs

Some of the methods by which a programmer can combine an assembly language routine and a ‘C’
program are given below:

Improving Compiler Output

Page 135

Method 1

In this method, programmer writes a ‘C’ program and then compiles the ‘C’ program using CC665S. The
output produced by CC665S is an assembly language file containing MSM66K “500” core or “500S”
core mnemonics. Programmer can edit this file using any text editor and add the necessary assembly
language routines. The resulting file can then be assembled and linked using RAS66K and RL66K
respectively to produce the absolute file.

Text Editor

‘.C’ File

CC665

.ASM File

Text Editor

Modified ‘.ASM’
File

RAS66K

CC665S Ver.2.01 User Guide

Page 136

Method 2

In this method, programmer writes a C program and compiles it using CC665S. The compiler produces as
output an ‘.ASM’ file. The programmer creates an assembly language file, containing the assembly
routines to be mixed with the ‘C’ program. The two assembly program files can be assembled separately
using RAS66K. The result will be two ‘.OBJ’ files. These two ‘.OBJ’ files can be linked using the linker
RL66K.

Text Editor

‘.C’ File

CC665

‘.ASM’ File

RAS66K

‘.OBJ’ File

RL66K

‘.ABS’ File

‘.OBJ’ File

RAS66K

‘.ASM’ File

Text Editor

Improving Compiler Output

Page 137

Method 3

Using #asm and #endasm

In this method, programmer writes assembly instructions directly in the source file using preprocessor
directives #asm and #endasm. A procedure or a part of a procedure may be written in assembly language
and enclosed within the two directives #asm and #endasm. CC665S outputs whatever is specified
between these two directives as it is in the output file. Since local variables may be assigned to registers,
any access to local variables inside asm block, may not yield intended results. Therefore, any data passing
across asm blocks must be only through global variables.

Method 4

Using #pragma asm and #pragma endasm

In this method, programmer writes assembly instructions directly in the source file using pragma directives
#pragma asm and #pragma endasm. Processing of the text inside these pragma directives are same as
the processing of #asm and #endasm.

Method 5

Using __asm keyword

Syntax:

__asm (string)

In this method, programmer writes assembly instructions directly in the source file using __asm keyword.
A procedure or a part of a procedure may be specified as a string argument to __asm keyword. CC665S
outputs whatever is the argument to this keyword as it is in the output file.

The return value of __asm keyword cannot be used.

CC665S issues error message in the following cases:

• If the specified argument is not a string.

• If more than one argument is specified.

• If return value of ‘__asm’ keyword is used.

CC665S Ver.2.01 User Guide

Page 138

The following examples show erroneous cases:

Example 8.1

INPUT

void fn ()
{

__asm (“DI\n”, “EI\n”) ;
}

CC665S outputs error message for the above program as more than one argument is specified for __asm
keyword.

Example 8.2

INPUT

void fn ()
{

return __asm (“DI\n”, “EI\n”) ;
}

CC665S outputs error message for the above program as return value of __asm. keyword is used. The
following example shows how mixed mode language programming can be used efficiently:

By using mixed mode language programming, programmer can write very efficient and flexible code. For
example, if an error recovery library function which takes error number as argument is to be executed
without interruption from the maskable hardware interrupts, programmer can disable maskable interrupts
before calling that function as shown below:

Example 8.3

INPUT

define BAD_STATUS 1

int err_no ;

void error_check_fn ()
{

if (err_no == BAD_STATUS)
{

__asm (“\t\tDI\n”) ; /* maskable hardware interrupts disabled */
output_error_with_beep () ;

Improving Compiler Output

Page 139

pragma asm
mov a, dir _err_no
pushs a
cal _error_recovery_fn
pops a

pragma endasm
__asm (“\t\tEI\n”) ; /* maskable hardware interrupts enabled */

}
else

output_error_with_beep () ;
}

The following code is generated for the above function definition:

OUTPUT

CFUNCTION 0
_error_check_fn :

;; if (err_no == BAD_STATUS)
CLINE 5

cmp dir _err_no, #01h
jeq _$L4
j _$L1

_$L4 :

;; __asm ("\t\tDI\n") ; /* maskable hardware interrupts disabled */
CLINE 7

DI

;; output_error_with_beep () ;
CLINE 8

cal _output_error_with_beep

;; # pragma asm
CLINE 9

mov a, dir _err_no
pushs a
cal _error_recovery_fn
pops a

;; __asm ("\t\tEI\n") ; /* maskable hardware interrupts enabled */
CLINE 15

EI

;; else
CLINE 17

rt
_$L1 :

CC665S Ver.2.01 User Guide

Page 140

;; output_error_with_beep () ;
CLINE 18

j _output_error_with_beep

;;}
CLINE 19

8.5.2 Calling Conventions Of CC665S

CC665S follows certain conventions while passing values to ‘C’ functions or while receiving values from
‘C’ language function calls. Hence assembly language routines must follow these conventions. CC665S
passes arguments to any given function by pushing the value of each of the arguments into a stack form right
to left. The function call pushes the value of the last argument first and the first argument last. If an argument
is an expression, CC665S computes the expression’s value before pushing it onto the stack. The
expression evaluation is carried out from left to right, that is the first argument is evaluated first and the last
argument is evaluated last, but the arguments are pushed into the stack in the reverse order.

Arguments, which have char or int as their type, occupy one word in the stack. Whereas, arguments
which are of type long or float occupy two words in the stack. The char type arguments are sign-
extended to int type before being pushed into stack. If the argument is pointer, the number of words
pushed depends on the memory model. For large memory two words are pushed and for small memory
one word is pushed into the stack. After a function returns control to a routine the calling routine is
responsible for removing the arguments from the stack. This is achieved by adding the number of bytes
pushed as arguments to SSP.

8.5.3 Return Values

Assembly language routines that wish to return values to a ‘C’ program or receive return values from ‘C’
functions must follow CC665S return value conventions. If the function has a return value of size less than
or equal to 2 bytes, CC665S places return value of functions in dp register. If the function has a return
value of size greater than 2 bytes, CC665S places the return value in the register pair dp and x1. The higher
word of the return value is placed in register x1. If the return value type is structure or union or double,
CC665S passes the address of the variable to which the return value is assigned, as the first argument.
Therefore, the return value is updated in the called function.

Improving Compiler Output

Page 141

Example 8.4

INPUT

int add_int (int a, int b)
{

return (a + b) ;
}

long add_long (long a, long b)
{

return (a + b) ;
}

double add_double (double a, double b)
{

return (a + b) ;
}

OUTPUT

CFUNCTION 0
_add_int :

;;{
CLINE 2

pushs usp
mov usp, ssp

;; return (a + b) ;
CLINE 3

l a, 6[usp]
add a, 8[usp]
st a, dp

;;}
CLINE 4

pops usp
rt

CFUNCTION 1
_add_long :

;;{
CLINE 7

pushs usp
mov usp, ssp

;; return (a + b) ;
CLINE 8

l a, 10[usp]
add a, 6[usp]
st a, dp

CC665S Ver.2.01 User Guide

Page 142

l a, 12[usp]
adc a, 8[usp]
st a, x1

;;}
CLINE 9

pops usp
rt

CFUNCTION 2
_add_double :

;;{
CLINE 13

pushs usp
mov usp, ssp

;; return (a + b) ;
CLINE 14

l a, 22[usp]
pushs a
l a, 20[usp]
pushs a
l a, 18[usp]
pushs a
l a, 16[usp]
pushs a
l a, 14[usp]
pushs a
l a, 12[usp]
pushs a
l a, 10[usp]
pushs a
l a, 8[usp]
pushs a
cal __dadds50s
mov dp, 6[usp]
mov x1, SSP
mov [dp+], 0ah[x1]
mov [dp-], 0ch[x1]
mov 4[dp], 0eh[x1]
mov 6[dp], 010h[x1]
add SSP, #010h

;;}
CLINE 15

pops usp
rt

Improving Compiler Output

Page 143

8.5.4 Interrupt Handling Routines In Assembly

CC665S allows interrupt handling routines to be written in ‘C’. Interrupt handling routines must reside in
physical segment 0 of the CODE memory. The appropriate interrupt vector must be initialized by the
starting address of the routine. The last statement of an interrupt handling routine must be “rti” instruction.

8.5.5 Referring C Variables

Assembly routines can refer to global variables used in ‘C’ source program. Initialized global variables can
be referred by declaring them as “EXTRN” in assembly routines. Such variables should not be declared as
“PUBLIC” in assembly. Uninitialized global variables can be referred by declaring them using “PUBLIC”
or “EXTRN” or “COMM” pseudo instructions. Global variables which are declared as “extern” in ‘C’
program can be referenced in assembly routines by declaring them as “PUBLIC” or “COMM”.

8.6 QUALIFYING FUNCTIONS WITH ‘__accpass’ AND ‘__noacc’

A function may be qualified with __accpass to inform the compiler to use Accumulator for it’s first
argument and for the return value.

If a function is qualified with __accpass and the size of the first argument is less than or equal to 2 bytes,
then the value of the first argument is stored in the Accumulator. The function accesses the first argument
using Accumulator. However, if the size of the first argument is greater than 2 bytes, first argument
processing will be done as for other arguments. However, usage of Accumulator for first argument is more
efficient than using stack.

Similarly, when the function is qualified with __accpass, the compiler places the return value in the
Accumulator, therefore reducing the register movement for the return values. However, if the size of return
value is greater than 2 bytes, Accumulator is not used to store the return value.

A function may also be qualified with __noacc. This qualifier instructs the compiler not to use Accumulator
for it’s first argument and for the return value.

CC665S Ver.2.01 User Guide

Page 144

If /REG option is specified in the command line, all functions except those qualified with __noacc, are
treated as __accpass qualified functions. Arguments for library functions must always be passed through
stack as they may be invoked from a function which might or might not have been compiled using /REG
option. Therefore, all library routines must be qualified with __noacc.

Example 8.5

INPUT

int __accpass acc_add (int a, int b);
int var1, var2 ;

int __accpass acc_add (int a, int b)
{

int l_ret ;
l_ret = a + b ;
return (l_ret) ;

}

fn ()
{

var1 = acc_add (var1, var2) ;
}

OUPUT

CFUNCTION 0
_acc_add :

;;{
CLINE 6

pushs usp
mov usp, ssp

;; l_ret = a + b ;
CLINE 8

add a, 6[usp]

;;}
CLINE 10

pops usp
rt

CFUNCTION 2
_fn :

;; var1 = acc_add (var1, var2) ;
CLINE 14

l a, dir _var2
pushs a
l a, dir _var1

Improving Compiler Output

Page 145

cal _acc_add
add SSP, #02h
st a, dir _var1

;;}
CLINE 15

rt

If /REG option is not specified in the command line, the proto type of all functions qualified with
__accpass must be declared before the function call, to obtain intended results.

8.7 BUILT-IN FUNCTIONS

CC665S supports built-in functions for high-precision multiplication, high-precision division and high-
precision remainder (mod) operations. When a built-in function is called, the body of that built-in function
is inlined in the assembly listing file.

These function names are reserved keywords. CC665S issues error message if a built-in function is
defined in the source file.

CC665S issues warning message, if an incompatible parameter is passed to a built-in function. However,
the compiler converts the actual parameter to the formal parameter type.

CC665S issues error message, if number of actual parameters does not agree with the prototype.

The following sections explain the built-in functions in detail:

8.7.1. Higher Precision Multiplication

Prototypes:

unsigned long __mulu(unsigned int, unsigned int) ;
unsigned int __mulbu(unsigned char, unsigned char) ;

The function “__mulu” uses MUL instruction to multiply two 2-byte operands and returns a 4-byte value.
The function “__mulbu” uses MULB instruction to multiply two 1-byte operands and returns a 2-byte
value.

CC665S Ver.2.01 User Guide

Page 146

Example 8.6

INPUT:

unsigned long long_var ;

unsigned int var1 ;
unsigned int var2 ;

void fn1 ()
{

long_var = __mulu (var1, var2) ;
}

The following is the code generated for the function “fn1” defined in the above program:

OUTPUT

CFUNCTION 0
_fn1 :

;; long_var = __mulu (var1, var2) ;
CLINE 6

l a, dir _var1
mul dir _var2
mov dir _long_var, er0
st a, dir _long_var+02h

;;}
CLINE 7

rt

Example 8.7

INPUT

long long_var ;

unsigned int var1 ;
unsigned char var2 ;

void fn2 ()
{

long_var = __mulbu (var1, var2) ;
}

Improving Compiler Output

Page 147

The following is the code generated for the function “fn2” defined in the above program:

OUTPUT

CFUNCTION 0
_fn2 :

;; long_var = __mulbu (var1, var2) ;
CLINE 8

lb a, dir _var1
mulb dir _var2
sdd
st a, dir _long_var
clr dir _long_var+02h

;;}
CLINE 9

rt

Example 8.8

INPUT

long __mulbu (char arg1, char arg2) ;

In the above example, CC665S issues an error as the prototype of built-in function “__mulbu” is
redefined.

8.7.2. Higher Precision Division

Prototypes:

unsigned long __divu(unsigned long, unsigned int) ;
unsigned int __divqu(unsigned long, unsigned int) ;
unsigned int __divbu(unsigned int, unsigned char) ;

The function “__divu” uses DIV instruction to divide a 4-byte value by a 2-byte value and returns a 4-byte
quotient. The function “__divqu” uses DIVQ instruction to divide a 4-byte value by a 2-byte value and
returns a 2-byte quotient. The function “divbu” uses DIVB instruction to divide a 2-byte value by a 1-byte
value and returns a 2-byte quotient.

CC665S Ver.2.01 User Guide

Page 148

Example 8.9

INPUT

unsigned long var1 ;
unsigned int var2 ;
unsigned long var3 ;

void fn1 ()
{

var3 = __divu (var1, var2) ;
}

The following is the code generated for the function “fn1” defined in the above program:

OUTPUT

CFUNCTION 0
_fn1 :

;; var3 = __divu (var1, var2) ;
CLINE 7

mov er0, dir _var1
l a, dir _var1+02h
div dir _var2
mov dir _var3, er0
st a, dir _var3+02h

;;}
CLINE 8

rt

Example 8.10

INPUT

unsigned long var1 ;
unsigned int var3 ;

void fn2 ()
{

var3 = __divqu (var1, (int) var1) ;
}

Improving Compiler Output

Page 149

The following is the code generated for the function “fn2” defined in the above program:

OUTPUT

CFUNCTION 0
_fn2 :

;; var3 = __divqu (var1, (int) var1) ;
CLINE 6

mov er0, dir _var1
l a, dir _var1+02h
divq dir _var1
st a, dir _var3

;;}
CLINE 7

rt

Example 8.11

INPUT

unsigned char var1 ;
unsigned long var2 ;

void fn3 ()
{

var2 = __divbu (var1 , 0xff) ;
}

The following is the code generated for the function “fn3” defined in the above program:

OUTPUT

CFUNCTION 0
_fn3 :

;; var2 = __divbu (var1 , 0xff) ;
CLINE 6

lb a, dir _var1
extnd
fillb r1
divb r1
st a, dir _var2
clr dir _var2+02h

;;}
CLINE 7

rt

CC665S Ver.2.01 User Guide

Page 150

8.7.3. Higher Precision Remainder

Prototypes:

unsigned int __modu(unsigned long, unsigned int) ;
unsigned int __modqu(unsigned long, unsigned int) ;
unsigned char __modbu(unsigned int, unsigned char) ;

The function “__modu” uses DIV instruction to divide a 4-byte value by a 2-byte value and returns a 2-
byte remainder. The function “__modu” uses DIVQ instruction to divide a 4-byte value by a 2-byte value
and returns a 2-byte remainder. The function “__modbu” uses DIVB instruction to divide a 2-byte value
by a 1-byte value and returns a 1-byte remainder.

Example 8.12

INPUT

unsigned long var1 ;
unsigned int var2 ;
unsigned int var3 ;

void fn1 ()
{

var3 = __modu (var1, var2) ;
}

The following is the code generated for the function “fn1” defined in the above program:

OUTPUT

CFUNCTION 0
_fn1 :

;; var3 = __modu (var1, var2) ;
CLINE 7

mov er0, dir _var1
l a, dir _var1+02h
div dir _var2
mov dir _var3, er1

;;}
CLINE 8

rt

Improving Compiler Output

Page 151

Example 8.13

INPUT

unsigned int var ;

void fn2 ()
{

var = __modqu (0x100000l , var) ;
}

The following is the code generated for the function “fn2” defined in the above program:

OUTPUT

CFUNCTION 0
_fn2 :

;; var = __modqu (0x100000l , var) ;
CLINE 5

clr er0
l a, #010h
divq dir _var
mov dir _var, er1

;;}
CLINE 6

rt

Example 8.14

INPUT

unsigned char var1 ;
unsigned int var2 ;

void fn3 ()
{

var1 = __modbu (__mulu(var2, var1) , var1) ;
}

The following is the code generated for the function “fn3” defined in the above program:

OUTPUT

CFUNCTION 0
_fn3 :

;; var1 = __modbu (__mulu(var2, var1) , var1) ;
CLINE 6

lb a, dir _var1
extnd

CC665S Ver.2.01 User Guide

Page 152

mul dir _var2
l a, er0
divb dir _var1
lb a, r1
stb a, dir _var1

;;}
CLINE 7

rt

8.8 RUNTIME STACK PREPARATION

The runtime stack preparation is carried out at the beginning of each function. CC665S uses the register
usp or x2 as the base pointer. Since usp can be accessed only within 64 bytes range, usp will be used for
accessing local/arguments, if the size of locals and size of arguments do not exceed 64 bytes each,
otherwise x2 is used for the same purpose.

Memory required for local variables used in a function is allocated in stack in the entry code of the function.
The allocated memory is freed in the exit code of the function since the scope of the local variables are
limited to this function.

Example 8.15

INPUT

int fn (int arg)
{

int a [10];
return a[arg] ;

}

The following is the code generated for the above defined function:

OUTPUT

CFUNCTION 0
_fn :

;;{
CLINE 2

pushs usp
mov usp, ssp
sub ssp, #014H

Improving Compiler Output

Page 153

;; return a[arg] ;
CLINE 4

l a, 6[usp]
sll a, 01h
add a, usp
st a, x1
mov dp, 0ffeeh[x1]

;;}
CLINE 5

mov ssp, usp
pops usp
rt

In the above example, base pointer usp is pushed into the stack at the beginning of the function. Stack
pointer is moved into the base pointer (usp). The memory space required for the local variables used in the
function is allocated by subtracting stack pointer (ssp) by constant 0x14. The allocated memory space is
freed in the exit code by restoring the old value of stack pointer (ssp) from the base pointer (usp).

8.9 REGISTER USAGE

In MSM66K “500” core and “500S” core architectures, the local registers and pointing registers must be
allocated in the startup code.

The PRBANK pseudo instruction aids in allocating the pointing register set used by CC665S. This
enables the linker RL66K to allocate the specified pointing register set.

The LRBANK pseudo instruction aids in allocating the local register set used by CC665S.

For example,

prbank 0

lrbank 8

The above pseudo instructions in the startup code enables the linker RL66K to allocate pointing register
set PR0 and local register set LR8.

Emulation library routines use the same set of pointing registers and local registers as used by other routines
compiled using CC665S.

Register usp or x2, depending on locals/arguments size, is reserved by CC665S for use as base pointer,
hence it is not used for other purposes, however, the other register is used freely for storage and indexing
purposes.

CC665S Ver.2.01 User Guide

Page 154

Accumulator, the pointing registers x2/usp, x1 and dp and the local registers er0, er1, er2 and er3 are
freely used by CC665S in code generation.

Registers dp and x1 are used to carry the return values of ‘C’ functions. If a function returns a value of size
less than or equal to 2 bytes, then it is returned in the register dp. In case, a function returns a value of size
greater than 2 bytes, then the return value is in the register pair dp and x1. The lower word of the value is
in the register dp and the higher word in x1. If the value returned is that of a structure/union, then dp and x1
are not used for returning from the function.

Accumulator is used for passing the first argument to __accpass qualified functions. Similarly, accumulator
is used to store the return value of __accpass qualified function.

8.10 STARTUP ROUTINE

The start up routine “$$start_up” is an assembly language routine containing stack and SFR initializations.
Control is passed to the main function from the start up routine by means of a jump instruction

j _main

The routine is present in a separate start up assembly source file. This file may be modified by the user to
include additional initializations. The start up object file may be added to long66.lib or float66.lib, or
directly specified while invoking RL66K.

Emulation Libraries

Page 155

9. EMULATION LIBRARIES

CC665S supports the data type long, float and double although the MSM66K “500” core and “500S”
core architectures do not support these data types. These data types are supported by using the floating
point and long emulation routines. These routines are provided in two library files float66.lib and
long66.lib. All arithmetic operations involving long, float and double data types are carried out with the
help of these routines. CC665S outputs a call instruction to the appropriate routine to perform the
arithmetic operation. Separate routines are provided for nX-8/500 and nX-8/500S. CC665S invokes the
appropriate nX-8/500 or nX-8/500S routine based on the core option specified in the command line.
These routines are provided for all the memory models, namely - Small, Effective medium, Medium,
Compact, Effective large and Large. Separate emulation routines are provided to be called from near, far
and large functions.

Following routines are stored in the emulation library:

1. Long multiplication

2. Signed long division

3. Unsigned long division

4. Signed long modulus

5. Unsigned long modulus

6. Signed integer division

7. Signed integer modulus

8. Float addition

9. Float subtraction

10. Float multiplication

CC665S Ver.2.01 User Guide

Page 156

11. Float division

12. Float comparison

13. Float negation

14. Double addition

15. Double subtraction

16. Double multiplication

17. Double division

18. Double comparison

19. Double negation

20. Long to float conversion

21. Unsigned long to float conversion

22. Long to double conversion

23. Unsigned long to double conversion

24. Float to long conversion

25. Double to long conversion

26. Float to double conversion

27. Double to float conversion

28. Indirect far call

29. Checkstack

Assembling And Linking The Compiler Output

Page 157

10. ASSEMBLING AND LINKING
THE COMPILER OUTPUT

CC665S creates as output an assembly file. In order to create an object file, the output from the compiler
should be assembled using the Re-locatable Assembler RAS66K. To invoke the assembler the following
command line should be used.

C:> RAS66K FILE <CR>

Where ‘FILE’ specifies the name of the output file created by the Compiler, CC665S. If more than one file
is compiled, then each of the output file should be assembled separately.

In ‘C’ language upper and lower case characters are different, so CC665S generates code that is case
sensitive. By default RAS66K does not differentiate upper and lower case characters, so in order to
differentiate uppercase and lowercase characters ‘/CD’ option should be specified in the command line of
RAS66K as shown below:

C:> RAS66K FILE /CD <CR>

The assembler produces as output an object file. In order to debug the C programs using CDB665S, the
compiler output should be assembled using the ‘/CC’ option as follows :

C:> RAS66K FILE /CC <CR>

This option informs the assembler to create the object file with necessary debugging information. This
option must be specified to RAS66K, only when the files are compiled with /SD option in CC665S.

CC665S Ver.2.01 User Guide

Page 158

The object files created by RAS66K can be linked using the Object Linker RL66K. The linker produces
as output an absolute object file.

To link the object programs, the following command line should be used :

C:> RL66K FILE1 FILE2,....,,/CC <CR>

where ‘FILE1 FILE2,...’ are the names of the input object files to RL66K. The /CC option informs
RL66K, that the inputs are files compiled by CC665S and assembled using RAS66K. Thus RL66K
would take appropriate steps to reserve space for the stack and to initialize the stack pointer.

The output assembly file created by CC665S makes use of routines, which are available in the libraries
‘float66.lib’ and ‘long66.lib’. RL66K searches these two library files to resolve the externals. The RL66K
searches these library files in standard directories specified by the environment variable LIB66K when
/CC option is specified. The environment variable can be set by the following command at the DOS
prompt.

C:> SET LIB66K=directory <CR>

Where ‘directory’ gives the name of the standard directory which will be used by RL66K to search the
library files.

In order to create absolute files with debugging information for CDB665S, the object files should be linked
using the /SD option as follows :

C:> RL66K FILE1 FILE2,....,,/CC /SD <CR>

This option informs the linker to create the absolute file with necessary debugging information.

Exit Codes

Page 159

11. EXIT CODES

CC665S, on termination passes the control to the operating system, while passing the control to the
operating system, CC665S returns a numeric value called exit code. The exit codes and the corresponding
exit status are listed below.

Exit codes Status
0 Normal end
1 Warnings Issued During Compilation
2 Errors Occurred During Compilation
3 Fatal Error Caused Termination

Exit code 0 (normal end) indicates that the compilation process was carried out till the end of the file
without generating any warnings or errors.

Exit code 1 (warnings) indicates that the compilation process was carried out till the end of the file and
warning messages were issued during compilation. There were no errors detected. The output file is
created.

Exit code 2 (Errors) indicates that the compilation process was carried out possibly till the end of the file
and error messages were generated during compilation. Warnings may or may not have occurred. The
output file is not created in this case.

Exit code 3 (Fatal) indicates that a fatal error has led to an abnormal termination of compilation. In this
case, output file is not created.

Error Messages

Page 161

12. ERROR MESSAGES

The error messages given by the compiler fall into three categories :

1. Fatal error messages
2. Error messages
3. Warnings.

The messages for each category are listed below in numerical order, with a brief explanation of each error.
All messages give the filename and the line number where the error occurred.

12.1 FATAL ERROR MESSAGES

A Fatal error message indicate a severe problem, one that prevents the compiler from processing the
program any further. After displaying the fatal error message, execution is terminated immediately. The
following fatal error messages are generated by CC665S :

12.1.1 Command Line

F0000 Source file not given

The source file for compilation was not given in the command line.

F0001 Invalid filename , ‘.C’ or ‘.H’ extension expected

The filename of the source file had extension other than ‘.C’ or ‘.H’ or ‘.c’ or ‘.h’.

F0002 Invalid command line option ‘option’

An invalid ‘option’ was specified in the command line.

CC665S Ver.2.01 User Guide

Page 162

F0003 Directory not specified with /I option

The include directory name was not specified with /I option.

F0004 Filename not specified with /CT option

The calltree filename was not specified with /CT option.

F0005 Type is not specified with /T option

DCL filename was not specified with /T option.

F0006 Constant not specified with /SS option

Stack size constant was not specified with /SS option.

F0007 Constant not specified with /SL option

Maximum identifier length was not specified with /SL option.

F0008 Macro is not specified with /D option.

Macro name was not specified with /D option.

F0009 Invalid constant for /SS option

An invalid constant or a nonconstant was specified with /SS option.

F0010 Invalid stack size.

The constant specified with /SS option must be an even number, in the range 2 - 65534,
inclusive of both.

F0011 Stack size should be even

Stack size specified with /SS option should be an even number.

F0012 Invalid constant for /SL option

An invalid constant or non-constant was specified with /SL option.

F0013 Invalid identifier length

The constant specified with /SL option was not in the range 31 - 254 inclusive of both.

F0014 Duplicate command line option ‘option’

The ‘option’ was specified more than once in the command line.

Error Messages

Page 163

F0015 Duplicate preprocessor option

Both the preprocessor options /LP and /PC were given in the command line.

F0016 Duplicate memory model option

More than one C memory model option was specified in the command line or more than one
mixed memory model option was specified.

F0017 Duplicate core option

Both the core options /nX500 and /nX500S were specified together.

F0018 Duplicate debugger option.

Both the debugger options /SD and /OSD were specified in the command line.

F0019 /CT and preprocessor options are mutually exclusive

The option /CT option was specified along with /LP or /PC options.

F0020 /LE and preprocessor options are mutually exclusive

The option /LE was specified along with /LP or /PC options.

F0021 /Fa and preprocessor options are mutually exclusive.

/Fa option was specified along with either /LP or /PC options.

F0022 /WIN and /AWIN options are mutually exclusive.

Both /WIN and /AWIN options were specified in the command line.

F0023 Illegal combination of optimization options.

The optimization options were used incorrectly.

F0024 Illegal combination of C and mixed memory model options.

Invalid combination of C and mixed memory model options was specified.

F0025 Type is not specified

One of the compulsory options /T was not specified.

F0026 Mixed memory model should be specified with C memory model.

A mixed memory model option was specified without specifying a C memory model option.

CC665S Ver.2.01 User Guide

Page 164

F0027 Insufficient memory

The compiler ran out of memory.

F0028 Unable to open input file ‘filename’

The given ‘filename’ either did not exist or could not be opened or was not found.

F0029 Unable to open output file

The compiler could not open the output file. This may be due to one of the following reasons :

∗ The file cannot be opened for lack of space.
∗ A read-only file with the same name as ‘filename’ already exists.
∗ The output file path or directory specified with /Fa option does not exist.

F0030 Unable to open list file

The compiler could not open the list file. This may be due to one of the following reasons:

∗ The file cannot be opened for lack of space.
∗ A read-only file with the same name as ‘filename’ already exists.

F0031 Unable to open calltree file

The compiler could not open the calltree file, due to similar reasons mentioned in error
F0030.

F0032 Error in accessing the input file

The compiler was unable to access the input file while compiling.

12.1.2 General

F1000 File close error

The compiler was unable to close input/output file. This error results due to insufficient disk
space.

F1001 Internal stack overflow

The processing of the source program has resulted in a overflow of the internal stack in the
compiler.

Error Messages

Page 165

F1002 Internal compiler error

A fault in internal functioning of CC665S.

F1003 Insufficient memory

The compiler ran out of memory.

F1004 Too many errors

The number of errors in the source program have exceeded the compiler maximum limit.

F1005 Floating point overflow

Possible overflow in floating point arithmetic.

F1006 Unable to read input file

The compiler was unable to read/access the input file during the compilation process.

F1007 Error in creating debug information file

The compiler could not create the debug information file, due to similar reasons mentioned in
error F0030.

12.1.3 Preprocessor

F2000 Bad preprocessor directive ‘string’

‘string’ specified after a ‘#’ is not a valid preprocessor directive.

F2001 Incomplete assembly block

Either the #asm directive was not terminated with a matching #endasm or the #pragma asm
directive was not terminated with a matching #pragma endasm.

F2002 Unexpected end of file

The end of the file was encountered unexpectedly.

F2003 Line number exceeds maximum value

Given source file is too big.

CC665S Ver.2.01 User Guide

Page 166

F2004 Too many nested ‘#ifxxxx’s

Maximum nesting levels for the directive #ifxxxx exceeded.

F2005 Unable to open include file ‘filename’

The given #include ‘filename’ either did not exist or could not be opened or was not found.

F2006 Integer constant expression expected

A constant expression must be specified with both ‘#if’ and ‘#elif’ directives.

F2007 Path exceeds maximum limit

File path specified in preprocessor directive ‘#include’ could have exceeded the maximum
limit.

F2008 ‘#if[n]def’ expected an identifier

An identifier must be specified with the ‘#ifdef’ or ‘#ifndef’ directive.

F2009 ‘#endif’ expected

Before terminating an ‘#if’, ‘#ifdef’ or ‘#ifndef’ directive with a ‘#endif’ directive, end of file
was found.

F2010 Parameter buffer overflow

Number of characters in the parameter in a macro could have exceeded the maximum limit.

F2011 Macro buffer overflow

Replacement token string in a macro definition could have exceeded the maximum limit.

F2012 Too many nested include files

Nested #include files exceeded the limit, possible recursion.

F2013 Internal buffer overflow

Macro expansion for a single identifier exceeded the compiler maximum limit.

Error Messages

Page 167

12.1.4 Lexical

F3000 String too long

Memory not sufficient to hold the complete string literal.

12.1.5 Syntax And Semantic

F4000 Struct/Union nesting too deep

The number of nesting levels of struct/union exceeded the compiler maximum limit.

F4001 Parser stack overflow

The processing of the source program has resulted in a overflow of the parser stack in the
compiler.

F4002 Too many nesting levels

The number of nesting levels of control statements (loops/switches/if) exceeded the compiler
maximum limit.

F4003 Automatic allocation exceeds 32k

Size of local (stack) variable heap exceeded the maximum limit.

F4004 Unexpected ‘token’

Encountered ‘token’ was used incorrectly.

F4005 Operand stack overflow

The processing of the source program has resulted in a overflow of the operand stack in the
compiler.

12.2 ERROR MESSAGES

12.2.1 Preprocessor

E2000 #error : ‘string’

The compiler has encountered #error directive and has displayed the given message ‘string’.

CC665S Ver.2.01 User Guide

Page 168

E2001 ‘##’ cannot occur at the beginning of a macro definition

A macro definition cannot begin with a token pasting operator (##), since a token pasting
operator requires two tokens, one before it and one after it.

E2002 Parameter expected after ‘#’

The token following a stringizing operator (#) must be a formal parameter.

E2003 Formal parameter missing after ‘#’

The token following a stringizing operator (#) must be a formal parameter.

E2004 Reuse of formal parameter ‘identifier’

The given identifier was used twice in the formal parameter list of a macro definition.

E2005 Invalid line number in ‘#line’ directive

The #line directive encountered a invalid line-number.

E2006 Unexpected in formal list ‘token’

The given ‘token’ was used incorrectly in the formal-parameter list of a macro definition.

E2007 Missing terminator ‘character’

Filename in ‘#include’ directive should be terminated by ‘>‘or ““.

E2008 Unexpected end of line

The end of line was encountered unexpectedly, in a macro definition.

E2009 ‘## cannot occur at the end of a macro definition

A macro definition cannot end with a token pasting operator (##), since a token pasting
operator requires two tokens, one before it and one after it.

E2010 ‘#define’ syntax

The syntax of the ‘#define’ directive was not correct.

E2011 ‘defined (identifier)’ expected

Incorrect use of ‘defined’ operator.

Error Messages

Page 169

E2012 ‘#include’ expected a file name, found ‘no token’

An #include directive did not specify the required filename specification.

E2013 Double quotes or angle brackets expected after ‘#include’

The #include directive expects a filename enclosed either in angle brackets (<>) or double
quotation marks (““).

E2014 ‘#line’ syntax

The syntax of the #line directive was not correct.

E2015 ‘#line’ expected a string as a file name

The #line directive did not specify the required filename specification.

E2016 Expected preprocessor command, found ‘character’

The given ‘character’ followed a number sign (#), but it was not the first letter of a
preprocessor directive.

E2017 ‘#undef’ expects an identifier

Macro name was not specified in the #undef directive.

12.2.2 Lexical

E3000 Empty Character constant

The illegal character constant ‘’ was used.

E3001 Too many characters in constant

A character constant containing more than one character or escape sequence was used.

E3002 Constant too big

Integral constant exceeded range.

E3003 Hex constant must have atleast one hex digit

An hexadecimal value after the characters ‘0x’ was missing.

CC665S Ver.2.01 User Guide

Page 170

E3004 Unmatched close comment ‘*/’

The compiler might have encountered the closing comment characters ‘*/’ before
encountering the opening comment characters ‘/*’.

E3005 Illegal escape sequence

The character(s) after ‘\’ did not form a valid escape sequence.

E3006 Bad octal number ‘token’

While enumerating an octal constant ‘8’/‘9’ could have been encountered.

E3007 Invalid character ‘character’

Encountered invalid character ‘character’.

E3008 Exponent value expected

Exponent was missing after specifying ‘e’/‘E’ in a floating-point number.

E3009 Newline in string

Unexpected end of line in string literal.

E3010 Newline in character literal

A newline character in a character literal.

12.2.3 Syntactic And Semantic

E4000 More than one storage class specifier

More than one storage class specifier was used in a single declaration statement.

E4001 Unknown size struct/union

An attempt was made to get the size of undefined structure or union.

E4002 Illegal combination of type specifiers

An illegal combination of type specifiers was used in a single declaration statement.

E4003 Function cannot return array

Return value of a function evaluates to an array.

Error Messages

Page 171

E4004 ‘void’ on variable

Void can be used only to declare pointer variables and functions. It can also come as a formal
parameter to a function.

E4005 Redefinition of formal parameter ‘identifier’

The given identifier was used twice in the formal parameter list of a function.

E4006 Nonaddress expression

Expression used in initializing an item neither reduce to an lvalue nor a constant.

E4007 Redefinition of variable ‘identifier’

The given identifier was defined more than once.

E4008 ‘identifier’ not in parameter list

A declaration was made for a formal parameter which was not in the formal parameter list.

E4009 Syntax error : ‘token’

The given ‘token’ caused a syntax error.

E4010 Unexpected ‘token’

Encountered ‘token’ unexpectedly.

E4011 Function cannot return function

Return value of a function evaluates to a function.

E4012 Array element type cannot be function

Array of functions are not allowed, but array of pointers to functions are allowed.

E4013 Redefinition of struct/union/enum tag ‘identifier’

The given ‘identifier’ has already been used for some other structure or union or enum tag.

E4014 Missing subscript

In the definition of an array with multiple subscripts, a subscript value for a dimension other
than the first dimension was missing.

CC665S Ver.2.01 User Guide

Page 172

E4015 Bit-field must be of type int or char

Bit-fields cannot have a type other than ‘int’ or ‘char’.

E4016 Bit-field cannot have a modified type

Bit fields inside a structure cannot be declared as a pointer or an array or a function.

E4017 Named bit-field cannot have size ‘0’

A named bit-field inside a structure has size 0. Only unnamed bit-fields can have a size 0.

E4018 Bit-field size out of range

The number of bits specified in the bit field declaration is not in the range of 0-16 inclusive of
both for integer bit fields or in the range 0-8 inclusive of both for character bit fields.

E4019 Struct/Union member redefinition ‘identifier’

The ‘identifier’ was used for more than one member of the same structure or of the same
union.

E4020 Unexpected constant

The given constant was used incorrectly.

E4021 Expected formal parameter list, not a type list

The function body has started after a function declaration statement. The function declaration
statement has only type list not formal parameter list.

E4022 Struct/Union too large

The size of structure/union variable exceeded 64k, the compiler limit.

E4023 Value out of range for enum constant

An enumeration constant had a value outside the range of values allowed for type int.

E4024 Cannot use address of automatic variables as static initializer

An attempt was made to initialize a static variable with the address of an automatic variable.
Only the address of global or static local or extern variables can be used to initialize static
local and global variables.

Error Messages

Page 173

E4025 Function cannot be a struct/union member

A structure or union member cannot be declared as a function.

E4026 ‘identifier’ uses unknown struct/union/enum

The identifier was declared as structure/union variable using an undefined structure/union.

E4027 Static function ‘identifier’ has no body

A function was declared as a static or inline function and also a call was made but the function
was not defined.

E4028 Negative subscript

A value defining an array size was negative.

E4029 Integral constant expression expected

An integral constant expression is expected.

E4030 ‘identifier’ already has a body

An attempt was made to define a function body for the function ‘identifier’, whose body has
been already defined.

E4031 Nonconstant initializer

An Initializer used a non-constant offset.

E4032 Undefined struct/union tag

The identifier was declared as structure/union variable using an undefined structure/union tag.

E4033 Left of ‘identifier’ has undefined struct/union

Left operand of ‘identifier’ or ‘->identifier’ is a struct/union name or a struct/union pointer
whose body is not defined.

E4034 Illegal initialization

The initilization expression was illegal.

E4035 Function cannot be initialized

An attempt was made to initialize a function.

CC665S Ver.2.01 User Guide

Page 174

E4036 Too many initializers

The number of initializers exceeded the number of objects to be initialized.

E4037 Array initialization needs curly braces

To initialize an array aggregate type, curly braces ({}) are necessary.

E4038 Struct/Union initialization needs curly braces

To initialize an aggregate type, such as struct/union, the initializers must be enclosed within
curly braces ({}).

E4039 Same type qualifier is used more than once

Same type qualifier could have appeared more than once in the same specifier list or qualifier
list in a declaration, either directly or via one or more typedefs.

E4040 ‘identifier’ typedef cannot be used for function definition

Typedef could have occurred in a function definition.

E4041 Invalid subscript

A value defining an array size was zero.

E4042 ‘qualifier’ can qualify functions only

An object that is not of type function, was qualified with either __nfar, __accpass, __noacc
or __interrupt.

E4043 Segment lost during conversion

An attempt was made to convert a far pointer to near pointer.

E4044 A far function cannot call near function

An attempt was made to call a near function from a far function.

E4045 Function specified in Cal pragma cannot be called from near/nfar functions

An attempt was made to call a function specified in Cal pragma, from a near or nfar function.

E4046 More than one ‘qualifier’ qualifier specified

On of the function qualifiers __accpass, __noacc or __interrupt was specified more that
once.

Error Messages

Page 175

E4047 Illegal combination of __accpass and __noacc

A function was qualified with both __accpass and __noacc.

E4048 Illegal combination of __far and __nfar

A function was qualified with both __far and __nfar.

E4049 Illegal combination of __far/__nfar and __interrupt

A function was qualified with __far or __nfar is also qualified with __interrupt.

12.2.4 Expression

E5000 Expression does not evaluate to a function

Operand could have been used like a function but is not a function.

E5001 ‘identifier’ is not a function

An attempt was made to define a function body for an ‘identifier’ which was not declared as
a function.

E5002 ‘identifier’ undefined

The given identifier was not defined before being used.

E5003 Subscript on non array

A subscript was used on a variable that was not an array.

E5004 ‘operator’ : illegal for struct/union

Structure and union type values are not allowed with the given ‘operator’.

E5005 Left of .‘identifier’ must have struct/union type

Left operand of ‘.’ operator should be a struct/union type.

E5006 ‘identifier’ is not struct/union member

Identifier to right of ‘.’ or ‘->’ operator is not a member of specified struct/union.

E5007 ‘operator’ needs lvalue

The given operator did not have lvalue operand.

CC665S Ver.2.01 User Guide

Page 176

E5008 Lval specifies ‘const’ object

Identifiers qualified by ‘const’ are non-modifiable as they reside in code memory (ROM).
Hence attempt to assign or modify a const specified operand is illegal.

E5009 ‘&’ on register variable

The ‘&’ on a register variable was illegal.

E5010 Left of ->‘identifier’ must have struct/union pointer

Left operand of ‘->’ operator should be a struct/union pointer.

E5011 Illegal indirection

The indirection operator (*) was applied to a non-pointer value.

E5012 ‘~’ : bad operand

The operand for the operator ‘~’ was illegal.

E5013 ‘!’ : bad operand

The operand for the operator ‘!’ was illegal.

E5014 ‘unary plus’ : bad operand

The operand for the unary plus was illegal.

E5015 ‘unary minus’ : bad operand

The operand for the unary minus was illegal.

E5016 ‘operator’ : bad left operand

The left operand for the specified operator was illegal.

E5017 ‘operator’ : bad right operand

The right operand for the specified operator was illegal.

E5018 Pointer ‘+’ non integral value

An attempt was made to add a non-integral value to a pointer.

E5019 ‘+’ : 2 pointers

An attempt was made to add two pointers.

Error Messages

Page 177

E5020 Pointer ‘-’ non integral value

An attempt was made to subtract a non-integral value from a pointer.

E5021 ‘=’ : left operand must be lvalue

Left operand of ‘=‘ should have lvalue

E5022 ‘&’ on bit-field

An attempt was made to take the address of a bit-field.

E5023 ‘identifier’ unknown size

Size of ‘identifier’ object was unknown.

E5024 Struct/Union comparison is illegal

Comparison of any two structure or union is not allowed. Individual members of structure or
union can be compared.

E5025 Non-integral index

A non-integral expression was used in an array subscript.

E5026 ‘operator’: incompatible types

An expression with operands that are not compatible for the operation was encountered, For
eg., expression with a pointer and a non-integral operand.

E5027 Illegal index, indirection not allowed

A subscript was applied to an expression that did not evaluate to a pointer.

E5028 Cast to function type is illegal

An object was cast to a function type.

E5029 Cast to array type is illegal

An object was cast to an array type.

E5030 Illegal cast

A type used in a cast operation was not a legal type.

E5031 Unknown size

Size of object was unknown.

CC665S Ver.2.01 User Guide

Page 178

E5032 Subscript too large

Subscript value exceeded 65535.

E5033 Size exceeds limit

The size of a object defined exceeds 65535.

E5034 ‘identifier’ size exceeds limit

Size of ‘identifier’ object exceeds 65535.

E5035 Cast to different memory

A code memory object was cast to a data memory object or vice-versa.

E5036 Indirection to different memory

Indirection was used in an expression to access values from different memory address
spaces.

E5037 Too few actual parameters

Actual parameters passed to a function could be less than number of parameters formally
specified.

E5038 Too many actual parameters

Actual parameters passed to a function could have exceeded number of parameters formally
specified.

E5039 Void function returning value

The function was defined to return no value with the ‘void’ keyword but the function returns
a value.

E5040 Illegal sizeof operand

A bit field could have been specified as an operand for sizeof operator.

E5041 ‘identifier’ : has bad storage class

The specified storage class cannot be used in the context. For example, the auto storage class
specifier cannot be used for variables declared at the external level.

E5042 Parameter has bad storage class

The specified storage class cannot be used in the context.

Error Messages

Page 179

12.2.5 Control Statements

E6000 Illegal break

A break statement is legal only when it appears within a ‘do’, ‘for’, ‘while’ or ‘switch’
statement.

E6001 Illegal continue

A continue statement is legal only when it appears within a ‘do’, ‘for’, or ‘while’ statement.

E6002 Label ‘identifier’ defined more than once

A label ‘identifier’ was defined more than once in a function.

E6003 Case ‘constant’ already given

The given case value was already used inside the switch statement.

E6004 More than one ‘default’

A switch statement contained more than one ‘default’ keyword.

E6005 Label not defined ‘identifier’

A label ‘identifier’ used with a ‘goto’ statement was not defined within a function.

E6006 ‘case’ without switch

The ‘case’ keyword can appear only within a switch statement.

E6007 ‘default’ without switch

The ‘default’ keyword can appear only with a switch statement.

E6008 Switch expression is not integral

A switch expression was non-integral

E6009 Controlling expression has type ‘void’

Conditional expression of a control statement evaluates to a ‘void’.

CC665S Ver.2.01 User Guide

Page 180

12.3 WARNING MESSAGES

12.3.1 Preprocessor

W2000 ‘#undef’ ignored for predefined macro ‘identifier’

An attempt might have been made to undef the predefined macro ‘identifier’.

W2001 Not enough arguments for macro ‘identifier’

The number of actual arguments specified with the given identifier was less than the number of
formal parameters given in macro definition of the identifier.

W2002 ‘#define’ ignored for predefined macro ‘macroname’

An attempt might have been made to install predefined ‘macroname’ as a macro.

W2003 Close bracket expected

Missing ‘)’ in a macro definition or in macro call.

W2004 Unexpected characters following directive ‘directive’

Extra characters found after processing a preprocessor directive.

W2005 Redefinition of macro ‘identifier’

The given identifier was redefined.

W2006 Comma separator missing

The formal parameters list in a macro definition must be separated by commas.

W2007 Argument expected before ‘character’

An argument was expected in macro call

W2008 Extra arguments ignored for macro ‘macroname’

The number of actual arguments specified with the given macroname was greater than the
number of formal parameters given in macro definition of the identifier.

W2009 Expected an identifier, found no token

Expecting a valid identifier.

Error Messages

Page 181

12.3.2 Lexical

W3000 Identifier truncated to ‘identifier’

The maximum length of an identifier depends upon the value speciefied in /SL option. If /SL
option is not specified, maximum of 31 characters are allowed for an identifier. The identifier
is truncated to maximum length allowed and extra characters are ignored.

W3001 String too long, truncated

The length of the string exceeded 1023 characters.

12.3.3 Syntactic And Semantic

W4000 Auto/Register ignored for global variables

An attempt was made to declare global variable with auto/register storage class.

W4001 Formal parameters ignored

The function was declared to take no arguments. But the function definition contains formal
parameter declarations, or arguments were given in a call to the function.

W4002 ‘const’ ignored on argument

Since function formal parameters are allocated in stack, ‘const’ is ignored on formal
parameter.

W4003 Second parameter list is longer than first

A function was declared more than once with the argument type list in the second declaration
longer than the argument type list in the first declaration.

W4004 First parameter list is longer than second

A function was declared more than once with the argument type list in the first declaration
longer than the argument type list in the second declaration.

W4005 ‘const’ ignored for struct/union member ‘identifier’

‘const’ qualified variables are not allowed in struct/union.

CC665S Ver.2.01 User Guide

Page 182

W4006 Function was declared with formal parameter list

The function was declared to take arguments. But the function definition contains no formal
parameter declarations, or no arguments were given in a call to the function.

W4007 ‘identifier’ : array bound overflows

Too many initializer were present for the array. The excess initializers are ignored.

W4008 Parameter number declaration different

Type of parameter declaration in prototype could be different from formal declaration.

W4009 Declared subscripts for arrays different

Two operands to an operation are arrays whose declared subscripts could be different.

W4010 Function was declared with variable arguments

There was a parameter(s) mismatch between prototype and actual definition of a function.

W4011 Function was not declared with variable arguments

There was a parameter(s) mismatch between prototype and actual definition of a function.

W4012 ‘const’ ignored on local variable ‘identifier’

All ‘const’ qualified variables are allocated in the code memory. But local variables are
allocated in stack, hence, ‘const’ is ignored on local variables.

W4013 No declaration specifiers ; ‘int’ assumed

The variable was declared without any declaration specifiers. Type specifier ‘int’ is assumed
for the variable.

W4014 Sign information ignored for bit field

A bit field member was decalared as signed.

W4015 memory attribute on cast ignored

The memory qualifier in the cast expression is qualiying a non-pointer object.

Error Messages

Page 183

W4016 const object modified

An object qualified with const has been modified under /WIN option.

W4017 __far ignored on struct/union member ‘identifier’

‘__far’ qualified variables are not allowed in struct/union.

W4018 __far ignored on local variable ‘identifier’

Since local variables are allocated in stack, they cannot be qualified with __far.

W4019 __far ignored on argument variable ‘identifier’

Since arguments are allocated in stack, they cannot be qualified with __far.

W4020 __far not allowed for memory type memory

The mixed memory model option specified in the command line or assumed by the compiler
does not support far code memory or far data memory.

W4021 __far/__nfar functions not allowed

The mixed memory model option specified or assumed does not support __far/__nfar
functions.

W4022 Indirection to different types

Pointers used in the expression were pointing to different memory (Pointer size mismatch).

W4023 __far/__nfar ignored for ‘main’

Function ‘main’ was qualified with __far/__nfar.

W4024 __accpass/__noacc ignored for ‘main’

Function ‘main’ was qualified with __accpass/__noacc.

W4025 __interrupt ignored for ‘main’

Function ‘main’ was qualified with __interrupt.

W4026 Missing return value for function ‘function name’

The function was declared to return a value, but returns without one.

CC665S Ver.2.01 User Guide

Page 184

W4027 ‘function name’ : no return value

The function ‘name’ was declared to return a value, but in one of the path, no return statement
was found.

12.3.4 Expression

W5000 ‘identifier’ function used as an argument

An attempt was made to pass function as an argument.

W5001 Function used as an argument

A formal parameter to a function was declared to be a function, which is not allowed. The
formal parameter is converted to a function pointer.

W5002 ‘operator’ : different levels of indirection

An expression had inconsistent levels of indirection.

W5003 Atleast one void operand

An expression with type ‘void’ was used as an operand.

W5004 ‘&’ on array ignored

An attempt was made to apply the address of operator (&) to an array.

W5005 Constant too large, converted to ‘int’

The constant specified in the case statement, exceeded the maximum integer value.

W5006 Division by zero

The second operand in a division operation (/) evaluated to zero. Hence it was converted to
one.

W5007 Mod by zero

The second operand in a remainder operation (%) evaluated to zero. Hence it was converted
to one.

W5008 ‘operator’ : indirection to different types

The indirection operator (*) was used in an expression to access values of different types.

Error Messages

Page 185

W5009 Function Parameter lists differed

The type of the formal parameter did not agree with corresponding type in the function
declaration (prototype).

W5010 Far pointer truncated to ‘int’

A pointer was assigned to an integer variable in large data or large code memory model. The
segment address is lost.

W5011 Near pointer converted to ‘long’

A pointer was assigned to a long variable in small code or small data memory model. The
segment address is made zero.

W5012 Parameter mismatch, actual parameter converted

Type in actual parameter declaration was different from formal parameter declaration.
Appropriate conversions are performed.

12.3.5 Pragmas

W8000 Expected a pragma keyword, found no token

A valid pragma keyword was expected after the preprocessor directive ‘#pragma’, found no
token.

W8001 Unknown pragma ‘token’

An invalid keyword was specified with the preprocessor directive ‘#pragma’.

W8002 ‘main’ cannot be specified in ‘pragma keyword’ pragma.

Function ‘main’ was specified in pragma ‘pragma keyword’. It may be specified only in
pragma Usinginpage.

W8003 ‘pragma keyword’ pragma variables should be global or static local

The specified variable was neither a global variable nor a static local variable.

CC665S Ver.2.01 User Guide

Page 186

W8004 Vector address out of range for pragma ‘pragma keyword’

The vector address specified in either Interrupt, Intvect or Vcal pragma was out of range.

The valid range of vector addresses are as follows :

Interrupt - 0x8 to 0xfffe
Intvect - 0x8 to 0xfffe
Vcal - 0x4a to 0x68

W8005 Expected even vector address, for pragma ‘pragma keyword’

An odd vector address was specified in either Interrupt, Intvect or Vcal pragma.

W8006 More than one function for the same vector address

Two different functions were specified with same vector address in pragma Interrupt, Intvect
or Vcal.

W8007 Pragma argument delimiter ‘,’ expected

The pragma argument delimiter ‘,’ (comma) was expected, as /PF option was specified in the
command line.

W8008 Pragma must appear before function definition

Functions specified in a pragma should not have its body defined before the occurrence of the
pragma. This warning message was issued for Interrupt, Intvect, Vcal or Usinginpage when
the specified function was already defined prior to the pragma directive.

W8009 Interrupt function has parameter/return value

Functions specified in pragma Interrupt/Intvect either has parameters or returns a value or
both.

W8010 ‘pragma keyword’ address exceeds range

The address specified either in absolute or sfr pragma was out of range. The valid range of
addresses are as follows

The valid range of vector addresses are as follows :

Absolute (code) - 0x0 to 0xffff
Absolute (data) - 0x0 to 0xffff
Sfr - 0x0 to 0x1ff

Error Messages

Page 187

W8011 Pragma must appear before variable initialization.

The variable specified in pragma was initialized prior to the pragma directive.

W8012 Duplicate pragma ‘pragma keyword’

Pragma ‘pragma keyword’ was specified more than once. This warning message is issued
for Stacksize pragma when it is specified more than once in a source file.

W8013 Specified stack size out of range

The constant specified in pragma stacksize was out of range. The valid range of stack size is
an even number between 0x2and 0xfffe inclusive of both.

W8014 Expected even number as stack size

Size specified with pragma Stacksize was not an even number.

W8015 More than one pragma specified for variable ‘variable’

‘variable’ was specified in more than one pragma.

W8016 Different page numbers for the same segment ‘segment name’

Two different page numbers were specified for a segment ‘segment name’ in two different
instances of pragma Inpage or Sbainpage.

W8017 ‘pragma keyword’ pragma expects function name

The specified symbol was not a function. Interrupt, Intvect, Vcal, Acal, Cal, and Usinginpage
pragma expects a function name to be specified.

W8018 Page number out of range

Page number specified in pragma Inpage or Sbainpage was out of range. The valid range of
the page number is from 0 to 255 inclusive of both.

W8019 ‘Window’ pragma ignored

The window pragma which is not supported was ignored.

W8020 Pragma keyword expected, found no token

No token was found after ‘# pragma’.

W8021 Unexpected characters following pragma ‘pragma keyword’

Unexpected characters was found after a valid pragma ‘pragma keyword’

CC665S Ver.2.01 User Guide

Page 188

W8022 Function cannot be specified in pragma ‘pragma keyword’

Variable declared as a function was specified in pragma ‘pragma keyword’.

W8023 Enum constants are not allowed in pragma.

An enum constant was specified in pragma directive.

W8024 ‘Absolute/Sfr’ address leads to odd boundary access

This warning message is issued due to one of the following reasons:

∗ An odd address was specified for an initialized variable
∗ An odd address outside SFR region was specified for uninitialized variables of type other

than char and array of char

W8025 Invalid ‘Absolute’ address for the variable ‘token’

The Absolute address specified in the pragma Absolute for the variable ‘token’ excceded
0xffff.

W8026 ‘__interrupt’ qualified function cannot be specified in pragma ‘pragma keyword’

An ‘__interrupt’ qualified function was specified in pragma ‘pragma keyword’. A function
qualified by ‘__interrupt’ may be specified only in Interrupt, Intvect and Usinginpage
pragmas.

W8027 Interrupt function ‘function name’ used in expression

Function ‘function name’ specified in Interrupt/Intvect pragma was used in an expression.
Functions specified in these pragmas should not be called directly or indirectly in a ‘C’
program.

W8028 Constant expected, found no token

A constant was expected in the #pragma directive, but found no token

W8029 Constant expected, found ‘token’

A constant was expected in the #pragma directive, but found ‘token’.

W8030 ‘Common’ pragma ignored

The common pragma which is not supported, was ignored.

W8031 Pragma syntax error

The specified ‘#pragma’ syntax was not recognized by CC665S.

Error Messages

Page 189

W8032 ‘segment name’ cannot be specified along with far segments in ‘Group’ pragma

An attempt was made to mix near segments and far segments in pragma Group.

W8033 Variable ‘token’ specified in pragma not declared

Variable specified in a pragma was not declared in the file. All the variables specified in
pragma should be declared in the file.

W8034 Identifier or constant expected for pragma, found no token

An identifier or constant was expected in the #pragma directive, but found no token.

W8035 Identifier or constant expected for pragma, found ‘token’

An identifier or constant was expected in the #pragma directive, but found ‘token’.

W8036 Group segment ‘segment name’ not in pragma ‘Inpage/sbainpage’

The segment ‘segment name’ specified in pragma group was not specified in pragma
Inpage/Sbainpage prior to this Group directive.

W8037 Close bracket expected, found no token

A close bracket was expected in the ‘# pragma’ directive, but found no token.

W8038 Close bracket expected, found ‘token’

A close bracket was expected in the ‘# pragma’ directive, but found ‘token’.

W8039 Identifier expected for pragma, found no token

An identifier was expected in the ‘# pragma’ directive, but found no token.

W8040 Identifier expected for pragma, found ‘token’

An identifier was expected in the ‘# pragma’ directive, but found ‘token’.

W8041 ‘const’ variables cannot be specified in ‘pragma keyword’ pragma

A ‘const’ qualified variable was specified in pragma ‘pragma keyword’. ‘const’ qualified
variables may be specified only in pragma Romwindow and Absolute.

W8042 Unexpected ‘Endasm’ pragma ignored

‘Endasm’ pragma was specified without its correponding Asm pragma.

CC665S Ver.2.01 User Guide

Page 190

W8043 Expected an identifier or ‘-lrb’ option, found no token

An identifier or ‘-lrb’ option was expected after pragma keyword Usinginpage, but found no
token.

W8044 Expected an identifier or ‘-lrb’ option, found ‘token’

An identifier or ‘-lrb’ option was expected after pragma keyword Usinginpage, but found
‘token’.

W8045 Identifier or constant expected for pragma, found ‘,’

An Identifier or constant was expected in the ‘# pragma’ directive, but found ‘,’.

W8046 Segment number exceeds range

The specified segment number was not in the range 0 to 255 inclusive of both.

W8047 ‘Romwindow’ variables should be qualified with ‘const’

Variable specified in pragma Romwindow was not qualified with ‘const’.

W8048 ‘Commonvar’ pragma can be specified only for large data memory models

The source file was not compiled in memory model options that support large data.

W8049 Expected ‘__interrupt’ qualified function for ‘Intvect’ pragma

The function specified in Intvect pragma was not qualified with ‘__interrupt’.

W8050 Invalid ‘Sfr’ address for the variable ‘token’

The address specified in Sfr pragma was not in sfr area. The address should be in the range
0x0 to 0x1ff.

W8051 Segment ‘segment name’ specified in ‘Group’ pragma is not defined

The variables specified in the segment ‘segment name’ was not declared in the source file. A
segment is defined only when a variable specified in that segment is declared in the source file.

W8052 Segment should be 0 for ‘near’ variables

A non-zero segment was specified for near variables.

Error Messages

Page 191

W8053 Segment ‘segment name’ not defined in ‘Inpage/sbainpage’ pragma

The segment ‘sement name’ specified in Usinginpage pragma was not defined in Inpage or
Sbainpage pragma prior to this directive.

W8054 Page ‘pageno’ not specified in ‘Inpage/sbainpage’ pragma

The page number ‘pageno’ specified in Usinginpage pragma was not defined in Inpage or
Sbainpage pragma prior to this directive.

W8055 Segment ‘segment name’ already specified in ‘Inpage/sbainpage’ pragma

The segment ‘segment name’ specified in Inpage pragma was already specified in
Sbainpage pragma or the segment ‘segment_name’ specified in Sbainpage pragma was
already specified in Inpage pragma.

W8056 ‘Absolute’ pragma expects segment address for ef-near/ef-xnear variables

Segment was not specified for effective-near/effective-xnear variable in absolute pragma.

W8057 Far/nfar functions cannot be specified in pragma ‘pragma keyword’

A far/nfar function was specified in pragma ‘pragma keyword’. Functions qualified with
__far/__nfar cannot be specified in Interrupt, Intvect and Vcal pragmas.

W8058 Far variable cannot be specified in pragma ‘pragma keywords’

A far variable was specified in pragma ‘pragma keyword’. Variables qualified with __far
cannot be specified in Fix, Sbafix, Dual, Edata and Commonvar pragmas.

W8059 ‘function name’ specified in ‘Acal’ pragma is not near, static far or static large function

The function specified in Acal pragma was not near, static far or static large function.

W8060 ‘function name’ specified in ‘Cal’ pragma is not static far or static large function

The function specified in Cal pragma should be static far or static large function.

W8061 Illegal combination of near and static far functions in ‘Acal’ pragma

Near and static far functions cannot be specified in the same Acal pragma.

W8062 Illegal combination of near and far variables in pragma ‘pragma keyword’

Near and far variables cannot be specified in same Inpage or Sbainpage pragma.

CC665S Ver.2.01 User Guide

Page 192

W8063 Identifier expected for pragma, but found ‘,’

An identifier was expected in the ‘# pragma’ directive, but found ‘,’.

W8064 Constant expected for pragma, found ‘,’

A constant was expected in the ‘# pragma’ directive, but found ‘,’.

W8065 ‘function name’ specified in ‘Inline’ pragma is not expanded.

The function ‘function name’ specified in inline pragma was not expanded, may be due to
one of the following reasons:

∗ The inline function was recursive.
∗ Jumps, labels or loops may be present
∗ Function was too big to expand.
∗ Function contained variable number of arguments
∗ Function body contained ASM block
∗ Function definition preceeded pragma declaration

Part2.
CC665S Ver.2.01
Language Reference

Table Of Contents

Table Of Contents

1. PREPROCESSOR..1

1.1 INTRODUCTION..1

1.2 TRANSLATION PHASES ...1
1.2.1 Trigraph sequences..2
1.2.2 Line Splicing..3

1.3 MACROS...3
1.3.1 Introduction...3
1.3.2 Macro Definition...3

1.4 MACRO EXPANSION..6
1.4.1 Expansion Of Macros Without Parameters...6
1.4.2 Expansion Of Macros With Parameters ...7

1.5 MACRO REMOVAL ...9

1.6 REDEFINITION OF MACROS...10

1.7 FILE INCLUSION ...11
1.7.1 Introduction...11
1.7.2 Include File Specification Using Double Quotation Marks...11
1.7.3 Include File Specification Using Angle Brackets ...12
1.7.4 Macros In Include Directive...12

1.8 CONDITIONAL COMPILATION ..13
1.8.1 Introduction...13
1.8.2 Conditional Compilation Directives ..13
1.8.3 Restricted Constant Expression..15
1.8.4 defined Operator...16
1.8.5 Nesting ...17
1.8.6 Testing Symbol Definition With #ifdef and #ifndef...17

1.9 LINE...18

1.10 ERROR...19

1.11 MIXED LANGUAGE PROGRAMMING..20

1.12 PREDEFINED MACROS...20

CC665S Ver.2.01 Language Reference

2. LEXICAL CONVENTIONS.. 25

2.1 CHARACTER SET .. 25

2.2 TOKENS.. 26
2.2.1 Identifiers.. 26
2.2.2 Keywords .. 26
2.2.3 Comments .. 27
2.2.4 Constants ... 27
2.2.5 Operators... 32

3. PROGRAM STRUCTURE... 33

3.1 SOURCE PROGRAM.. 33

3.2 SOURCE FILES... 34

3.3 FUNCTIONS AND PROGRAM EXECUTION.. 35

3.4 LIFETIME AND VISIBILITY.. 35
3.4.1 Blocks.. 35
3.4.2 Lifetime .. 36
3.4.3 Visibility.. 36

3.5 NAMING CLASSES ... 36

4. DECLARATIONS.. 39

4.1 INTRODUCTION.. 39

4.2 TYPE SPECIFIERS.. 40

4.3 TYPE QUALIFIERS .. 41

4.4 DECLARATORS ... 43
4.4.1 Memory Model Qualifiers ... 44
4.4.2 Function Qualifiers.. 46
4.4.3 Interpreting Declarations ... 47

4.5 VARIABLE DECLARATIONS.. 49
4.5.1 Simple Variable Declarations... 49
4.5.2 Structure Declarations... 50
4.5.3 Union Declarations.. 53
4.5.4 Enumeration Declarations.. 54
4.5.5 Array Declarations.. 56
4.5.6 Pointer Declarations.. 57

Table Of Contents

4.6 FUNCTION DECLARATIONS AND PROTOTYPES..59
4.6.1 Formal Parameters ..59
4.6.2 Return Type..60
4.6.3 List Of Formal Parameters...60
4.6.4 Memory Model Qualifiers For Functions..61
4.6.5 Function Qualifiers For Functions...62

4.7 STORAGE CLASS SPECIFIERS...62
4.7.1 Variable Declarations At The External Level ..63
4.7.2 Variable Declarations At The Internal Level ...65
4.7.3 Function Declarations At The Internal And External Levels...67

4.8 INITIALIZATION..67
4.8.1 Fundamental And Pointer Types..68
4.8.2 Aggregate Types ...69
4.8.3 String Initializers ..70

4.9 TYPE DECLARATION..71
4.9.1 Structure And Union Types ...71
4.9.2 Typedef Declarations...72

4.10 TYPE NAMES..73

4.11 FUNCTIONS ...73
4.11.1 Function Definitions ...74
4.11.2 Function Prototypes ..77
4.11.3 Function Calls ...77

4.12 ASM DECLARATION...79

5. EXPRESSIONS AND OPERATORS...81

5.1 OPERATORS ...81

5.2 LVALUES AND RVALUES...83

5.3 CONVERSIONS..84
5.3.1 Integral Promotion...84
5.3.2 Arithmetic Conversions..84
5.3.3 Pointer Conversions ..85

5.4 PRIMARY EXPRESSIONS AND OPERATORS ..85
5.4.1 Identifiers ..85
5.4.2 Constants..85
5.4.3 Strings...86
5.4.4 Parenthesized Expression...86

CC665S Ver.2.01 Language Reference

5.5. ARRAY REFERENCES.. 86

5.6 FUNCTION CALLS.. 87

5.7 STRUCTURE AND UNION REFERENCES .. 88

5.8 POST INCREMENT.. 90

5.9 POST DECREMENT... 90

5.10 PRE INCREMENT... 91

5.11 PRE DECREMENT.. 91

5.12 ADDRESS OPERATOR.. 92

5.13 INDIRECTION OPERATOR... 92

5.14 UNARY PLUS OPERATOR.. 93

5.15 UNARY MINUS OPERATOR.. 93

5.16 ONE’S COMPLEMENT OPERATOR.. 94

5.17 LOGICAL NOT OPERATOR.. 94

5.18 SIZEOF OPERATOR... 95

5.19 CAST OPERATOR.. 96

5.20 MULTIPLICATIVE OPERATORS.. 97

5.21 ADDITIVE OPERATORS.. 97

5.22 SHIFT OPERATORS... 98

5.23 RELATIONAL OPERATORS ... 99

5.24 EQUALITY OPERATORS .. 100

5.25 BITWISE AND OPERATOR... 101

5.26 BITWISE EXCLUSIVE OR OPERATOR.. 102

5.27 BITWISE OR OPERATOR.. 102

5.28 LOGICAL AND OPERATOR... 102

5.29 LOGICAL OR OPERATOR.. 103

5.30 CONDITIONAL EXPRESSION AND OPERATORS .. 103

Table Of Contents

5.31 ASSIGNMENT EXPRESSIONS AND OPERATORS ..105

5.32 COMMA EXPRESSION AND OPERATOR...106

5.33 CONSTANT EXPRESSIONS..106

6. STATEMENTS...109

6.1 INTRODUCTION..109

6.2 LABELED STATEMENT...109

6.3 EXPRESSION STATEMENT..110

6.4 COMPOUND STATEMENT...111

6.5 SELECTION STATEMENTS...112
6.5.1 if Statement ...112
6.5.2 switch Statement ...113

6.6 ITERATION STATEMENTS ...115
6.6.1 for Statement...115
6.6.2 while Statement ...116
6.6.3 do Statement ...116

6.7 JUMP STATEMENTS..117
6.7.1 goto Statement ..117
6.7.2 break Statement ..118
6.7.3 continue Statement ..118
6.7.4 return Statement ..119

6.8 ASM STATEMENTS ...120

7. VARIATIONS FROM ANSI STANDARD..121

Preprocessor

Page 1

1. PREPROCESSOR

1.1 INTRODUCTION

CC665S may be invoked with /LP or /PC option so as to process text without compiling. CC665S
behaves like a text processor that manipulates the text of a source file, when invoked with /LP or /PC
option.

Preprocessor performs the following functions

1. Macro substitution
2. Conditional compilation
3. File inclusion
4. Line control
5. Error generation
6. Mixed Language programming
7. Other implementation dependent actions(Using pragmas).
8. Trigraph Sequences replacement.

Lines beginning with a #, perhaps preceded by white space, communicate with the preprocessor. The
syntax of these lines is independent of the rest of the language. Line boundaries are significant. End of file
must not occur in a preprocessor directive line. Preprocessor directives may appear anywhere in a file.
However, they apply only to the remaining part of the source file in which they appear.

1.2 TRANSLATION PHASES

Preprocessing will be performed by the following four translation phases in the given order:

1. Trigraph sequences are replaced by the corresponding single-character internal representations.

CC665S Ver.2.01 Language Reference

Page 2

2. Each instance of a new-line character and an immediately preceding backslash character is
deleted, splicing physical source lines to form logical source lines.

3. The source file is decomposed into preprocessing tokens and sequences of white-space
characters (including comments).

4. Preprocessing directives are executed and macro invocations are expanded. A #include
preprocessing directive causes the named headers or source file to be processed from phase 1 to
phase 4, recursively.

1.2.1 Trigraph sequences

All occurrences in a source file of the following sequences of three characters (called trigraph sequences)
are replaced with the corresponding single character.

Trigraph Sequence Replacement character

??= #
??([
??/ \
??)]
??’ ^
??< {
??! |
??> }
??- ~

Each ‘?’ that does not begin one of the trigraphs listed above is not changed.

Example 1.1

INPUT:

main ()
??<
??>

OUTPUT:

main ()
{
}

Preprocessor

Page 3

1.2.2 Line Splicing

A new line character and an immediately preceding backslash character are deleted, and line following the
new-line character is considered as continuation of the previous line.

1.3 MACROS

1.3.1 Introduction

Macro is a facility that enables user to assign a symbolic name to a sequence of tokens. The symbolic name
can then be used in the source file to represent the sequence of tokens.

The following two preprocessor directives facilitate in macro definition and deletion.

a) #define
b) #undef

Macro expansion is a text processing function that replaces the macro name with the corresponding token
sequences.

Parameters may also be defined to represent arguments passed to the macro. The replacement text of a
macro with arguments may vary for different calls. The following two special operators influence the
replacement process.

a) stringizing (#)

b) token pasting (##).

1.3.2 Macro Definition

1.3.2.1 Defining Macros Without Parameters

Syntax :

define identifier token_sequence

The #define directive causes the preprocessor to replace subsequent occurrences of the identifier with the
given sequence of tokens.

Leading and trailing white spaces around the token sequence are discarded.

CC665S Ver.2.01 Language Reference

Page 4

The macro name must be a valid ‘C’ identifier. The token sequence represents the replacement text.

Example 1.2

define ABC 1 + 2

MACRO CALL REPLACEMENT TEXT

ABC + 3 1 + 2 + 3
fn(ABC) fn(1 + 2)

1.3.2.2 Defining Macros With Parameters

Syntax :

define identifier([parameter_list]) token_sequence

A macro definition is assumed to have parameters when there is no space between the identifier and the
open parenthesis ‘(’.

The parameter list is optional. If present, it consists of one or more parameters. The parameter list must be
enclosed within parentheses. Each parameter must be an unique identifier in the parameter list. Adjacent
parameters are separated by a comma.

Parameters appear in the token sequence to mark the places where arguments must be substituted.
However, the same parameter may occur more than once in the token sequence.

Leading and trailing white spaces around the token sequence are discarded.

Example 1.3

define ABC(x,y) x + y

MACRO CALL REPLACEMENT TEXT

ABC (1,2) 1 + 2
ABC (2,x) 2 + x

1.3.2.3 Operators In Macro Processing

1.3.2.3.1 Stringizer

Operator symbol : #

Syntax :

parameter

Preprocessor

Page 5

The stringizer is used only in macros defined with parameters. It may occur in the token sequence. A
parameter must follow the stringizer.

During expansion, the argument is enclosed within quotation marks and treated as a string literal.

A \ character is inserted before each “ and \ character of a character constant or string literal (including the
delimiting “ characters).

Example 1.4

define A(b) #b
define X(y) (#y “\n”)

MACRO CALL REPLACEMENT TEXT

A(1) “1”
X(abc) (“abc” “\n”)
A(“a\c”) “\”a\\c\””
A(“abcde\n”) “\”abcde\\n\””

1.3.2.3.2 Token Paster

Operator symbol : ##

Syntax :

token ## token

Token paster is used in macros defined with or without parameters.

Token paster operator concatenates adjacent tokens, deleting white space between them, to form a new
token.

Token paster cannot occur at the beginning and end of the token sequence.

Example 1.5

define A(b,c) b ## c
define X(a) a ## 1
define Y(a) 1 ## a
define ONE 12 ##4

MACRO CALL REPLACEMENT TEXT

A(1,2) 12
X(34) 341
Y(43) 143
ONE 124

CC665S Ver.2.01 Language Reference

Page 6

1.4 MACRO EXPANSION

1.4.1 Expansion Of Macros Without Parameters

The subsequent instances of the identifier, defined as a macro without parameters, causes the
preprocessor to replace the instances of the identifier with the given sequence of tokens.

Example 1.6

define ONE 1
define TWO 2

MACRO CALL REPLACEMENT TEXT

x = ONE + TWO + ONE x = 1 + 2 + 1

The replaced token sequence is repeatedly rescanned for more defined identifiers.

Example 1.7

define ONE THREE
define TWO 2
define THREE 3

MACRO CALL REPLACEMENT TEXT

x = ONE + TWO + THREE x = 3 + 2 + 3

A replaced identifier is not replaced if it turns up again during rescanning. Instead it is left unchanged to
avoid recursion.

Example 1.8

define ONE TWO
define TWO THREE
define THREE TWO

MACRO CALL REPLACEMENT TEXT

x = ONE + TWO + THREE x = TWO + TWO + THREE

During expansion, each collection of white spaces is replaced by a single blank.

Preprocessor

Page 7

Example 1.9

define ABCD a + b + c+d
define XYZ a/* abcde */+ 2

MACRO CALL REPLACEMENT TEXT

ABCD a + b + c+d
XYZ a + 2

The macro identifiers within quotation marks are not considered as a macro call.

Example 1.10

define ONE 1

MACRO CALL REPLACEMENT TEXT

“ONE” “ONE”

1.4.2 Expansion Of Macros With Parameters

Identifiers defined as a macro with parameters may be called by writing

identifier[white space]([actual_argument_list])

Example 1.11

define ADD(a,b) a + b
define MUL(a,b) (a * b)

MACRO CALL REPLACEMENT TEXT

x=MUL(23,43) - ADD(12,400) x=(23 * 43) - 12 + 400

ARGUMENTS OF MACRO CALL

The arguments of a call are comma separated token sequence. Commas that are enclosed within quotes or
parentheses do not separate arguments.

The number of arguments in the call must match the number of parameters in the definition.

Leading and trailing spaces in each argument are discarded.

Collection of white spaces within an argument is replaced by a blank.

The arguments may run through more than one line.

CC665S Ver.2.01 Language Reference

Page 8

Example 1.12

define ADD(a,b) a + b
define MUL(a,b) (a * b)

MACRO CALL REPLACEMENT TEXT

ADD(1,2) 1 + 2
MUL(12,2) (12 * 2)
ADD(xxx(1,2),3) xxx(1,2) + 3
ADD(1 + 2,3) 1 + 2 + 3
ADD (11,3) 11 + 3
ADD (12345 +
678, 9) 12345 + 678 + 9

The tokens in the arguments are examined for macro calls, and expanded as necessary, before expanding
the call. However, if the argument is preceded by #, or preceded or followed by ##, the outer call is
expanded first.

Example 1.13

define ADD(a,b) a + b
define MUL(a,b) (a * b)

MACRO CALL REPLACEMENT TEXT

ADD(MUL(1,2),3) (1 * 2) + 3
MUL(MUL(ADD(1,2),3),4) ((1 + 2 * 3) * 4)

If the parameter in the replacement sequence is preceded by #, the argument tokens are not examined for
macro calls.

Example 1.14

define ONE(a) #a
define TWO(a,b) (a * b)

MACRO CALL REPLACEMENT TEXT

ONE (TWO (1,2)) “TWO (1,2)”

If the parameter in the replacement sequence is preceded or followed by a ##, the tokens in the argument
tokens are not examined for macro calls.

Example 1.15

define CAT(a,b) a ## b

MACRO CALL REPLACEMENT TEXT

CAT (CAT(1,2),3) CAT(1,2)3

Preprocessor

Page 9

In the above example, the presence of ## prevents the arguments of the outer call from being expanded
first. Hence the expansion of outer call results in CAT(1,2)3. The identifier CAT in the replacement text is
not expanded, since it turns up again.

Example 1.16

define CAT(a,b) a ## b
define TWO(a,b) (a + b)

MACRO CALL REPLACEMENT TEXT

CAT (TWO(1,2),3) (1 + 2)3

In the above example, the identifier CAT is expanded first, before the expansion of the arguments and the
result is (1+2)3. The identifier TWO in the replacement text is expanded as it has not been expanded
already.

Example 1.17

define CAT(a,b) a ## b
define XCAT(a,b) CAT(a,b)

MACRO CALL REPLACEMENT TEXT

XCAT(XCAT(1,2),3) 123

In the above example, the token sequence of XCAT does not contain ##, the arguments is expanded first.
Therefore, the inner call XCAT(1,2) is expanded as 12 and then the outer call XCAT (12,3) is expanded
as 123.

1.5 MACRO REMOVAL

Syntax :

undef identifier

The #undef directive causes the preprocessor to remove the definition of the identifier. Subsequent
occurrences of the identifier are ignored by the preprocessor till it is defined again.

To remove an identifier specified as a macro with parameters, only the identifier has to be specified in the
#undef directive.

If the identifier specified has not been previously defined using the #define directive, no error message is
displayed. This ensures that the identifier is undefined.

CC665S Ver.2.01 Language Reference

Page 10

Example 1.18

define ONE 1

x = ONE ;

undef ONE

y = ONE

define A(b,c) b + c
undef A

In the above example, the variable x is assigned a constant 1, whereas the variable y is not assigned the
constant value 1.

1.6 REDEFINITION OF MACROS

Redefinition of the macro is erroneous, unless the redefinition satisfies the following.

a) The token sequence must be identical
b) If the identifier is defined as a macro with parameters, the number of parameters must be equal.

The following redefinitions are erroneous.

Example 1.19

define A 1+2
define A 1-2

Example 1.20

define A 1+2
define A 1 + 2

Example 1.21

define A 12
define A(b) 12

Example 1.22

define A(b) b
define A b

Example 1.23

define A(one,two) one + two
define A(one) one + two

Preprocessor

Page 11

The following redefinitions are nonerroneous.

Example 1.24

define A 1 + 2
define A 1 + 2

Example 1.25

define A(one,two) one + two
define A(one,two) one + two

Example 1.26

define A(one, two) one + two
define A(x,y) x + y

1.7 FILE INCLUSION

1.7.1 Introduction

The #include directive causes the preprocessor to replace the line where the directive has occurred by the
entire contents of the specified file during compilation.

File inclusion makes it easy to handle collection of #define statements and declarations(among other
things). They are often kept in a separate file and read into the ‘C’ source file at compile time. In this way,
libraries of different macros may be used in many different source files.

If the file specified in the directive is not present, fatal error is displayed and the compilation is terminated.

Nesting level of include files is restricted to ten files (including the source file).

1.7.2 Include File Specification Using Double Quotation Marks

Syntax :

include “filename”

The filename may contain a path specification. If the filename is not specified with the path, it is searched in
the following order :

a) directory of parent files is searched (parent file is the file containing the # include directive)
b) the directories of any grand parent files

CC665S Ver.2.01 Language Reference

Page 12

c) the directories specified using /I command line option
d) the standard directory set by the environment variable INCL66K.

Example 1.27

include “\dir1\dir2\abc.c”

The above #include directive causes the compiler to replace the contents of the file abc.c present in the
directory \dir1\dir2 for the line where the directive is specified.

1.7.3 Include File Specification Using Angle Brackets

Syntax :

include <filename>

The filename may contain a path specification.

If the filename is not specified with the path, it is searched in the following order :

a) the directory specified using the /I command line option
b) the standard directory set by the environment variable.

1.7.4 Macros In Include Directive

Syntax :

include token_sequence

The above #include directive causes the preprocessor to expand the token_sequence.

The expansion of the token sequence must result in one of the following two forms.

a) filename specified within double quotation marks

b) filename specified within angle brackets.

The processing of the #include directive depends on the filename specification.

Example 1.28

define FILENAME “file1.c”
include FILENAME

In the above example, the preprocessor includes file1.c.

Preprocessor

Page 13

1.8 CONDITIONAL COMPILATION

1.8.1 Introduction

The following preprocessor directives are used for conditional compilation.

1. # if
2. # ifdef
3. # ifndef
4. # elif
5. # else
6. # endif

These directives allow to suppress compilation of parts of a source file by testing a constant expression or
identifier, to determine which parts of the code will be sent to the compiler and which parts of the code will
be removed from the source file during preprocessing.

1.8.2 Conditional Compilation Directives

Syntax :

#if restricted_constant_expression
[text-block]

[#elif restricted_constant_expression
[text-block]
.
.

]
[#else

[text-block]
]
#endif

The text-block following the #if directive can be any sequence of text. It can occupy more than one line.
The text-block may also contain preprocessor directives.

The #elif and #else directives are optional. Any number of #elif directives may appear between #if and
#endif directives. Only one #else directive may appear between #if and #endif. The #else directive, if
present, must be the last conditional directive before #endif. The #endif ends the block.

CC665S Ver.2.01 Language Reference

Page 14

The restricted constant expression in #if and subsequent #elif are evaluated until an expression with a
non-zero value is found. Text following the zero value is discarded. The text following the non-zero value
is treated normally. Once a successful #if or #elif has been found and its text processed, succeeding #elif
and #else lines, together with their text are discarded.

If all the expressions evaluate to zero, and if there is a #else directive, the text following the #else is
processed normally.

Example 1.29

if 1
function1 () ;

endif

In the above example, the text following #if directive is processed.

Example 1.30

if 0
function1 () ;

endif

In the above example, the text following #if directive is discarded as the result of the expression is zero.

Example 1.31

if 1
function1 () ;

elif 0
function2 () ;

endif

In the above example, the text following #if directive is processed, since the result of the expression is
non-zero. The constant expression following the #elif directive is not evaluated. The text following the
#elif directive is discarded.

Example 1.32

if 0
function1 () ;

elif 1
function2 () ;

endif

In the above example, the text following #if will not be processed. The constant expression following #elif
directive will be evaluated. As the result of the expression is non-zero, the text following the #elif directive
will be processed.

Preprocessor

Page 15

Example 1.33

if 0
function1 () ;

elif 0
function2 () ;

endif

In the above example, the text following #if and #elif directives is discarded, as both the expression
evaluates to zero.

1.8.3 Restricted Constant Expression

Constant expression in a preprocessor directive is subjected to certain restrictions. The constant
expression must be an integral constant expression. It must not contain sizeof expression, enumeration
constant, floating point constant and cast expression.

If macros are present they will be expanded. All identifiers remaining after macro expansion are replaced
by 0L.

The following illustrates the usage of the restricted constant expression in #if and #elif directives:

Example 1.34

if 1 +2

Example 1.35

if 1 + 2 * 3 % 4

Example 1.36

if A

Example 1.37

if (1 + 2) / 5

Example 1.38

if (1 << 2) == A

Example 1.39

if A || B & C

Example 1.40

if A ? B : C

CC665S Ver.2.01 Language Reference

Page 16

The following are erroneous:

Example 1.41

if A = 2

Example 1.42

if X += 5

Example 1.43

if X ++

Example 1.44

if &X

Example 1.45

if sizeof (struct A)

Example 1.46

if A, C

Example 1.47

if 1.2

1.8.4 defined Operator

Syntax :

defined identifier
defined (identifier)

Any expression of the above syntax is replaced by 1L if the identifier is defined in the preprocessor and by
0L if not.

Example 1.48

define A 1
if defined (A)

printf (“This part will be compiled”) ;
endif

if defined (B)
printf (“This part will not be compiled”) ;

#endif

The defined operator may also appear with other operators.

Preprocessor

Page 17

Example 1.49

define A 1
if ! defined (A)

printf (“This part will not be compiled”) ;
endif

if defined (A) - 1
printf (“This part will not be compiled”) ;

endif

1.8.5 Nesting

The #if, #elif, #else and #endif directives may be nested in the text portions of other #if directives. Each
#elif, #else and #endif directive belongs to the closest preceding #if directive.

Example 1.50

if 0
if 1

printf (“This part will not be compiled”) ;
endif

endif

if 1
if 0

printf (“This part will not be compiled”) ;
endif

if 1
printf (“This part will be compiled”) ;

endif
endif

Nesting level is restricted to 32.

1.8.6 Testing Symbol Definition With #ifdef and #ifndef

Syntax :

ifdef identifier
ifndef identifier

The #ifdef and #ifndef directives may occur wherever a #if directive can occur. The text following the
#ifdef directive is compiled if the specified identifier is a macro. The text following the #ifndef directive is
compiled when the specified identifier is not a macro.

CC665S Ver.2.01 Language Reference

Page 18

Example 1.51

define A 1
ifdef A

printf (“This part will be compiled”) ;
endif

ifdef B
printf (“This part will not be compiled”) ;

endif

define B 2

ifndef B
printf (“This part will not be compiled”) ;

endif

undef A

ifndef A
printf (“This part will be compiled”) ;

endif

1.9 LINE

Syntax :

line constant [“filename”]

The #line directive causes the preprocessor to change the following :

a) The number of the next source line to the number specified by the constant

b) The name of the current source file to the specified filename.

The constant value must be a integer constant. This value must be between 1 and 32767, inclusive of both.

The filename is optional. The filename must be enclosed within double quotes as a string literal.

Macros in the # line directive are expanded before interpretation.

The line number and the filename are used by the compiler in specifying the error messages during
compilation.

Example 1.52

line 124

Preprocessor

Page 19

The line number of the next source line is changed to 124. The name of the source file is not changed.

Example 1.53

line 1234 “file.c”

The line number of the next source line is changed to 1234. The name of the source file is changed to
“file.c”.

Example 1.54

define LINENUMBER 1234
define FILENAME “file1.c”
line LINENUMBER FILENAME

The line number of the next source line is changed to 1234. The name of the source file is changed to
file1.c.

1.10 ERROR

Syntax :

error [token_sequence]

The # error directive causes the preprocessor to display a diagnostic error message that includes the
optional token sequence.

The compiler displays the error message with an error number, the source filename and source line
number.

Macros in the token sequence are not expanded.

Example 1.55

error this is an old version

The above # error directive causes the compiler to display the message “# error : this is an old version”.

Example 1.56

define ERROR_MESSAGE this is the error message
error ERROR_MESSAGE

CC665S Ver.2.01 Language Reference

Page 20

The above #error directive causes the compiler to display the message “ERROR_MESSAGE”. The
macro is not expanded.

1.11 MIXED LANGUAGE PROGRAMMING

Syntax :

asm
[assembly text]

endasm

The #asm and #endasm directives facilitate mixed language programming. The assembly text specified
between #asm and #endasm will not be processed.

The assembly text is not restricted to a single line.

#asm directive marks the beginning of assembly text. The #endasm directive marks the end of assembly
text.

Example 1.57

asm
l a, dir _b ;; a = b + c
add a, dir _c
st a, dir _a
endasm

1.12 PREDEFINED MACROS

The following macros are predefined.

1. __LINE__
2. __FILE__
3. __DATE__
4. __TIME__
5. __STDC__
6. __CC665S__
7. __VERSION__
8. __ARCHITECTURE__
9. __NX_8_500__
10. __NX_8_500S__

Preprocessor

Page 21

11. __BASEPTR__
12. __NO_BASEPTR__
13. __MS__
14. __ME__
15. __MM__
16. __MC__
17. __MK__
18. __ML__
19. __MIXC__
20. __MIXM__
21. __MIXL__
22. __UNSIGNEDCHAR__

The above predefined macros cannot be redefined or undefined.

1. __LINE__

__LINE__ expands to a decimal constant. The decimal constant contains the number of the current
source line being compiled.

2. __FILE__

__FILE__ expands to a string literal. The string literal contains the name of the file being compiled.

3. __DATE__

__DATE__ expands to a string literal. The string literal contains the date of compilation in the following
format.

“Mmm dd yyyy”

4. __TIME__

__TIME__ expands to a string literal. The string literal contains the time of compilation in the following
format.

“hh:mm:ss”

5. __STDC__

__STDC__ expands to a decimal constant 0. The value of the constant is intended to be 1 only in the
implementation conforming to ANSI standard.

CC665S Ver.2.01 Language Reference

Page 22

6. __CC665S__

__CC665S__ expands to a decimal constant 1.

7. __VERSION__

__VERSION__ expands to a string literal. The string literal contains the current version number in the
following format.

“Ver.X.YY”

where X.YY is the current version number.

8. __ARCHITECTURE__

__ARCHITECTURE__ expands to a string literal. The string literal contains the core specified with /T
option in the following format:

“core”

where core is the string specified with the /T option. When /T option is not specified then the
replacement text will be “”.

9. __NX_8_500__

__NX_8_500__ expands to a decimal constant 1, if the C source program is compiled for /nX500
CPU core. Otherwise this macro is not defined.

10. __NX_8_500S__

__NX_8_500S__ expands to a decimal constant 1, if the C source program is compiled for /nX500S
CPU core. Otherwise this macro is not defined.

11. __BASEPTR__

__BASEPTR__ expands to a decimal constant 1, if the C source program is compiled with /SD
option. Otherwise this macro is not defined.

12. __NO_BASEPTR__

__NO_BASEPTR__ expands to a decimal constant 1, if the C source program is compiled without
/SD option. Otherwise this macro is not defined.

Preprocessor

Page 23

13. __MS__

__MS__ expands to a decimal constant 1, if the C source program is compiled with /MS option or
with default C memory model option. Otherwise this macro is not defined.

14. __ME__

__ME__ expands to a decimal constant 1, if the C source program is compiled with /MEM option.
Otherwise this macro is not defined.

15. __MM__

__MM__ expands to a decimal constant 1, if the C source program is compiled with /MM option.
Otherwise this macro is not defined.

16. __MC__

__MC__ expands to a decimal constant 1, if the C source program is compiled with /MC option.
Otherwise this macro is not defined.

17. __MK__

__MK__ expands to a decimal constant 1, if the C source program is compiled with /MEL option.
Otherwise this macro is not defined.

18. __ML__

__ML__ expands to a decimal constant 1, if the C source program is compiled with /ML option.
Otherwise this macro is not defined.

19. __MIXC__

__MIXC__ expands to a decimal constant 1, if the C source program is compiled with /mixC option.
Otherwise this macro is not defined.

20. __MIXM__

__MIXM__ expands to a decimal constant 1, if the C source program is compiled with /mixM option.
Otherwise this macro is not defined.

21. __MIXL__

__MIXL__ expands to a decimal constant 1, if the C source program is compiled with /mixL option.
Otherwise this macro is not defined.

CC665S Ver.2.01 Language Reference

Page 24

22. __UNSIGNEDCHAR__

__UNSIGNEDCHAR__ expands to a decimal constant 1, if the C source program is compiled with
/J option. Otherwise this macro is not defined.

Consider the source filename as file1.c, the number of the source line being compiled as 200, the date of
compilation as 23 December 1992 and the time of compilation as 10 hours : 20 minutes : 30 seconds. The
predefined macros expand as follows.

Example 1.58

MACRO CALL REPLACEMENT TEXT

__LINE__ 200
__FILE__ “file1.c”
__DATE__ “Dec 23 1992”
__TIME__ “10:20:30”
__STDC__ 0

Example 1.59

int i ;
void
func (void)
{

i = __MS__ ;
}

If the above C source program is compiled with small C memory model option, then it is equivalent to

int i ;
void
func (void)
{

i = 1 ;
}

Lexical Conventions

Page 25

2. LEXICAL CONVENTIONS

2.1 CHARACTER SET

This section describes the lexical conventions adopted by CC665S. After preprocessing, the source
program is reduced to a series of tokens based on the lexical conventions.

‘C’ character set consists of the letters, digits and punctuation marks having specific meanings in the ‘C’
language. ‘C’ program is constructed by combining the characters of the ‘C’ character set into meaningful
statements.

The following characters can be used in ‘C’ to form constants, identifiers and keywords:

English characters (A-Z, a-z)

Numerals (0 - 9)

! # ‘ “ % & () = ~

- ^ \ | , . / ? { }

< > ; : + * [] _

SPACE(20H) TAB(09H) CR(0DH)

LF(0AH) FF(0CH) VT(0BH)

CC665S treats upper-case and lower-case letters as distinct characters.

Blanks(spaces), horizontal and vertical tabs, new-lines, line- feeds, carriage-returns, and form-feeds are
collectively called as white-space characters. Compiler considers them as separators of tokens and
ignores. These characters separate user defined items, such as constants and identifiers, from other items
in the program.

CC665S Ver.2.01 Language Reference

Page 26

2.2 TOKENS

In a ‘C’ source program, the basic element recognized by the compiler is the character group known as a
“token”. A token is source program text, the compiler will not attempt to further analyze into component
elements. The tokens recognized by CC665S are :

* Identifiers
* Keywords
* Comments
* Constants
* Operators

2.2.1 Identifiers

An identifier is a sequence of letters, digits and underscores. The first character must be a letter or
underscore. By default, CC665S assumes maximum identifier length as 31. If an identifier exceeding this
length is specified, CC665S outputs a warning message and considers only the first 31 characters.
However, CC665S provides a command line option /SL for the user to specify the maximum length of an
identifier. User may specify a length ranging from 31 to 254, inclusive of both.

Following are examples of identifiers :

Example 2.1

i
count
number
end_of_file
Minus
SUBTRACT_THIS
_var

2.2.2 Keywords

Identifiers which are set aside by the compiler for its use are keywords. They cannot be redeclared. They
identify data types, storage class and statements in CC665S. Keywords must be expressed in lower-case
letters. CC665S reserves the following words as keywords :

auto break case char const
continue default do double else
enum extern float for goto
if int long register return

Lexical Conventions

Page 27

short signed sizeof static struct
switch typedef union unsigned void
volatile while __accpass __asm __divbu
__divqu __divu __far __interrupt __modbu
__modqu __modu __mulbu __mulu __nfar
__noacc

2.2.3 Comments

Comments, delimited by the character pairs (/*) and (*/), can be placed anywhere a white-space can
appear. The text of a comment can contain any character except the close comment delimiter (*/).
Comments cannot be nested and cannot occur within string or character literal.

Example 2.2

i. /* This is a comment */

ii. /* Comments /* nesting */ is not allowed */

The second line (ii) would result in error.

Each comment is replaced by a single space.

2.2.4 Constants

Constants in ‘C’ refer to fixed values, characters and character strings, which cannot be altered by the
program. CC665S supports four types of constants - integral, floating, character and strings.

2.2.4.1 INTEGRAL CONSTANTS

Integer constants represent values themselves in hexadecimal, decimal or octal format. The first character
of a decimal integral constant must be a digit. A sequence of digits preceded by 0X or 0x is taken to be
hexadecimal integer. If the sequence of digits begin with 0, it is octal; otherwise it is decimal integral
constant.

Valid Characters Prefix
Hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F a b

c d e f
0X or 0x

Decimal 0 1 2 3 4 5 6 7 8 9 None
Octal 0 1 2 3 4 5 6 7 0

CC665S Ver.2.01 Language Reference

Page 28

An integral constant may be suffixed by the letter ‘u’ or ‘U’ to specify that it is unsigned. It can also be
suffixed by ‘l’ or ‘L’ to specify that it is long.

Every integral constant is given a type based on its value. The type of constant determines the conversion
to be performed on it when is used in an expression. Conversion rules are summarized below :

∗ The type of an integer constant depends on its form, value and suffix. The type of an integer constant
is the first of the corresponding list in which its value can be represented.

Unsuffixed decimal : int, long int, unsigned long int
Unsuffixed octal or hexadecimal : int, unsigned int, long int, unsigned long int
Suffixed by the letter u or U : unsigned int, unsigned long int
Suffixed by the letter l or L : long int, unsigned long int
Suffixed by both the letters u or U : unsigned long int

and l or L

The following table shows the range of values and the corresponding type for octal and hexadecimal
constants in CC665S where int type is 16 bits long.

Hexadecimal range Octal range Type

0x0 to 0x7fff 0 to 077777 int
0x8000 to 0xffff 0100000 to 0177777 unsigned int
0x10000 to 0x7fffffff 0200000 to 017777777777 long
0x80000000 to 0xffffffff 020000000000 to 037777777777 unsigned long

The following table shows the range of values and the corresponding type for decimal constants.

Decimal range Type

0 to 32767 int
32768 to 2147483647 long
2147483648 to 4294967295 unsigned long

An integer constant can be forced to long type by appending the letter ‘l’ or ‘L’.

Lexical Conventions

Page 29

Some examples of integer constants are shown below:

Example 2.3

0x177AF /* Hexadecimal integer */
0167 /* Octal integer */
1826 /* Decimal integer */
0X1abe /* Hexadecimal integer */
10l /* Decimal long integer */
0xabL /* Hexadecimal long integer */
0333l /* Octal long integer */

2.2.4.2 FLOATING-POINT CONSTANTS

A floating-point constant has an integral part (decimal part), a fractional part (the letter e or E), and an
optionally signed integer exponent. The integral and fractional parts consist of decimal digits; one of which
can be omitted. Omission of either decimal point with the following digits or the E (exponent) is allowed,
but both cannot be omitted.

Floating-point constants may be of type float or double. The type is determined by the suffix; F makes it
float, L or l makes it long double; otherwise it is double. Long double constants are treated similar to
double constants. The following are examples of floating-point constants:

Example 2.4

1.0e10f
.75
1.03e-12L
3.0
120e22
10e04
-0.0021

2.2.4.3 CHARACTER CONSTANTS

Character constants are formed by a single ASCII character enclosed within single quotation marks (‘’).
Only one byte characters can be used for character constants. An escape sequence is regarded as a single
character and is therefore valid in a character constant. To use a single quotation mark or backslash
character as a character constant, a backslash must precede them.

CC665S Ver.2.01 Language Reference

Page 30

Example 2.5

‘ ’ Single blank space
‘z’ Lower-case z
‘\n’ Newline character
‘\\’ Backslash
‘\’’ Single quote

2.2.4.4 STRING CONSTANTS

A string constant also called a string literal, is a sequence of characters surrounded by double quotes (“..”).
A string has type “array of characters” and storage class static and is initialized with the given characters.

Adjacent string literals are concatenated into a single string. After concatenation, a null byte ‘\0’ is
appended to the string so that programs that scan the string can find its end. All strings even if not
concatenated are appended with a null byte in order to indicate its end. String literals can contain escape
sequences.

To form a string literal that takes up more than one line is to type a backslash and then to press the
RETURN key. The backslash causes the compiler to ignore the new-line character immediately following
the backslash. For example,

“This string in two lines is combined \
into a single line string.”

is same as

“This string in two lines is combined into a single line string.”

Two or more strings separated only by white space characters are concatenated into a single string. For
example, the following strings :

“This is first,”
“ this is second.”

will be concatenated as

“This is first, this is second.”

Escape sequences can be used in a string literal. To use double quotation mark or backslash within a string
literal, escape sequences should be used.

Example 2.6

i. “One\\two”

ii. “\”Do it\” Mike said.”

Lexical Conventions

Page 31

2.2.4.5 ESCAPE SEQUENCES

Strings and character constants can contain “escape sequences”. Escape sequences are character
combinations representing whitespace and non-graphic characters. An escape sequence consists of a
backslash (\) followed by a letter or by a combination of digits.

Escape sequences are typically used to specify actions such as carriage returns and tab movements on
terminals and printers and to provide literal representations of non-printable characters and characters that
normally have special meanings, such as the double quotation mark character (“). The following table lists
the CC665S escape sequences.

Escape sequence Name

\n New line NL (LF)
\t Horizontal tab HT
\v Vertical tab VT
\b Backspace BS
\r Carriage return CR
\f Formfeed FF
\a Bell (alarm) BEL
\’ Single quote
\” Double quote
\\ Backslash

\ooo ASCII character in
octal notation

\xhh ASCII character in
hexadecimal
notation

If a backslash precedes a character that does not appear in the above table, the backslash is ignored and
the character is represented literally. For example, the pattern “\m” represents the character “m” in a string
literal or character constant.

CC665S Ver.2.01 Language Reference

Page 32

The sequence \ooo allows the programmer to specify any character in the ASCII character set as a
three-digit octal character code. The hexadecimal digits that follow the backslash (\) and the letter x in a
hexadecimal escape sequence are taken to be part of the construction of a single character for an integer
character constant. The numerical value of the hexadecimal integer so formed specifies the value of the
desired character. Each hexadecimal escape sequence is the longest sequence of characters that constitute
the escape sequence. For example the ASCII horizontal tab character can be given as the normal ‘C’
escape sequence \t or can be coded as \011 (octal) or \x09 (hexadecimal).

Atleast one digit must be specified for both octal and hexadecimal escape sequence. For example \11,
\011, \x9 and \x09 are valid escape sequences.

2.2.5 Operators

Operators are symbols that specify how values are to be manipulated. Each symbol is interpreted as a
single unit called a “token”. The following tables list ‘C’ unary, binary and ternary operators.

UNARY OPERATORS

! ~ - * & + ++ -- sizeof

BINARY OPERATORS

+ - * / % << >>

< <= > >= == != &

| ^ && || , = +=

-= *= /= %= >>= <<= &=

|= ^=

TERNARY OPERATOR

?:

Four operators *, &, - and + appear in both unary and binary tables shown above. Their interpretation as
unary or binary depends on the context in which they appear.

Program Structure

Page 33

3. PROGRAM STRUCTURE

3.1 SOURCE PROGRAM

This section defines the terms that are used later in the manual to describe the ‘C’ language as implemented
by CC665S and discusses the structure of ‘C’ programs.

 A ‘C’ source program is a collection of any number of directives, declarations, definitions and statements.
These constructs are described briefly below. These constructs can appear in any order in a program.

DIRECTIVES

A directive instructs the ‘C’ preprocessor to perform a specific action on the text of the program before
compilation. Directives are described in section dealing with PREPROCESSOR.

DECLARATIONS AND DEFINITIONS

A declaration establishes an association between the name and the attribute of a variable, function or type.
In ‘C’, all variables must be declared before being used.

A definition of a variable establishes same associations as a declaration, but also causes storage to be
allocated for the variable. All definitions are declarations but not all declarations are definitions.

CC665S Ver.2.01 Language Reference

Page 34

Example : 3.1

const int a = 10 ; /* Variable definitions */
int b ; /* at external level */
extern int function (int, char) ; /* Function declaration or prototype */
extern long c ; /* Variable declaration at external level */
extern float f ;

main ()
{

int local1 ; /* Variable definitions at */
char local2 ; /* internal level */

local1 = local2 ; /* Executable statements */
c = b + a + f ;

}

3.2 SOURCE FILES

A source program can be divided into one or more source files. A ‘C’ source file is a text file containing all
or part of a ‘C’ program. During compilation individual source files must be compiled separately.

A source file can contain any combination of directives, declarations and definitions. Items such as function
definitions or large data structures cannot be split between source files. The last character in a source file
must be new-line character or end of file.

A source file need not contain executable statements. For example, it may be useful to place definitions of
variables in one source file and then declare references to these variables in other source files that use them.
This technique make definitions easy to find and change. For the same reason macros and #define
statements are often organized into separate include files that may be referenced in source files as required.

Directives in a source apply only to that source file and its include files. Moreover, each directive applies
only to the part of the file that follows the directive. To apply a common set of directives to a whole source
program the directives must be included in all source files comprising the program.

Program Structure

Page 35

3.3 FUNCTIONS AND PROGRAM EXECUTION

Every ‘C’ program has a primary (main) function that must be named main. The main function serves as the
starting point for program execution. It usually controls program execution by directing the calls to other
functions in the program. A program usually stops executing at the end of main, although it can terminate at
other points in the program for a variety of reasons depending on the execution environment.

The source program usually has more than one function, with each function designed to perform one or
more specific tasks. The main function calls these functions to perform one or more specific tasks. When
main function calls another function, it passes execution control to that function, so that execution begins at
the first statement in the called function. This function returns control when a return statement is executed or
when the end of the function is reached.

Functions can be declared to have parameters. When such a function calls another, the called function
receives values from the calling function. These values are called arguments.

Arguments are passed between functions using call by value method.

3.4 LIFETIME AND VISIBILITY

Three concepts are crucial to understanding the rules that determine how variables and functions can be
used in a program. They are blocks (or compound statement), lifetime (sometimes called extent) and
visibility (sometimes called scope).

3.4.1 Blocks

A block is a sequence of declarations, definitions and statements enclosed within curly braces. There are
two types of blocks in ‘C’. The compound statement is one type of block. The other, the function
definition, consists of a compound statement comprising the function body plus the header associated with
the function (the function name, return type and formal parameters). A block may encompass other
blocks, with the exception that no block can contain a function definition. A block within other blocks is
said to be nested within the encompassing blocks.

CC665S Ver.2.01 Language Reference

Page 36

All compound statements are enclosed in curly braces. However everything enclosed within curly braces
do not constitute a compound statement. For example, though the specification of array or structure
elements may appear within curly braces, they are not considered compound statements.

3.4.2 Lifetime

Lifetime is the period, during execution of a program, in which a variable or function exists. All functions in
a program exist at all times during its execution.

Lifetime of a variable may be global or local. If its lifetime is global (a global item), it has storage and a
defined value for the entire duration of a program. An item with a local lifetime has storage and a defined
value only within a block where the item is defined or declared. A local item is allocated new storage each
time program enters that block and it loses its storage (and hence its value) when the program exits the
block.

3.4.3 Visibility

Visibility determines the portions of the program in which an item can be referenced by name. An item is
visible only in portions of a program encompassed by its scope which may be restricted to the file, function,
block or function prototype in which it appears.

3.5 NAMING CLASSES

In any ‘C’ program identifiers are used to refer to many different kinds of items. Identifiers have to be
provided for functions, variables, formal parameters, union members and other items the program uses.
‘C’ allows to use the same identifier for more than one program item, as long as the rules outlined in this
section are followed.

The Compiler sets up naming classes to distinguish between the identifiers used for different kinds of items.
The names within each class must be unique to avoid conflict, but an identical name can appear in more
than one naming class. This means that the same identifier can be used for two or more items provided that
the items are in different naming classes. The compiler resolves the references based on the context of the
identifier in the program.

The following list describes the kinds of items that can be named in ‘C’ program and the rules for naming
them :

Program Structure

Page 37

Statement labels

Statement labels form a separate naming class. Each statement label must be distinct from all other
statement labels in the same function. Statement labels do not have to be distinct from other names or label
names in other functions.

Variables and Functions

The names of variables and functions are in a naming class with formal parameters and typedef names.
Therefore, variables and function names must be distinct from other names in this class that have the same
visibility. However, variables and function names can be redefined within function blocks.

Formal parameters

The names of formal parameters to a function are grouped with the names of the local variables, so the
formal parameter names should be distinct from the local variable names. The formal parameters cannot be
redefined at the top level of the function. However the names of the formal parameters may be redefined in
subsequent blocks nested within the function body.

typedef names

The names of types defined with the ‘typedef’ keyword are in a naming class with variable and function
names. Therefore, typedef names must be distinct from all variable and function names with the same
visibility as well as from the names of formal parameters. Like variable names, names used for typedef
types can be redefined within program blocks.

Tags

Structure, union and enum tags are grouped in a single naming class. These tags must be distinct from other
tags with the same visibility. Tags do not conflict with any other names.

Members

The members of each structure and union form a naming class. The name of a member must, therefore, be
unique within the structure or union, but it does not have to be distinct from other names in the program,
including the names of members of different structures and unions.

CC665S Ver.2.01 Language Reference

Page 38

Example 3.2

struct name {
char * name ;
int type ;
int scope ;

} name ;

Since structure tags, structure members and variable names are in three different naming classes, the three
items named “name” in this example do not conflict and are distinct.

3.6 DATA TYPES

CC665S supports several basic data types and derived data types.

BASIC TYPES

There are several fundamental types supported by CC665S. They include char, int, long, float and
double. Three sizes of integers are available namely, short int, int, and long int. Both signed and
unsigned objects of char and int types can be declared. The size as well as the smallest and largest values
of each type are mentioned in section 4.2.

Objects of all the above mentioned basic types can be interpreted as numbers. Therefore they will be
referred to as arithmetic types.

Types char and int of all sizes, each with or without sign will collectively be called as integral types.

The types float, double and long double will be called as floating point type.

DERIVED TYPES

Besides basic types, there is conceptually infinite class of derived types constructed from the fundamental
types in the following ways :

Arrays of objects of a given type.

Functions returning objects of a given type.

Pointers to objects of a given type.

Structures containing a sequence of objects of various types.

Unions capable of containing any one of several objects of various types.

Declarations

Page 39

4. DECLARATIONS

4.1 INTRODUCTION

Declarations specify the interpretation given to each identifier; they do not necessarily reserve storage
associated with the identifier. Declarations that reserve storage are called definitions. Declarations have the
form

declaration : [declaration_specifiers] [init_declarator_list] ;

declaration : __asm (string)

All ‘C’ variables must be explicitly declared before being used.

Declarators contain the identifiers being declared that may be modified with brackets ([]), asterisks (*) or
parentheses. Declaration specifiers consist of a sequence of type and storage class specifiers.

declaration_specifiers :
storage_class_specifier [declaration_specifiers]
type_specifiers [declaration_specifiers]
type_qualifiers [declaration_specifiers]

init_declarator_list :
init_declarator
init_declarator_list , init_declarator

init_declarator :
declarator
declarator = initializer

CC665S Ver.2.01 Language Reference

Page 40

4.2 TYPE SPECIFIERS

The type specifiers supported by CC665S are listed below :

void char int short enum
long float double signed
unsigned struct union typedef

The keywords signed and unsigned can precede any of the integral types and can also be used alone as
type specifiers, in which case they are understood as signed int and unsigned int respectively.

When used alone the keyword int is assumed to be signed int. When used alone, the keywords long and
short are understood as long int and short int respectively. By default if only char is specified, it is
treated as signed char. However, if /J option is specified in the command line, default char is treated as
unsigned char by the compiler.

The signed char, signed int, signed short int and signed long int types, together with their unsigned
counterparts are called integral types. The float and double type specifiers are referred to as floating-
point type. Any of these integral and floating-point type specifiers can be used in a variable or function
declaration.

The keyword void has three uses :

1. void is used to declare a function that returns no value.

2. To declare a pointer to an unspecified type.

3. When void occurs alone within the parentheses following the function name, void indicates that
the function accepts no arguments.

The storage and range of values for fundamental type are summarized below :

Type Storage Range of values
char 1 byte -128 to 127
unsigned char 1 byte 0 to 255
short,int 2 bytes -32,768 to 32,767
unsigned short,unsigned int 2 bytes 0 to 65,535
long 4 bytes -2,147,483,648 to 2,147,483,647
unsigned long 4 bytes 0 to 4,294,967,295
float 4 bytes IEEE-standard notation 3.4e-38 to 3.4e+38
double 8 bytes 1.7e-308 to 1.7e+308

Declarations

Page 41

The long double type specifier may also be used. It is treated similar to double type specifier.

4.3 TYPE QUALIFIERS

1. const

2. volatile

Types may also be qualified, to indicate special properties of the objects being declared. The type
qualifiers supported by CC665S are const and volatile.

The const type qualifier is used to declare an object as non-modifiable. The const keyword can be used
as a qualifier for any fundamental or aggregate type. A typedef may be qualified by a const type qualifier.
A declaration that includes the keyword const as a qualifier of an aggregate type declarator indicates that
each element of the aggregate type is not modifiable. If an item is declared with only the const type
qualifier, its type is taken to be const int.

CC665S allocates such variables in Code memory (ROM). The const type qualifier may be used only
with global variables. If /WIN option is specified in the command line, then CC665S allocates const
variables in the ROMWINDOW region. If these variables are modified, warning message is issued by the
compiler.

CC665S ignores const qualifier for local automatic variables and function parameters, after issuing a
warning message. However, if /WIN option is specified and function parameters are qualified with const,
no warning message is issued. If the const qualified function parameter is modified, warning message is
issued.

In case of structure and union, tags cannot be qualified by const. Only struct/union variables can be
qualified by const. CC665S ignores const in case of structure and union tags. The const qualifier along
with the struct/union tags are taken as qualifier for the variables, if any, specified along with the
struct/union tag declaration.

Example 4.1

const struct tag {
int a ;
char b ;

} var0 ;

struct tag var1 ;
const struct tag var2 ;

CC665S Ver.2.01 Language Reference

Page 42

In the above example although const is used in the declaration of the struct tag ‘tag’, it is ignored. Thus
variables declared using this ‘tag’ must be qualified by const in order to reside in code memory, however,
variables defined with the struct tag ‘tag’ declaration are qualified by const. Thus, in the above example,
‘var1’ is not qualified by const, but ‘var0’ and ‘var2’ are qualified by const.

Individual members of a structure cannot be qualified by const.

Example 4.2

struct tag1 {
int a ;
const char b ;

} var1 ;

struct tag1 var2 ;

In the above example although const is used in the declaration of the structure member ‘b’, it is ignored
after issuing a warning.

A typedef identifier may be qualified by const.

Example 4.3

typedef const int ca ;
ca const_identifier ;

In the above example the typedefed identifier is qualified by const. Hence the variable ‘const_identifier’
declared using the typedefed variable ‘ca’ is also qualified by const.

The volatile type qualifier declares an item whose value may legitimately be changed by something
beyond the control of the program in which it appears.

The volatile keyword can be used in the same circumstances as const. An item may be both const and
volatile.

Items qualified by volatile will suppress optimization of expressions in which they are used.

Example 4.4

volatile int input ;
volatile char * key_ptr ;

In the above example, value of ‘input’ may change beyond the control of program. Similarly, the contents
of location pointed to by ‘key_ptr’ may change beyond the control of program.

Declarations

Page 43

4.4 DECLARATORS
declarator :

[pointer] direct_declarator

direct_declarator :
[memory_function_qualifier_list] identifier
(declarator)
direct_declarator [constant_expression]
direct_declarator (parameter_type_list)
direct_declarator ([identifier_list])

pointer :
[memory_function_qualifier_list]* [type_qualifier_list]
[memory_function_qualifier_list]* [type_qualifier_list] pointer

type_qualifier_list :
type_qualifier
type_qualifier_list type_qualifier

memory_function_qualifier_list :
function_qualifier
memory_function_qualifier_list memory_model_qualifier
memory_model_qualifier
memory_function_qualifier_list function_qualifier

‘C’ language allows a programmer to declare arrays of values, pointers to values and functions returning
values of specified types. A declarator must be used to declare these items.

A declarator is an identifier that may be modified by brackets ([]), asterisks (*) or parentheses (()) to
declare an array, pointer or function type respectively. Declarators appear in the pointer, array and
function declarations.

When a declarator consists of an unmodified identifier, the item being declared has a basic type. If
asterisks appear to the left of an identifier, the type is modified to a pointer type. If the identifier is followed
by brackets ([]), the type is modified to an array type. If the identifier is followed by parenthesis, the type
is modified to a function type.

Example 4.5

i. int table [100] ;
ii. char * cp ;
iii. long function (void) ;

In the above example, (i) declares an array of integers, named table, containing 100 values. (ii) declares a
pointer to a character value, cp. (iii) declares a function that returns a long value and takes no arguments.

CC665S Ver.2.01 Language Reference

Page 44

A ‘complex’ declarator is an identifier modified by more than one array, pointer or function modifier.
Various combinations of array, pointer, and function modifiers can be applied to a single identifier.
However, a declarator may not have the following illegal combinations :

1. An array cannot have function as its elements.

2. A function cannot return an array or a function.

Example 4.6

i. int (* ((* fnarray []) ())) () ; /* correct */
ii. int ((* func []) ()) [] ; /* error */

In the above example, (ii) is an error because it specifies an array of pointers to functions returning an array
of integers.

4.4.1 Memory Model Qualifiers

Memory model qualifiers can be used in a declaration, to explicitly specify the addressing type of the
variable. __far and __nfar are the two keywords supported by CC665S that can be used to specify the
addressing type of an object. A memory model specifier affects the token immediately to it’s right.
Memory model qualifiers can qualify only objects and pointers to object.

Example 4.7

int * __far fvar ; /* ‘fvar’ need not be in default segment, but points to an object of type int
in default segment. */

int __far * fptr ; /* ‘fptr’ is in default segment, pointing to an object of type int that need
not be in default segment */

__far int evar ; /* error, as __far cannot qualify a type specifier */

__far keyword can be used to qualify data, table and functions. If the object is qualified by const and
__far, storage will be allocated for the object in any one of the Code Memory segments. Similarly, if a
non-const object is qualified by __far, storage will be allocated for the object in any one of the Data
Memory segments. Functions qualified by __far will be allocated in any one of the Code Memory
segments.

__nfar keyword can be used to qualify functions only. If a function is qualified by __nfar , it is allocated in
the default segment. A function cannot be qualified with both __far and __nfar.

Structure and union, tags cannot be qualified by __far. Only struct/union variables can be qualified by
__far. CC665S issues error if struct/union tags are qualified with __far.

Declarations

Page 45

Example 4.8

struct __far tag1 { /* error */
int a ;
char b ;

} var0 ;

struct tag {
int a ;
char b ;

} var0 ;

struct tag1 var1 ;
struct tag2 __far var2 ; /* var2 is far structure */

In the above example, CC665S issues error for struct ‘tag1’ declaration, as the struct tag is qualified with
__far. The variable ‘var2’ is qualified with __far and therefore it is allocated in any one of the Data
Memory segments.

Individual members of a structure cannot be qualified by __far.

Example 4.9

struct tag1 {
int a ;
char __far b ;

} var1 ;

struct tag1 var2 ;

In the above example although __far is used in the declaration of the structure member ‘b’, it is ignored
after issuing a warning.

A typedef identifier may be qualified by __far. and __nfar

Example 4.10

typedef int __far FVAR ;
FVAR far_identifier ;

In the above example the typedefed identifier ‘FVAR’ is qualified by __far. Hence the variable
‘far_identifier’ declared using the typedef name ‘FVAR’ is also qualified by __far.

CC665S Ver.2.01 Language Reference

Page 46

4.4.2 Function Qualifiers

CC665S supports the following function qualifiers.

1. __accpass

2. __noacc

3. __interrupt

The above listed function qualifiers can qualify functions only. If they are used to qualify any other object,
error is issued.

If a function is qualified with __accpass, it informs the compiler that the first argument is available in the
Accumulator and the return value should be placed in the Accumulator. However, if the size of the first
argument is greater than 2 bytes or the first argument is a structure/union, the first argument is not placed in
the Accumulator. Similarly, if the size of the return value is greater than 2 bytes or if the function returns
structure/union, the return value is not placed in the Accumulator. If a function is qualified with more than
one __accpass, error is issued.

Example 4.11

int __accpass fn1 (int arg1) ; /* value of arg1 is available in accumulator and the return value
will be placed in the accumulator */

int __accpass fn2 (long arg) ; /* the first argument value is not placed in the accumulator as
the size is more than 2 bytes */

long __accpass fn3 (int arg) ; /* the return value is not placed in the accumulator as the size is
more than 2 bytes */

int __accpass var ; /* error : as var is not a function */

If a function is qualified with __noacc, it informs the compiler not to use accumulator for the first argument
and the return value. If a function is qualified with more than one __noacc qualifier, error is issued. If a
function is qualified with both __accpass and __noacc, error is issued.

Example 4.12

int __noacc fn1 (int arg) ; /* fn1 will not assume that value of arg is
available in the argument. */

int __noacc __accpass fn2 (int arg) ; /* error : as a function cannot be qualified with
both __accpass and __noacc */

If /REG option is specified in the command line, by default all functions are assumed to be qualified with
__accpass, unless they are qualified with __noacc.

Declarations

Page 47

If a function is qualified with __interrupt, it informs the compiler that the function is an interrupt routine
function. If a function qualified with __interrupt has either return value or takes any argument, warning is
issued and the __interrupt qualifier is ignored. If a __interrupt qualified function is qualified with either
__far or __nfar, error is issued.

Example 4.13

void __interrupt fn1 () ; /* fn1 will be treated as interrupt function */
int __interrupt fn2 () ; /* warning will be issued and __interrupt will be ignored */
void __interrupt fn3 (int arg) ; /* warning will be issued and __interrupt will be ignored */

4.4.3 Interpreting Declarations

‘C’ programming language syntax for declaring objects is unlike the declaration syntax of other languages.
The exact meaning of a complex ‘C’ declaration is not always immediately apparent. A complex
declarator is an identifier qualified by more than one array, pointer or function modifier.

In interpreting complex declarators, brackets and parentheses (that is modifiers to the right of the identifier)
take precedence over asterisks (that is modifiers to the left of the identifier).

Brackets and parentheses have same precedence and associate from left to right. After the declarator is
fully interpreted, the type specifier is applied as the last step. By using parentheses default association
order can be overridden and a particular interpretation can be forced.

A simple way to interpret complex declarators is to read them from inside out using the following steps :

1. Start with the identifier and look to the right for brackets or parentheses (if any).

2. Interpret these brackets or parentheses, then look to the left for asterisks.

3. If a right parenthesis is encountered at any stage, go back and apply rules 1 and 2 to everything
with in the parentheses.

4. Finally apply the type specifier.

Example 4.14

char * (* (* cpvar)())[20] ;
^ ^ ^ ^ ^ ^ ^
7 6 4 2 1 3 5

CC665S Ver.2.01 Language Reference

Page 48

In the example the steps are labeled and can be interpreted as follows :

1. The identifier cpvar is declared as
2. a pointer to
3. a function returning
4. a pointer to
5. an array of 20 elements, which are
6. pointers to
7. char values.

Array of pointers to int values may be declared as shown below.

Example 4.15

int * variable [5] ;

The following example shows how a pointer to array of int values is declared.

Example 4.16

int (* var) [5] ;

Example 4.17

char *fn (int, char) ;

In example 4.17, a declaration to a function returning a pointer to a char, and which takes two arguments
as int and a char is specified.

A declaration for a pointer to function returning a float and taking no argument is given below.

Example 4.18

float (*fn1)(void) ;

A declaration for a function returning a pointer to far memory is given below:

Example 4.19

int __far * ffn () ; /* ffn is function returning a far pointer */

A declaration for a pointer to far function is given below:

Example 4.20

int (__far * pfn) () ; /* pfn is pointer to far function */

Declarations

Page 49

A declaration for a far function returning a pointer to far memory is given below:

Example 4.21

int __far * __far ffnfptr () ; /* ffnfptr is a far function returning a far pointer */

4.5 VARIABLE DECLARATIONS

This section describes the form and meaning of variable declarations.

Syntax :
[sc-specifier] type-specifier declarator[,declarator]

In particular, this section explains how to declare the following :

Simple variables : Single value variables with integral floating-point type

Structures : Variables composed of a collection of values that may have different types

Unions : Variables composed of several values of different types, which occupy the same
storage space

Arrays : Variables composed of a collection of elements with the same type

Pointers : Variables that point to other variables and contain variable locations (in the form of
addresses) instead of values.

4.5.1 Simple Variable Declarations

Syntax :
[sc-specifier] type-specifier declarator [,declarator]

The declaration of a simple variable specifies the variable name and type. It can also specify the storage
class of the variable. The identifier in the declaration is the name of a variable. The type-specifier is the
name of a defined data type.

A list of identifiers separated by comma can be listed to specify several variables in the same declaration.
Each identifier in the list names a variable. All variables defined in the declaration have the same type.

CC665S Ver.2.01 Language Reference

Page 50

Example 4.22

int x ; /* declares a simple integer variable */

unsigned long int lvar1, lvar2 ; /* two variables unsigned long int type is declared */

const int init = -1 ; /* declares an int variable, qualified by const and
initialized to -1 */

int __far fvar ; /* declares fvar as int variable that is located in far data
memory */

int __far fvar, nvar ; /* declares fvar as int variable that is located in far data
memory , but nvar is in near memory*/

4.5.2 Structure Declarations

Syntax :
struct [tag] {member-declaration-list} [declarator [,declarator]...];
struct tag [declarator[,declarator]...];

A structure declaration names a structure variable and specifies a sequence of variable values (called
members of the structure) that can have different types. A variable of that structure type holds the entire
sequence defined by that type.

Structure declarations begin with the struct keyword and have two forms :

∗ In the first form, a member-declaration-list specifies the types and names of the structure members.
The optional tag is an identifier that names the structure type defined by member-declaration-list.

∗ The second form uses a previously defined structure tag to refer to a structure type defined elsewhere.
Thus member-declaration-list is not needed as long as the definition is visible. Declarations of pointers
to structures and typedefs for structure types can use the structure tag before the structure type is
defined. However, the structure definition must be encountered prior to any actual use of the structure
members, typedef or pointer.

In both forms, each declarator specifies a structure variable. A declarator may also modify the type of the
variable to a pointer to the structure type, an array of structures or a function returning a pointer to the
structure type. If tag is given, but declarator does not appear, the declaration constitutes a type declaration
for a structure tag.

Structure tags must be distinct from other structure / union / enum tags with the same visibility.

Declarations

Page 51

A member-declaration-list argument contains one or more variable or bit-field declarations.

Each variable declared in the member-declaration-list is defined as a member of the structure type.
Variable declarations within the member-declaration-list have the same form as simple variable
declarations, except that the declarations cannot contain storage class specifiers or initializers. The
member can have any variable type :basic, array, pointer, structure or union.

A member cannot be declared to have the type of the structure in which it appears. However, a member
can be declared as a pointer to the structure type in which it appears as long as the structure type has a tag.
This facilitates the creation of linked lists of structures.

A bit-field declaration has the following form :
type-specifier [identifier] : constant-expression;

The constant-expression specifies the number of bits in the bit-field. The type specifier may be unsigned
char or unsigned int. If the type specified is signed char, signed int, int or char, CC665S issues
warning message and treats them as unsigned. However, if /J option is specified no warning is issued for
char specified bit fields, as it is treated as unsigned char. Constant-expression must be a non-negative
integer value which takes values from 0 to 8 for unsigned char members and 0 to 16 for unsigned int
members. Array of bit-fields, pointers to bit-fields and functions returning bit-fields are not allowed. The
optional identifier names the bit-field. Named bit-fields cannot have bit-width of 0. Unnamed bit-fields can
be used as dummy fields for alignment purposes. An unnamed bit-field whose width is specified as 0
guarantees that storage for the member following it in the member-declaration-list begins on an integral
boundary.

Each identifier in a member-declaration-list must be unique within the list. However, they do not have to be
distinct from ordinary variable names or from identifiers in other member-declaration lists.

Storage

Structure members are stored sequentially in the order in which they are declared: the first member has the
lowest memory address and the last member the highest. Storage for each member begins on a memory
boundary appropriate to its type. Therefore, unnamed spaces (holes) may appear between the structure
members in memory.

CC665S Ver.2.01 Language Reference

Page 52

Sequence of bits are packed as tightly as possible. Consecutive bit-field members of type char are stored
in the same byte location, as long as their cumulative size is within character size. Similarly, consecutive
bit-field members of type int are stored in the same word location, as long as their cumulative size is within
integer size. If the total size exceeds character size for consecutive char bit field members, as a result of a
new bit-field member, a new character is allocated for the new bit-field member. Similarly, if the total size
exceeds integer size for consecutive integer bit field members, as a result of a new bit-field member, a new
integer is allocated for the new bit-field member. If a bit field member of type char is followed by another
bit field member of type int, or a bit field member of type int is followed by another bit field member of
type char, storage for the new member starts from the next even address boundary.

Example 4.23

i. struct inv_type {
char item [40] ;
float cost ;
float retail ;
int item_on_hand ;
int lead_time ;

} inv_vara, inv_varb, inv_varc ;

This declares a structure type called inv_type and declares variables inv_vara, inv_varb, inv_varc.

ii. struct inv_type invntry[100] ;

The above examples declares a 100 element array of structures of type inv_type.

iii. struct symbol_table {
char *name ;
int type ;
unsigned int scope : 2 ;
unsigned int sign : 1 ;
unsigned int qualy : 1 ;
struct symbol_table * next ;

} *global ;

The above example declares a pointer to a structure of type symbol_table. The structure has a pointer to
itself. It has three bit-fields and two other members.

Declarations

Page 53

iv. struct {
unsigned char char_bit1 : 2 ;
unsigned char char_bit2 : 4 ;
unsigned int int_bit1 : 8 ;
unsigned int int_bit2 : 1 ;

}bit_field_str ;

The above example declares a structure that has both char bit fields and int bit fields.

4.5.3 Union Declarations

Syntax :
union [tag] {member-declaration-list} [declarator [,declarator]...];
union tag [declarator[,declarator]...];

A union declaration names a union variable and specifies variable values, called members of the union, that
can have different types. A variable with union type stores one of the values defined by that type.

Union declarations have the same form as structure declarations, except that they begin with the union
keyword instead of the struct keyword. The same rules govern structure and union declarations.

Storage

The storage associated with a union variable is the storage required for the largest member of the union.
When a smaller member is stored, the union variable may contain unused memory space. All members are
stored in the same memory space and start at the same address. The stored value is overwritten each time
a value is assigned to a different member.

All members in the union are aligned with the lower memory address of the storage allocated.

Example 4.24

union union_type {
int intvar ;
char charvar ;

} union_var ;

The above defines an union with union_type, and declares a variable union_var, that has two members
intvar and charvar.

The maximum number of levels to which structures or unions may be nested is restricted to 16.

CC665S Ver.2.01 Language Reference

Page 54

4.5.4 Enumeration Declarations

Syntax :
enum [tag] {enum-list} [declarator [, declarator]...] ;
enum tag [declarator [,declarator]...] ;

An enumeration declaration gives the name of an enumeration variable and defines a set of named integer
constants (the enumeration set). A variable with enumeration type stores one of the values of the
enumeration set defined by that type. The integer constants of the enumeration set have int type.

Variables of enum type are treated as if they are of type int. They may be used in indexing expressions and
as operands of all arithmetic and relational operators.

Enumeration declarations begin with the enum keyword, have the two forms shown at the beginning of this
section. This is described below:

∗ In the first form, enum-list specifies the values and names of the enumeration set. (The enum-list is
described in detail below.) The optional tag is an identifier that names the enumeration type defined by
enum-list. The declarator names the enumeration variable. Zero or more enumeration variables may be
specified in a single enumeration declaration.

∗ The second form of the enumeration declaration uses a previously defined enumeration tag to refer to
an enumeration type defined elsewhere. The tag must refer to a defined enumeration type, and that
enumeration type must be currently visible. Since the enumeration type is defined elsewhere, enum-list
does not appear in this type of declaration. Declarations of pointers to enumerations and typedef
declarations for enumeration types can use the enumeration tag before the enumeration type is defined.
However, the enumeration definition must be encountered prior to any actual use of the typedef
declaration or pointer.

In both forms of declaration, if a tag argument is given, but no declarator is given, then it constitutes a
declaration for an enumeration tag.

An enum-list has the following form:

identifier [= constant-expression]

[, identifier [= constant-expression] ...]

Each identifier in an enumeration list names a value of the enumeration set. By default, the first identifier is
associated with the value 0, the next identifier is associated with value 1, and so on through the last
identifier in the declaration. The name of an enumeration constant is equivalent to its value.

Declarations

Page 55

The optional phrase = constant-expression overrides the default sequence of values. Thus, if identifier =
constant-expression appears in enum-list, the identifier is associated with the value given by constant-
expression. The constant-expression must have int type and can be negative. The next identifier in the list
is associated with the value of constant-expression + 1, unless it is explicitly associated with another value.

The following rules apply to the members of an enumeration set :

∗ Two or more identifiers in an enumeration set can be associated with the same value.

∗ The identifiers in the enumeration list must be distinct from other identifiers with the same visibility,
including ordinary variable names and identifiers in other enumeration lists.

∗ Enumeration tags must be distinct from other enumeration, structure, and union tags with the same
visibility.

Example 4.25

enum levels_tag
{

start, /* value = 0 */
primary, /* value = 1 */
secondary, /* value = 2 */
final /* value = 3 */

} levels ;

This example defines an enumeration type named levels_tag and declares a variable named levels with that
enumeration type. The values associated with identifiers are shown in comments.

Example 4.26

enum constants
{

very_low, /* value = 0 */
low = 10, /* value = 10 */
medium, /* value = 11 */
high = 20, /* value = 20 */
very_high /* value = 21 */

} ;

const enum constants speed = high ;

In this example, a value from the set named constants is assigned to a variable named speed. Since the
constants enumeration type has already been declared, only the enumeration tag is necessary.

CC665S Ver.2.01 Language Reference

Page 56

4.5.5 Array Declarations

Syntax :
type-specifier declarator [constant-expression] ;
type-specifier declarator [] ;

An array declaration names the array and specifies the types of its element. It may also define the number
of elements in the array. A variable with array type is considered a pointer to the type of the array elements.

Array declarations have two forms as shown in the syntax.

∗ In the first form, the constant-expression argument within the brackets specifies the number of
elements in the array. Each element has the type given by type-specifier, which can be any type except
void.

∗ The second form omits the constant-expression argument in brackets. This form can be used only if the
array is initialized, or declared as a formal parameter, or declared as a reference to an array explicitly
defined elsewhere in the program.

In both forms, declarator names the variable and may modify the type of a variable. The brackets ([])
following declarator modify the declarator to array type.

A multidimensional array can be declared by following the declarator with a list of bracketed constant
expressions as shown below :

type-specifier declarator[constant-expression] [constant-expression]

Each constant-expression in brackets defines the number of elements in a given dimension. In case of
multidimensional array the first constant-expression can be omitted if it is initialized or if it is declared as a
formal parameter or if it is a reference to an array explicitly defined elsewhere in the program. If the value
of the constant expression is zero, the compiler outputs an error message.

Arrays of pointers to various types of objects can be declared using complex declarators.

Storage

The storage associated with an array type is the storage required for all of its elements. The element of an
array are stored in contiguous and increasing memory locations from the first element to the last. No blanks
separate the array element in storage. Arrays are stored in row major order. For example the following
array consists of two rows with three columns each :

int list [2][3] ;

Declarations

Page 57

The three columns of the first row are stored first, before the three columns of second row. This means that
the last subscript varies most quickly.

Limitations

∗ The size of an array is restricted to 65535 bytes.

Example 4.27

int values [25] ; /* declares an array variable named values with 25 elements each
having type int */

long two_dim_array [2][10] ; /* declares a two dimensional array of long type having 20
elements.*/

struct tag
{

int ivar ;
long lvar ;

} array_of_structures [10] ;
/* Declares an array of structures having 10 elements. */

char *arr[25] ; /* declares an array of 25 char pointers */
char *arr[0] ; /* compiler issues error message */

4.5.6 Pointer Declarations

Syntax :
type-specifier [memory_function_qualifier_list] * [modification-spec] declarator ;

A pointer declaration names a pointer variable and specifies the type of the object to which the variable
points. A variable declared as a pointer holds a memory address.

The type-specifier gives the type of the object, which can be any basic, structure or union type. Pointer
variables can also point to functions, arrays and other pointers.

By making type-specifier void, programmer can delay specification of the type to which the pointer refers.
Such an item is referred to as a pointer to void (void *). A variable declared as a pointer to void can be
used to point to an object of any type. However, in order to perform operations on the pointer or on the
object to which it points, the type to which it points must be explicitly specified for each operation. Such
conversion can be accomplished with a type cast.

The modification-spec can be either const or volatile, or both. These specify, respectively, that the
pointer will not be modified by the program itself (const), or that the pointer may legitimately be modified
by some process beyond the control of the program (volatile).

CC665S Ver.2.01 Language Reference

Page 58

Example 4.28

char * volatile * const buffer ;
/* ‘buffer’ is a location in ROM, whose content is constant. But the contents of the location pointed
to by ‘buffer’ may change beyond the control of program */

A const modification-spec also qualifies the pointer to be in Code Memory (ROM). Each level of
indirection in a pointer declaration must be qualified as const if that indirection points to a location in Code
Memory (ROM).

Example 4.29

int * const ptr ; /* ptr is a location in ROM, whose content points to a RAM location */
int const * const iptr ; /* iptr is a location in ROM, whose contents also point to a location in ROM */

The declarator names the variable and can include a type modifier. For example, if declarator represents
an array, the type of the pointer is modified to pointer to array.

A pointer can also be qualified as a far pointer by specifying __far keyword immediately to it’s left. A far
pointer contains a far address of an object. Each level of indirection in a pointer declaration must be
qualified as __far if that indirection points to a far memory location.

Example 4.30

int * __far fptr1 ; /* fptr1 is a location in far segment, whose content points to an
object in default segment */

int __far * fptr2 ; /* fptr2 is a location in default segment, whose content points to
an object in far segment */

int __far * __far fptr3 ; /* fptr3 is a location in far segment , whose contents also point
to a location in far segment */

Storage

The amount of storage required for an address depends on the memory model selected. If the pointer
points to near or effective near memory, the size of the pointer is 2 bytes. If the pointer points to far, nfar,
xnear, effective xnear memory or large memory, the size of the pointer is 4 bytes.

Example 4.31

char *string ; /* a pointer to character named string */
long *arr_of_pntrs [10] ; /* array of pointers to long */
void (*pf)(int) ; /* pointer to a function returning no values. The function

takes an integer argument */
 struct inv_type *left, *right ; /* declares two pointers to a structure of inv_type */
char **p ; /* declares a pointer to pointer of characters */

Declarations

Page 59

4.6 FUNCTION DECLARATIONS AND PROTOTYPES

Syntax :
[sc-specifier] [type-specifier] declarator([declarator] [[,declarator]...])

A function declaration also called a function prototype establishes the name and return type of a function
and may specify the types, formal parameter names and number of arguments to the function. A function
declaration does not define the function body. It simply makes information about the function known to the
compiler. This information enables the compiler to check the types of the actual arguments in ensuing calls
to the function.

If the expression that precedes the parenthesized argument list in a function call consists solely of an
identifier, and if no declaration is visible for this identifier, the identifier is implicitly declared exactly as if, in
the innermost block containing the function call. This implicit declaration is visible only in that particular
block.

The sc-specifier represents a storage-class specifier; it can be either extern or static.

The type specifier gives the function return type and the declarator names the function. If type specifier is
omitted, the function is assumed to return a value of type int.

The formal parameter is described in subsection 4.6.1. The final declaration-list represents further
declaration on the same line. These may be other functions returning values of the same type as the first
function or declarations of variables whose type is same as the first function’s return type. Each such
declaration must be separated from its predecessors and successors by a comma.

4.6.1 Formal Parameters

Formal parameters correspond to the actual parameters that can be passed to a function. In a function
declaration, parameter declaration establishes the number and types of the actual arguments. They can
also include identifiers of the formal parameters. These parameter declaration influence the argument
checking done on function calls that appear before the compiler has processed the function definition.

A partial list of formal parameters may be declared using the above syntax. The formal parameter list must
contain at least one declarator. Variable number of parameters may be indicated by ending the list with a
comma followed by three periods (,...) referred to as the “ellipsis notation”. A function is expected to have
at least as many arguments as there are declarators or type specifiers preceding the last comma.

CC665S Ver.2.01 Language Reference

Page 60

Example 4.32

int function1 (int number_of_items,...) ;

Structure or Union variables may also be passed as actual arguments to functions. The formal parameter
list may also contain parameters of structure or union type.

Example 4.33

int function2 (struct a_tag arg, union v_tag value) ;

Identifiers used to name the formal parameters in the prototype declaration are descriptive only. They go
out of scope at the end of the declaration. Therefore, they need not be identical to the identifiers used in the
declaration portion of the function definition. Using the same names may enhance readability, but this use
has no other significance.

4.6.2 Return Type

Functions can return values of any type except arrays and functions.

Example 4.34

struct tag
{

int a ;
long b ;

} input_structures[10] ;

struct tag
get_structure (int value)
{

return (input_structures [value]) ;
}

4.6.3 List Of Formal Parameters

All elements of the formal-parameter-list argument appearing within the parentheses following the function
declarator are optional.

Syntax :
[type-specifier] [declarator[[,...][,...]]]

Declarations

Page 61

If formal parameters are omitted in the function declaration, the parentheses should contain the keyword
void to specify that no arguments will be passed to the function. If the parentheses are left empty, no
information about whether arguments will be passed to the function is conveyed and no checking of
argument types is performed.

A declaration in the formal parameter list can contain only the auto storage class specifier. If the type
specifier is included, it can specify the type name for any basic type or pointer type. The declarator can be
formed by combining a type specifier, plus the appropriate modifier with an identifier. Alternately an
abstract declarator, that is a declarator without a specified identifier, can be used. At section 4.10 abstract
declarators are explained.

Example 4.35

void function (void) ; /* declares a function with no return value and no arguments */

long fn (int, char) ; /* declares a function, which takes two arguments of int and
char type and which returns a value long */

char *strtok(char s[],char c) ; /* declares a function which returns a pointer to character
and takes two arguments char array and char */

struct inv_type *sfn () ; /* declares a function that returns a pointer to a structure of
type inv_type and the number of arguments and argument
types are undefined */

4.6.4 Memory Model Qualifiers For Functions

A function can be qualified as __far or __nfar. Functions qualified with __far may not be placed in default
segment. These functions are called through large addressing. Functions qualified with __nfar are placed
in default segment. They too are called through large addressing, but their segment address is always 0. A
function qualified with __far cannot call a near function. However, it can call a function that is qualified with
either __far or __nfar. Functions that are not qualified with __far can call near, __nfar and __far
functions. Therefore, if a function that is qualified with __far has to call a near function, then it has to call a
nfar qualified function, which in turn calls a near function.

Example : 4.36

int __far ffn () ;
int nfn () ;
int __nfar nffn () ;

CC665S Ver.2.01 Language Reference

Page 62

int __far ffn ()
{

nfn () ; /* error : a far function cannot call near functions */
nffn () ;

}

int __nfar nffn ()
{

nfn () ; /* nfar functions can call near functions */
nffn () ;

}

4.6.5 Function Qualifiers For Functions

CC665S supports __accpass, __noacc and __interrupt keywords that can qualify functions only.
When a function is qualified with __accpass, the first argument and the return value are placed in the
Accumulator. However, if /REG option is specified all functions are assumed to be qualified with
__accpass, except those that are qualified with __noacc. If a function is qualified with both __accpass
and __noacc, error is issued.

__interrupt keyword can be used to qualify a function as an interrupt function. These functions cannot
take or return values.

4.7 STORAGE CLASS SPECIFIERS

The storage class of a variable determines whether the item has a global lifetime or local lifetime. An item
with a global lifetime exists and has a value throughout the execution of the program.

All functions have global lifetimes.

Variables with local lifetime are allocated new storage each time execution control passes to the block in
which they are defined. When execution control passes out of the block, the variable no longer has
meaningful values.

CC665S provides the following 5 storage class specifiers.

1. auto
2. static
3. extern
4. typedef
5. register

Declarations

Page 63

Items declared with auto storage class specifier have local lifetimes. Items declared with static or extern
specifier have global lifetimes.

The typedef specifier does not reserve storage and is called a storage class specifier only for syntactic
convenience. It is described in section 4.9.2.

The register storage class specifier causes the compiler to store the variable in a register, if possible.
Register storage accelerates access time and reduces code size. Variables declared with register storage
class have the same visibility as auto variables.

If registers are not available when the compiler encounters a register declaration, the variable is given auto
storage class and treated accordingly. For variables declared as register, the address operator (unary &)
cannot be applied.

Example 4.37

register int count ;
register index ;

The storage class specifiers have distinct meanings because storage class specifiers affect the visibility of
functions and variables as well as their storage class. The term visibility refers to the portion of the source
program in which the function or variable can be referenced by name. An item with a global lifetime exists
throughout the execution of the source program, but it may not be visible in all parts of the program.

The placement of variable and function declarations within source files also affect storage class and
visibility. Declarations outside all function definitions are said to appear at the external level; declarations
within function definitions appear at the internal level.

The exact meaning of each storage class specifier depends on two factors :

∗ Whether the declaration appears at the external or internal level

∗ Whether the item being declared is variable or function.

The following subsections describes the meaning of storage class specifiers in each kind of declaration and
explain the default behavior when the storage class specifier is omitted from a variable or function
declaration.

4.7.1 Variable Declarations At The External Level

In variable declarations at the external level (that is, outside all functions), the static and extern storage
class specifiers can be used or the storage class specifier can be omitted entirely. The storage class
specifier auto cannot be used at the external level.

CC665S Ver.2.01 Language Reference

Page 64

Variable declarations at the external level are either definitions of variables (defining declarations) or
references to variables defined elsewhere (referencing declarations).

An external variable declaration that also initializes the variable is a defining declaration of the variable.

A definition at the external level can take several forms :

∗ A variable declared with the static storage class specifier is a definition of that variable. Both const
and non-const static variable can be initialized with a constant-expression. For example static int x;
and const static int y = 10; are considered definitions of variables ‘x’ and ‘y’.

∗ A variable that is explicitly initialized at the external level are definitions of that variable. CC665S
allows initialization of both const and non-const specified variables at the external level. For example,
const int i = 10 and int y = 20 are the definitions of the variable ‘i’. and ‘y’ respectively.

Once a variable is defined at the external level, it is visible throughout the rest of the source file in which it
appears. The variable is not visible prior to its definition in the same source file. Also, it is not visible in other
source files of the program, unless a referencing declaration makes it visible, as described below.

A variable can be defined only once at the external level. If static storage class is used, another variable
can be defined with the same name and static storage class in a different source file. Since each static
definition is visible only within its own source file, no conflict occurs.

The extern storage class specifier declares a reference to a variable defined elsewhere. The extern
declaration can be used to make a definition in another source file visible or to make variable visible before
its definition in the same source file. The extern declaration makes a variable visible throughout the
remainder of the source file in which the declaration occurs.

For an extern reference to be valid, the variable must be defined only once at the external level. The
definition can be in any of the source files that form the program.

One special case is the omission of both the storage class specifier and the initializer from a variable
declaration at the external level; for example, the declaration int a; is a valid external declaration. This
declaration can have one of two different meanings depending on the context:

∗ If there is an external declaration of a variable with the same name elsewhere in the program, the
current declaration is assumed to be a reference to the variable in the defining declaration as if the
extern storage class specifier has been used in the declaration.

Declarations

Page 65

∗ If there is no external declaration of a variable elsewhere in the program, the declared variable is
allocated storage at link time. This kind of variable is known as communal variable. If more than one
such declaration appears in the same program but in different source files, storage is allocated for the
largest size declared for the variable. For example if file1 contains the declaration int i; and file2
contains the declaration long i; and file1 and file2 form part of a same program, then storage space for
a long value is allocated for ‘i’ at link time.

Example 4.38

/* FILE1 */
extern int global_variable ; /* reference to global_variable defined below */

main ()
{

global_variable = global_variable + 100 ;
file1_function () ;

}

int global_variable ; /* definition of global_variable */

file1_function ()
{

file2_function () ;
global_variable -= 100 ;

}

/* FILE2 */
extern int global_variable ; /*reference to global_variable*/
static int file2variable ; /*definition of file2variable, file2variable visible only in FILE2 */

file2_function ()
{

global_variable += 10 ;
return ;

}

4.7.2 Variable Declarations At The Internal Level

The storage class specifiers auto, extern and static can be used for variable declarations at internal level.
When storage class specifier is omitted from such a declaration, the default storage class specifier is auto.

CC665S Ver.2.01 Language Reference

Page 66

The local storage class specifier declares a variable with a local lifetime. An auto variable is visible only in
the block in which it is declared. Declarations of auto variables can include initializer. Since auto variables
are not initialized automatically, either they should be initialized explicitly or should be assigned initial values
using statements within the block. The values of uninitialized auto variables are undefined.

A static local variable can be initialized with the address of any external or static item, but not with the
address of a non static auto item, because the address of an auto item is not a constant.

A variable declared with the static storage class at the internal level has a global lifetime but is visible only
within the block in which it is declared. Unlike auto variables, static variables keep their values upon exit
from the block. A const qualified static variable is initialized only once, when the program execution
begins; it is not initialized each time the block is entered.

A variable declared with the extern storage class specifier is a reference to a variable with the same name
defined at the external level in any of the source files of the program. The internal extern declaration is
used to make the external level variable definition visible within the block. Unless otherwise declared at the
external level, a variable declared with the ‘extern’ keyword at the internal level is visible only in the block
in which it is declared.

Example 4.39

/********* FILE1 **********/
main ()
{

extern int a ; /* reference to ‘a’ defined in FILE2 */
static int b ; /* global lifetime, visible only within this function */
int c = 0 ; /* default storage class is auto, initialized to zero each time control

enters this function */

file2 () ;
}

/************FILE2 ************/
int a ;
int c ;

file2 ()
{

int a ; /* Global ‘a’ is redefined, global ‘a’ is no longer visible */
static int * d = &c ; /* Address of global ‘c’ is used to initialize ‘d’.

Initialization is not done each time control enters the function,
it is done only during the beginning of execution */

a = c ;
}

Declarations

Page 67

4.7.3 Function Declarations At The Internal And External Levels

Function declarations can have either the static or extern storage class specifiers. Functions always have
global lifetime.

The visibility rules for functions vary slightly from the rules for variables as follows :

∗ A function declared to be static is visible only within the source file in which it is defined. Functions in
the same source file can call static functions, but functions in other source files cannot. Another static
function with the same name in a different source file can be used without conflict.

∗ Functions declared as extern are visible throughout all the source files that make up the program,
unless it is later redeclared as static. Any function can call an extern function.

∗ Function declarations that omit the storage class specifier are extern by default.

4.8 INITIALIZATION

Syntax :
= initializer

A variable can be set to an initial value by applying an initializer to the declarator in the variable declaration.
The value or values of the initializer is assigned to the variables. An equal sign (=) precedes the initializer.

The following rules apply for initialization :

∗ Both const and non-const qualified variables declared at the external level can be initialized. If const
qualified variables are not initialized at external level, they are assigned value 0.

∗ Variables declared with auto storage class specifier are initialized each time control passes to the block
in which they are declared. If an initializer is omitted from the declaration of an auto variable, the initial
value of the variable is undefined. Both aggregate (array, structure and unions) and non aggregate
variables can be initialized.

CC665S Ver.2.01 Language Reference

Page 68

∗ The initial values for external variable declaration and for all static variables, whether external or
internal, must be constant expressions. Either constant or variable values can be used to initialize auto
variables.

∗ The const qualifier also causes an item to be placed in Code Memory (ROM). Strings and values used
for initialization are placed in Code Memory.

Example 4.40

char *volatile input_buf ;
const int integer_var1, integer_var3 ;
int integer_var2 ;
long long_var = 4 ; /* CORRECT */
char * err_ptr = “pointer” ; /* ERROR */
const char * error_ptr = “pointer” ; /* CORRECT*/
const char * const ptr = “pointer”; /* CORRECT */
char * volatile * const buffer = &input_buf ; /* CORRECT */
const int * var_ptr = &integer_var1 ; /* CORRECT*/
int * const var_ptr1 = &integer_var2 ; /* CORRECT */
const int * const var_ptr2 = &integer_var3 ; /* CORRECT */

The following subsections describe how to initialize variables of fundamental, pointer and aggregate types.

4.8.1 Fundamental And Pointer Types

Syntax :
= expression

The value of expression is assigned to the variable. The conversion rules for assignment apply. Refer Sec
5.31.

An internally declared static variable can only be initialized with a constant value. Since the address of any
externally declared or static variable is constant, it may be used to initialize an internally declared static
pointer variable. However the address of an auto variable cannot be used as an initializer because it may
be different for each execution of the block.

Declarations

Page 69

Example 4.41

long lv = 100 ; /* lv is initialized to the constant value 100 */
static const int * const scp = 0 ; /* The pointer scp is initialized to zero */
int x ;
int * const y = &x ; /* The pointer y is initialized with address of x */
int z = 10; /* data memory variable z is initialized to 10 */
const int m ; /* by default m is initialized to 0 */

func ()
{

int local1 = 10 ; /* legal initialization */
static int local = 100 ;
int *p = &z ; /* valid, address of global variable can be used in

initialization */
static int *const lp = &local1 ; /* invalid, address of local variables cannot be used to

initialize a static variable */
}

4.8.2 Aggregate Types

Syntax :
= {initializer-list}

The initializer-list is a list of initializers separated by commas. Each initializer in the list is either a constant
expression or an initializer list. Therefore, an initializer-list enclosed in braces can appear within another
initializer-list. This form is useful for initializing aggregate members of aggregate type.

For each initializer-list, the values of the constant expressions are assigned, in order, to the corresponding
members of the aggregate variable. When an union is initialized, initializer-value is assigned to the first
member of the union.

If initializer-list has fewer values than an aggregate type, space is reserved for the remaining members or
elements of the aggregate type. If initializer-list has more values than an aggregate type, an error results.
These rules apply to each initializer-list, as well as to the aggregate as a whole.

Example 4.42

int x [] = {1,2,3} ;

The above example declares and initializes ‘x’ as an one-dimensional array with three members, since no
size is specified and there are three initializers.

CC665S Ver.2.01 Language Reference

Page 70

Example 4.43

long y [4][3] = {
{1, 4, 7},
{2, 5, 8},
{3, 6, 9},

} ;

is a completely-bracketed initialization: 1,4 and 7 initialize the first row of the array y[0] namely y[0][0],
y[0][1] and y[0][2]. Likewise the next two lines initialize y[1] and y[2]. The initializer ends early and,
therefore, space is reserved for the elements of y[3]. Precisely the same effect could have been achieved
by

Example 4.44

long y [4][3] = { 1,4,7,2,5,8,3,6,9 } ;

The initializer for ‘y’ begins with the left brace, but that for y[0] does not; therefore, three elements from the
list are used. Likewise the next three are taken successively for y[1] and y[2].

The initialization

Example 4.45

const long y [4][3] = { {1}, {2}, {3}, {4} } ;

initializes the first column of the array, namely y[0][0], y[1][0], y[2][0] and y[3][0] with 1,2,3 and 4
respectively and reserves space for the rest. As the variable is qualified with const, the remaining locations
are initialized to 0.

4.8.3 String Initializers

Syntax :
= “characters”

An array of characters can be initialized with a string literal. For example,

Example 4.46

char str_arr [] = “abc” ;

Declarations

Page 71

initializes str_arr as a four element array of characters. The fourth element is the null character which
terminates all string literals. If array size is specified and the string is longer than the specified array size, the
extra characters are simply ignored and a warning message is displayed. For example, the following
declaration initializes str_arr as a three element character array.

Example 4.47

const char str_arr[3] = “abcd” ;

Only the first three characters of the string are assigned to ‘str_arr’. The character ‘d’ and the string
terminating null character are discarded. This creates an unterminated string and a warning message is
generated indicating the condition. If the string is shorter than the specified array size, space is kept aside
for the remaining elements of the array.

4.9 TYPE DECLARATION

A structure or union type declaration defines the name and members of a structure or union type. The name
of a declared type can be used in variable or function declarations to refer to that type. This is useful if many
variables and functions have the same type.

A typedef declaration defines a type specifier for a type. A typedef declaration can be used to form shorter
or more meaningful names for types already defined by or for types declared by the programmer.

4.9.1 Structure And Union Types

Declarations of structure and union types have the same general form as variable declarations of those
types. However, structure and union type declarations and structure and union variable declarations differ
in the following ways :

∗ In structure and union type declarations variable is omitted.

∗ In structure and union type declaration tag is required; it names the structure or union type.

∗ The member declaration list defining the type must appear in the structure and union type declaration.

CC665S Ver.2.01 Language Reference

Page 72

Example 4.48

struct tag {
int x ;
char arr[20] ;

} ;

The above example declares a structure type named tag.

4.9.2 Typedef Declarations

Syntax :
typedef type-specifier declarator[,declarator]...;

A typedef declaration is analogous to a variable declaration except that the ‘typedef’ keyword replaces
a storage class specifier. A typedef declaration is interpreted in the same way as a variable or function
declaration, but the identifier, instead of assuming the type specified by the declaration, becomes a
synonym for the type.

A typedef declaration does not create types. It creates synonyms for existing types, or names for types
that could be specified in other ways. Any type including pointer, function and array types can be declared
with typedef. A typedef name can be declared for a pointer to a structure or union type also.

Example 4.49

typedef int fixed_point ; /* ’fixed_point’ is synonym for ‘int’. Therefore declaring
fixed_point x ; is equivalent to declaring int x ;*/

typedef struct {
float y ;
long x ;

} COMPLEX ;

COMPLEX *sp ;

Declares COMPLEX as a structure type with 2 members. COMPLEX can be used in further
declarations.

 COMPLEX *sp ; /* declares a pointer sp to the structure of type COMPLEX */

Declarations

Page 73

4.10 TYPE NAMES

A type name specifies a particular data type, in addition to ordinary variable declarations and defined type
declarations, type names are used in three contexts :

∗ In the formal parameter list of function declarations (prototypes)
∗ In type casts
∗ In sizeof operations.

Formal parameter lists are discussed in section 4.6.1.

The type names for fundamental, structure and union types are simply the type specifiers for those types. A
type name for the pointer, array or function type has the following form:

type-specifier abstract-declarator

An abstract declarator is a declarator without an identifier, consisting of one or more pointer, array or
function modifiers. The pointer modifier (*) always precedes the identifier in a declarator; array ([]) and
function (()) modifiers always follow the identifier. Knowing this, one can determine where the identifier
would appear and interpret the declarator accordingly.

Abstract declarators can be complex. Parentheses in a complex abstract declarator specify a particular
interpretation, just as they do for the complex declarators in declarations. The type specifiers established
by typedef declarations also qualify as type names.

Example 4.50

int * ; /* type name for pointer to int */
long (*)[5] ; /* type name for a pointer to an array of long elements */
int (*)(void) ; /* typename for a pointer to a function, with no arguments and returning int

type. */

4.11 FUNCTIONS

A function is an independent collection of declarations and statements, usually designed to perform a
specific task. ‘C’ programs have atleast one function, the ‘main’ function, and can have other functions.
The following subsections describe how to define, declare and call ‘C’ functions.

CC665S Ver.2.01 Language Reference

Page 74

4.11.1 Function Definitions

Syntax :
[sc-specifier][type-specifier] declarator([formal-parameter-list])
function-body

[sc-specifier][type-specifier] declarator([identifier-list])
[parameter-declarations]
function-body

[sc-specifier] [type-specifier] declarator([declarator] [,declarator]...])
function-body

A function definition specifies the name, formal parameters and body of a function. It also stipulates the
return type and storage class of the function.

4.11.1.1 STORAGE CLASS

The sc-specifier in a function definition gives the function either extern or static storage class. If a function
definition does not include a storage class specifier, the storage class specifier defaults to extern.

A function with static storage class is visible only in the source file in which it is defined. All other functions
whether they are given extern storage class explicitly or implicitly, are visible throughout all the source files
that make up the program.

If static storage class is desired, it must be declared on the first occurrence of the declaration (if any) of the
function, and on the definition of the function.

4.11.1.2 RETURN TYPE AND FUNCTION NAME

The return type of a function establishes the size and type of the value returned by the function and
corresponds to the type-specifier in the syntax of the function definition. The type can specify any basic
type. If a type specifier is not included, the return type is assumed to be int.

Declarations

Page 75

The declarator is the function identifier, which can be modified to a pointer type. The parenthesis following
the declarator establishes the item as a function.

The return type given in the function definition must match the return type in declarations of the function
elsewhere in the program. Return type of a function is used only when the function returns a value. A
function returns a value when a return statement containing an expression is executed. The expression is
evaluated, converted to the function return value type, if necessary, and returned to the point at which the
function was called. If no return statement is executed or if the return statement does not contain an
expression, the return value is undefined.

If ‘void’ keyword is used as a type specifier, then the function cannot return a value.

4.11.1.3 FORMAL PARAMETERS

Syntax :
form1:
[sc-specifier][type-specifier] declarator([formal-parameter-list])
function-body

form2:
[sc-specifier][type-specifier] declarator([identifier-list])
[parameter-declarations]
function-body

Formal parameters are variables that receive values passed to a function by a call. In form1 of syntax, the
parentheses following the function name contain complete declarations of the formal parameters. The
formal-parameter-list is a sequence of formal parameter declarations separated by commas.

In form2 of a function definition the formal parameters are declared following the closing parentheses,
immediately before the beginning of the function body. In this form, the optional identifier-list is a list of
identifiers that the function uses as the names of formal parameters. The order of the identifiers in the list
determine the order in which they take on values in the function call. The identifier-list consists of zero or
more identifiers, separated by commas. The list must be enclosed in parentheses, even if it is empty. The
parameter-declaration establishes the type of the identifiers in form2.

If no arguments are to be passed, then the list of formal parameters can be replaced by the keyword
‘void’.

Formal parameter declarations specify the types, sizes and identifiers of values stored in the formal
parameters. In form2 these have the same form as other variable declarations. In form1 each identifier in
the formal-parameter-list must be preceded by its appropriate type specifier.

CC665S Ver.2.01 Language Reference

Page 76

Example :4.51

/* function is defined in form1 */
void form1(long a, long b, long c)
{

return ;
}

/* function is defined in form2 */
void form2 (a,b,c)
long b,c ;
long a ;
{

return ;
}

The order and type of formal parameters must be same in all the function declarations, if any, and in the
function definition. The types of the actual arguments in calls to a function must be assignment compatible
with the types of the corresponding formal parameters. A formal parameter can have basic or pointer type.

The only storage class allowed for a formal parameter is auto. Undeclared identifiers in the parentheses
following the function name have a default type int.

The identifiers of the formal parameters are used in the function body to refer to the value passed to the
function. These identifiers cannot be redefined inside the function body, at the top level. However, they can
be redefined in the inner blocks.

In form2 only identifiers appearing in the identifier list can be declared as formal parameters. In form2 the
formal parameter declarations can be in any order.

The compiler, if necessary, performs the usual arithmetic conversion on each parameter. After conversion,
no formal parameter is of type char, because all char declared formal parameters are converted to type
int.

 4.11.1.4 FUNCTION BODY

A function body is a compound statement containing statements that define what the function does. It may
also contain declarations of variables used by these statements.

All variables declared in a function body have auto storage class unless otherwise specified. When the
function is called, storage is created for the local variables. A return statement containing an expression
must be executed inside the function body if the function is to return a value.

Declarations

Page 77

4.11.2 Function Prototypes

A function prototype declaration specifies the name, return type and storage class of a function. It can also
establish types and identifiers of some or all of the arguments. The prototype has the same form as the
function definition, except that it is terminated by a semicolon immediately following the closing parenthesis
and therefore has no body.

If a call to a function precedes its declaration or definition a default prototype of the function is created by
the compiler, giving it “int” return type. The types and the number of arguments used are the basis for
declaring the formal parameters. Thus a call to a function is an implicit declaration, but the prototype
generated may not adequately represent a subsequent call or definition of the function. This implicit
declaration is valid only for the block containing the function call.

A prototype establishes the attributes of a function so that calls to the function that precede its definition
can be checked for argument and return type mismatches. If the static storage class is specified in a
prototype, then the static storage class must be specified in the function definition also.

Function prototypes have the following important uses :

∗ They establish the return types of functions that return a type other than int. If such a function is called
before definition or declaration the results are undefined.

∗ If the prototype contains a full list of parameter types, argument types occurring in a function call or
definition can be checked. The parameter list in prototype declaration is used for checking the
correspondence of actual arguments in the function call with the formal parameters in the function
definition.

∗ Prototypes are used to initialize pointers to functions before those functions are defined.

4.11.3 Function Calls

Syntax :
expression([expression-list])

A function call is an expression that passes control and actual arguments, if any, to a function. In function
call, expression evaluates to a function address and expression-list is list of expressions separated by
commas. The values of these latter expressions are the actual arguments passed to the function. If the
function takes no arguments the expression-list must be empty.

CC665S Ver.2.01 Language Reference

Page 78

When the function is executed :

1. The expression in the expression-list is evaluated and converted using the usual arithmetic conversions.
If a function prototype is available, the results of these expressions may further be converted consistent
with the formal parameter declarations.

2. The expression in expression-list are passed to the formal parameters of the called function. The first
expression in the list always corresponds to the first formal parameter of the function, the second
expression corresponds to the second formal parameter and so on through the list. Since the called
function uses copies of the actual arguments, any changes it makes to the arguments do not affect the
values of variables from which the copies may have been made.

3. Execution control passes to the first statement in the function.
4. The execution of a return statement in the body of the function returns control and possibly a value to

the calling function. If no return statement is executed, control returns to the caller after the called
function is executed. In such cases the return value is undefined.

4.11.3.1 ACTUAL ARGUMENTS

An actual argument can be any value with fundamental or pointer type. All actual arguments are passed by
value. Pointers provide a way for a function to access a value by reference.

The expressions in a function call are evaluated and converted as follows :

∗ The usual arithmetic conversions are performed on actual argument in the function call. If a prototype
is available, the resulting argument type is compared to the prototype’s corresponding formal
parameter. If they don’t match, both conversion is performed and a diagnostic message is issued.

∗ If no prototype is available, default conversions are performed on each actual argument before it is
passed to the function. In the default conversion, arguments of type ‘char’ are converted to type ‘int’
and arguments of type ‘float’ are converted to type ‘double’. A prototype is created whose formal
parameter types correspond to the types of the actual parameters after conversion.

The number of expressions in the expression-list must match the number of formal parameters in the
function prototype or function definition. If the prototype formal parameter list contains only the ‘void’
keyword, the compiler expects zero arguments in the function call and the function definition. A diagnostic
message is issued otherwise.

Declarations

Page 79

4.11.3.2 RECURSIVE CALLS

Any function in a ‘C’ program can be called recursively; that is, it can call itself. The ‘C’ compiler allows
any number of recursive calls to itself. Each time the function is called, new storage is allocated for the
formal parameters and for the auto variables, so that their values in previous, unfinished calls are not
overwritten. Variables declared as static do not require new storage with each recursive call. Their
storage exists for the lifetime of the program

4.12 ASM DECLARATION

The keyword __asm can be used to specify a ‘ASM’ statement in the following format.

__asm (string)

The above statement can occur both outside and inside a function. The processing of “__asm” statement
inside and outside a function is similar. Refer Sec 6.8.

Expression And Operators

Page 81

5. EXPRESSIONS AND
OPERATORS

5.1 OPERATORS

An expression is any series of symbols used to produce a value. The simplest expressions are constants
and variable names. Other expressions combine operators and subexpressions to produce values.

‘C’ operators can be used in conjunction with simple variable identifiers and constants to create complex
expressions. The ‘C’ operators fall into the following categories :

∗ Unary operators, which take single operand.

∗ Binary operators, which take two operands and perform a variety of arithmetic and logical operations.

∗ Conditional operator (a ternary operator), which takes three operands and evaluates either the
second or third expression, depending on the evaluation of the first expression.

∗ Assignment operators which assign a value to a variable, also converts the right-hand value to the type
of the left-hand value, before the assignment takes place.

∗ Comma operator which guarantees left to right evaluation of comma-separated expressions. The
result is the right most expression.

CC665S Ver.2.01 Language Reference

Page 82

Unary operators appear before their operand and associate from right to left. Binary operators associate
from left to right. ‘C’ has one ternary operator and it associates from right to left.

The precedence and associativity of ‘C’ operators affect the grouping and evaluation of operands in
expressions. An operator precedence is meaningful only if other operators with higher or lower
precedence are present. Expressions with higher precedence operators are evaluated first.

The following table summarizes the precedence and associativity of ‘C’ operators, listing them in order of
precedence from highest to lowest. Where several operators appear together in a line, they have equal
precedence and are evaluated according to their associativity.

Precedence and Associativity of ‘C’ Operators :

Operators Associativity
 () [] -> . Left to right
- + ~ ! * & ++ -- sizeof casts Right to left
* / % Left to right
+ - Left to right
<< >> Left to right
< <= > >= Left to right
== != Left to right
& Left to right
^ Left to right
| Left to right
&& Left to right
|| Left to right
?: Right to left
= += -= *= /= %= &= ^= |= <<= >>= Right to left
, Left to right

An expression can contain several operators with equal precedence. When several such operators appear
at the same level in an expression, evaluation proceeds according to the associativity of the operator, either
from right to left, or from left to right.

Expression And Operators

Page 83

5.2 LVALUES AND RVALUES

A variable identifier is one of the ‘C’ primary expressions. This type of expression yields a single value, the
object of the variable. However, when using the variable identifier with other operators, the expression
evaluates to the location of the variable in memory. The address of the variable is the lvalue. The object
stored at the address is the rvalue. CC665S uses rvalue and lvalue of variables in evaluation of an
expression given below :

x = y ;

The contents of variable y are assigned to variable x. In other words, the expression on the right evaluates
to the rvalue while the expression on the left evaluates to the lvalue of the expression in performance of
assignment.

The following ‘C’ expressions may be lvalue expressions :

∗ Identifier of scalar variables
∗ References to scalar elements
∗ References to structure and union variables
∗ References to structure and union members, except for references to fields which are not lvalues.
∗ References to pointers (also called dereferenced pointers; an asterisk(*) followed by an address

valued expression)
∗ Any of the above expressions enclosed in parentheses.

The above is expressed as the following syntax for lvalue :

lvalue :
identifier
expression[expression]
expression.expression
expression->expression
*expression
(lvalue)

All lvalue expressions represent a single location in memory.

CC665S Ver.2.01 Language Reference

Page 84

5.3 CONVERSIONS

Some operators may, depending on their operands, cause conversion of the value of an operand from one
type to another. This section explains the result to be expected from such conversions.

5.3.1 Integral Promotion

One of the following may be used in an expression wherever an integer may be used:

1. a character
2. an integer or character bit-field
3. an object of enumeration type.

If an int can represent all values of the original type, the value is converted to an int, otherwise, it is
converted to an unsigned int. These are called the integral promotions. All other arithmetic types are
unchanged by the integral promotions.

5.3.2 Arithmetic Conversions

Many operators cause conversions and yield result types in a similar way. The effect is to bring operands
into a common type, which is also the type of the result. This pattern is called the usual arithmetic
conversions.

∗ First, if either operand is long double, the other is converted to long double.
∗ Otherwise, if either operand is double, the other is converted to double.
∗ Otherwise, if either operand is float, the other is converted to float.
∗ Otherwise, the integral promotions are performed on both operands; then, if either operand is

unsigned long int, the other is converted to unsigned long int.
∗ Otherwise, if one operand is long int and the other is unsigned int, both are converted to unsigned

long int.
∗ Otherwise, if one operand is long int, the other is converted to long int.
∗ Otherwise, if either operand is unsigned int, the other is converted to unsigned int.
∗ Otherwise, both operands have type int.

Expression And Operators

Page 85

5.3.3 Pointer Conversions

When two pointers are operated upon, they are converted to same size. Pointer size depends upon the
memory model and the memory model qualifier specified for the pointer. When a pointer is qualified with
__far, the size of the pointer is 4 bytes, as in case of pointers in large memory model. In small memory
model, the default pointer size is 2 bytes.

Expressions may contain, both near pointers (2 bytes) and far pointers (4 bytes). When two pointers of
different size are operated upon, they are promoted to same size. The near pointer is converted to far
pointer, with default segment address in the upper two bytes.

5.4 PRIMARY EXPRESSIONS AND OPERATORS

Simple expressions are called primary expressions. Primary expressions are identifiers, constants, strings
or expressions in parentheses.

primary_expression :
identifier
constant
string
(expression)

5.4.1 Identifiers

Identifier names a variable or function. Variables is one of the basic data objects manipulated in a program.
Declarations list the variables to be used. Declarations also specify the type of the variable.

An identifier can be qualified as far variable by specifying the keyword __far, immediately to it’s left. A far
variable need not be allocated in the default segment. Therefore, segment switching is done before
accessing far variables.

5.4.2 Constants

A constant operand has type and value of the constant value it represents. Its type depends on its form.
Character constants has int type. Enumerator constants also have int type. In general, the type of
constants may be int, unsigned int, long, unsigned long, float or double.

CC665S Ver.2.01 Language Reference

Page 86

5.4.3 Strings

A string literal is a character or sequence of adjacent characters enclosed in double quotation marks. Two
or more adjacent string literals separated only by white space are concatenated into a single string literal.
After concatenation, a null byte ‘\0’ is appended at the end, so that programs that scan the string can find
its end.

String literal is stored as an array of elements with char type in code memory. Its type is originally “array of
const char”. This is usually modified as “pointer to const char” and the result is the pointer to the first
character in the string. The storage class of string literal is static.

Strings cannot be specified as far strings. The segment address of strings are fixed for a specified memory
model. Therefore, no segment register switching is done under any memory model option.

5.4.4 Parenthesized Expression

A parenthesized expression is a primary expression whose type and value are identical to those without
parentheses. Mainly, parentheses is used to change the associativity and precedence of operators.

Example 5.1

(5 + 5) * 3

In the above example, the parentheses around 5 + 5 mean that the value of 5 + 5 is the left operand of the
multiplication operator (*). The result of the above expression is 30. Without parentheses, 5 + 5 * 3 would
evaluate to 20.

5.5. ARRAY REFERENCES

array_reference :
expression1 [expression2]

Bracket operators ([and]) are used to refer to elements of arrays. One expression followed by another
expression in square brackets denote a subscripted array reference.

Expression And Operators

Page 87

One of the two expression must have type “pointer to T”, where T is some type, and the other must have
integral type and the resultant type of the subscript expression is T.

The expression expression1[expression2] is identical to *((expression1) + (expression2)) by definition,
since both cases represent the value at the address that is expression2 positions beyond expression1.

5.6 FUNCTION CALLS

function calls :
expression ()
expression (argument_list)

A function is an expression followed by parentheses. The parentheses may contain a list of arguments
separated by commas or may be empty. The syntax of argument list is as shown below :

argument_list :
expression
argument_list, expression

Function calls may or may not have declaration preceding it. If declaration is not specified previously,
return type is assumed to be of ‘int’ type.

The expression in the function call must be of type “pointer to function returning T’, for some type T. The
resultant type of the function call is T.

In preparing for function call, a copy is made for each argument and all argument-passing is strictly by
value. The called function may change the values of its parameters. However, these changes will not affect
the values of the arguments in the calling function.

The arguments undergo integral promotion before being sent.

Error message is displayed if the number of arguments in function call disagrees with the number of
parameters in the definition of the function, unless the parameter list ends with the ellipsis notation (...). In
the latter case, the number of arguments must equal or exceed the number of parameters; trailing
arguments beyond the explicitly typed parameters suffer default argument promotion.

If no prototype is specified for a function and if its body is not defined, the above mentioned checks are not
performed. If prototype is not specified, CC665S assumes the prototype from the body definition, if
specified. If the prototype and the body definition differs, body definition overwrites the prototype.

CC665S Ver.2.01 Language Reference

Page 88

The order of evaluation of arguments is from left to right. Recursive calls to any function is permitted.

When a far pointer is passed as an argument to a function which actually takes a near pointer, the segment
information of the argument pointer is lost. CC665S issues error when a far pointer is passed as argument
in place of near pointer. However, if a near pointer is passed as argument to a function which actually takes
a far pointer, a warning message is issued. The near pointer is converted to far pointer with the default
segment address in the upper two bytes of the converted pointer.

The following built-in functions are supported.

__mulu __mulbu __divu __divqu
__divbu __modu __modqu __modbu

The prototypes of the above built-in functions are given below:

unsigned long __mulu(unsigned int, unsigned int) ;
unsigned int __mulbu(unsigned char, unsigned char) ;
unsigned long __divu(unsigned long, unsigned int) ;
unsigned int __divqu(unsigned long, unsigned int) ;
unsigned int __divbu(unsigned int, unsigned char) ;
unsigned int __modu(unsigned long, unsigned int) ;
unsigned int __modqu(unsigned long, unsigned int) ;
unsigned char __modbu(unsigned int, unsigned char) ;

These built-in functions may be called as any other function is called. Argument conversions are performed
similar to other functions.

5.7 STRUCTURE AND UNION REFERENCES
structure_reference :

expression . identifier
expression -> identifier

A member of a structure or a union may be referenced with either of the two operators : the period (.) or
the right arrow (->).

Expression And Operators

Page 89

Dot operator

An expression followed by a period followed by an identifier refers to a member of a structure or union.
The first operand expression must be a structure or a union, and the identifier must name a member of the
structure or union.

The resultant value is the named member of the structure or union, and the resultant type is the type of the
member. The resultant expression is an lvalue if the type of the member is not an array type.

Arrow operator

An expression followed by an arrow followed by an identifier also refers to a member of a structure or
union. The first operand expression must be a pointer to structure or union, and the identifier must name a
member of the structure or union to which the pointer points.

The result refers to the named member of the structure or union to which the pointer points and resultant
type is the type of the member.

Example 5.2

struct example {
int member1 ;
int member2 ;
struct example * ptr_to_struct ;

} s_variable, struct_array [10] ;

1. s_variable.ptr_to_struct = &s_variable ;
2. (s_variable.ptr_to_struct)->member1 = 25 ;
3. struct_array [7].member2 = 100 ;

In the above example:

1. The address of s_variable structure is assigned to ptr_to_struct member of the structure.
2. The pointer expression s_variable.ptr_to_struct is used with pointer selection operator (->) to

assign a value to member member1.
3. An individual structure member is selected from an array of structures.

CC665S Ver.2.01 Language Reference

Page 90

5.8 POST INCREMENT

post_increment :
expression ++

Post increment is performed when an expression is followed by the operator ++. The resultant value is the
value of the operand. After the value is noted, the operand is incremented by one. Resultant type is the type
of the operand. Result of the expression loses its lvalue.

The operand must be an integral, floating or pointer type and must be a modifiable (non-const) lvalue
expression. An operand of integral or floating type is incremented by an integer value 1. The operand of the
pointer type is incremented by the size of the object it addresses. An incremented pointer points to the next
object.

Example 5.3

int a, b ;

a = b ++

In the above example, the value of ‘b’ is assigned to ‘a’ first and then ‘b’ is incremented.

5.9 POST DECREMENT

post_decrement :
expression --

Post decrement is performed when an expression is followed by the operator --. The resultant value is the
value of the operand. After the value is noted, the operand is decremented by one. Resultant type is the
type of the operand. Result of the expression loses its lvalue.

The operand must be an integral, floating or pointer type and must be a modifiable (non-const) lvalue
expression. An operand of integral or floating type is decremented by an integer value 1. The operand of
the pointer type is decremented by the size of the object it addresses. A decremented pointer points to the
previous object.

Example 5.4

int a, b ;

a = b -- ;

The value of ‘b’ is assigned to ‘a’ first and then ‘b’ is decremented.

Expression And Operators

Page 91

5.10 PRE INCREMENT

pre_increment:
++ expression

An expression preceded by a ++ operator is an unary expression. The operand is incremented (++) by 1.
The value of the expression is the value of the operand after the increment. The operand must be an lvalue.
Other rules are similar to that of post increment (refer to section 5.8 for further details).

Example 5.5

int a, b ;

a = ++ b ;

The value of ‘b’ is incremented before assignment. The incremented value is assigned to ‘a’.

5.11 PRE DECREMENT

pre_decrement:
-- expression

An expression preceded by a -- operator is an unary expression. The operand is decremented (--) by 1.
The value of the expression is the value of the operand after the decrement. The operand must be an lvalue.
Other rules are similar to that of post decrement (refer to section 5.9 for further details).

Example 5.6

int a, b ;

a = -- b ;

The value of ‘b’ is decremented before assignment. The decremented value is assigned to ‘a’.

CC665S Ver.2.01 Language Reference

Page 92

5.12 ADDRESS OPERATOR

address_operator :
& expression

Address may be computed using the address operator &. The unary & operator takes the address of its
operand. The operand may be any value that is a valid lvalue of an assignment operation. However, neither
a bit-field nor an object declared as register is allowed.

A warning message is displayed if an array name is the operand of an address operator. Since array names
are addresses, & operator is ignored. No warning is issued, if a function designator is the operand of an
address operator. The ‘&’ operator is ignored for function designators.

The result is a pointer to the lvalue operand. If the type of the operand is T, the type of the result is “pointer
to T”.

Example 5.7

int x, * p ;

p = &x ;

The address operator (&) takes the address of x and assigns to p.

When address is taken for a variable that resides in far segment, the address size is 4 bytes. The address
contains the offset value in the lower two bytes, and segment address in the upper two bytes.

Example 5.8

int __far x ;
int __far * p ;

p = &x ; /* size of the address of x is 4 bytes */

5.13 INDIRECTION OPERATOR

indirection_operator :
* expression

The unary * operator denotes indirection and is used for dereferencing a pointer. The operand must be a
pointer value.

Expression And Operators

Page 93

The result of the operation is the value addressed by the operand; that is the value at the address specified
by the operand. Resultant type is the type the operand addresses. If the type of the expression is “pointer
to T”, the type of the result is T.

Result is an lvalue, if the operand is not an array type.

Example 5.9

int x, * p ;

x = * p ;

The indirection operator (*) is used to access the integer value at the address stored in p. The accessed
value is assigned to the integer x.

5.14 UNARY PLUS OPERATOR

unary_plus_operator :
+ expression

The operand of the ‘+’ operator must have arithmetic type, and the result is the value of its operand.
Integral promotions are performed. The type of the result is the type of the promoted operand.

5.15 UNARY MINUS OPERATOR

unary_minus_operator :
- expression

Unary minus operator (-) produces the negative (two’s complement) of its operand. The operand of the
‘-’ operator must have arithmetic type, and the result is the negative of its operand. Integral promotions are
performed. Negative zero is zero. The type of the result is the type of the promoted operand.

Example 5.10

int variable ;
variable = 999 ;
variable = - variable ;

The value of variable is negative of 999, that is -999.

CC665S Ver.2.01 Language Reference

Page 94

5.16 ONE’S COMPLEMENT OPERATOR

bit_not_operator :
~ expression

The operator ~ produces the bitwise complement of its operand. The operand of the ~ operator must have
integral type, and the result is the one’s complement of its operand. Integral promotions are performed.
The type of the result is the type of the promoted operand.

Example 5.11

unsigned int a, x ;
a = 0xaaaa ;
x = ~a ;

The value assigned to x is the one’s complement of the unsigned value 0xaaaa, that is 0x5555.

5.17 LOGICAL NOT OPERATOR

logical_not_operator :
! expression

Logical comparison is performed when an expression is preceded by the operator !. The operand must
have arithmetic type or be a pointer.

Resultant value is either 1 or 0. Result is 1 if the value of the operand compares equal to zero, and 0 if the
value of the operand is not zero. The type of the result is int.

Example 5.12

int x, y ;

if (! (x < y))
fn () ;

If x is greater than or equal to y, the result of the expression is 1 (true). If x is less than y, the result is
0(false).

Expression And Operators

Page 95

5.18 SIZEOF OPERATOR

sizeof_operator :
sizeof expression
sizeof (typename)

The sizeof operator yields the number of bytes required to store an object of the type of its operand. The
operand is either an expression, which is not evaluated, or a parenthesized type name.

When sizeof operator is applied to a char, the result is 1; when applied to an array, the result is the total
number of bytes in the array. The size of an array of ‘n’ elements is ‘n’ times the size of one element.

When the sizeof operator is applied to any structure or union, the result is the number of bytes in the object
including any padding used to align the members of the structure or union on memory boundaries.

The sizeof operator may not be applied to an operand of incomplete type.

The result is an unsigned integral constant. Resultant type is unsigned int.

Typename is syntactically a declaration for an object of that type omitting the name of the object.

Example 5.13

long array [10] ;

z = sizeof (array) ;

The value of z is 40.

Sizeof operator can also be applied to expressions. These expressions are not evaluated. The result is the
size of the result of the expression.

Example 5.14

int a, x, y, z ;

x = 10 ;
y = 10 ;
z = sizeof (x = (y *2)) ;
a = x ;

CC665S Ver.2.01 Language Reference

Page 96

In the above example, the expression ‘x = (y * 2)’ is not evaluated. Therefore, value ‘10’ is assigned to ‘a’
and not ‘20’.

Example 5.15

int i, j ;
int * dptr ;

fn ()
{

i = sizeof (dptr) ;
}

In the above example, the size of the pointer variable ‘dptr’ depends on the C memory model in which it is
compiled. If the program is compiled in small ‘C’ memory model, then the value of ‘i’ is 2. If the program
is compiled in large ‘C’ memory model, then the value of ‘i’ is 4.

5.19 CAST OPERATOR

cast_operator :
(typename) expression

Cast operator consists of data type name in parentheses. A unary expression preceded by the
parenthesized name of a type causes conversion of the value of the expression to the named type.
Typenames are discussed in detail in section 4.10.

If the operand is a variable, its data type is converted to the named type; the content of the variable is not
changed.

Result of cast expression is not an lvalue, if the size of the typename is greater than the size of the
expression.

An object in data memory may not be casted to a type resulting in code memory and vice versa. In such
cases, CC665S issues an error. However, if /WIN option is specified in the command line, warning will be
issued.

Example 5.16

(int (*)[]) p1 ;

In the above example, p1 is cast as a pointer to array of int.

A near variable cannot be casted to a far variable. However, a pointer to near memory can be casted to a
pointer to a far memory, provided the memory model specified in the command line supports far qualifier
for that data type. When a pointer to far memory is casted to a pointer to near memory, CC665S issues
error. However, if a pointer to near memory is casted to a pointer to far memory, pointer conversion is
performed.

Expression And Operators

Page 97

Example 5.17

int x, y ;
int * cvar ;
int __far * dvar ;

dvar = (int __far *) cvar ; /* cvar is casted as far pointer and assigned to dvar */

5.20 MULTIPLICATIVE OPERATORS

multiplicative_expression :
expression * expression
expression / expression
expression % expression

The multiplicative operators are *, / and %. They group from left to right.

The operands of * and / must have arithmetic type; the operands of % must have integral type. The usual
arithmetic conversions are performed on the operands, and predict the type of the result.

The binary * operator denotes multiplication.

The binary / operator yields the quotient, and the % operator the remainder, of the division of the first
operand by the second operand. If the second operand is zero, the result is undefined. If CC665S detects
the second operand as zero, warning message is displayed.

Example 5.18

unsigned int x, y, i, n, j ;
y = x * i ;
n = i / j ;
n = i % j ;

5.21 ADDITIVE OPERATORS

additive_expression :
expression + expression
expression - expression

The additive operators + and - group left to right. If the operands have arithmetic type, the usual arithmetic
conversions are performed.

CC665S Ver.2.01 Language Reference

Page 98

The result of + operator is the sum of the operands. A pointer to an object and a value of any integral type
may be added. CC665S calculates the size of one object, multiplies this by the integer thus obtaining the
offset value, and then adds the offset value to the address of the designated element. The result is a pointer
of the same type as the original pointer, and points to another object, appropriately offset from the original
object. Thus if P is a pointer to an object, the expression P + 1 is a pointer to the next object.

CC665S issues an error if two pointers are added.

The result of the - operator is the difference of the operands. A value of any integral type may be
subtracted from a pointer; in that case the same conversions and conditions as for addition apply.

If two pointers to objects of the same type are subtracted, the result is a signed integral value representing
the displacement between the pointed-to objects. The resultant value is calculated by finding the difference
between the two pointers and dividing the difference by the size of the object to which the pointers point.

When two pointers are subtracted, only the offset value of the pointers are subtracted. Pointers pointing to
objects of different types are not allowed.

Example 5.19

int x, y, i, j, k, l ;
char *p1, *p2 ;
long array1 [20], array2 [20] ;

y = x + i ;
p1 = p2 + 2 ;
j = &array1[k] - &array1[l] ;

5.22 SHIFT OPERATORS

shift_expression :
expression << expression
expression >> expression

The shift operators << and >> group from left to right. For both operators each operand must be integral,
and is subject to integral promotion.

The type of the result is that of the promoted left operand.

Expression And Operators

Page 99

The result of e1 << e2 is the value of the expression e1 shifted to the left by e2 bits. CC665S clears
vacated bits.

The result of e1 >> e2 is the value of the expression e1 shifted to the right by e2 bits. CC665S clears
vacated bits if the left operand e1 is unsigned; otherwise, vacated bits are filled with a copy of e1’s sign bit.

The result is undefined if right operand is negative or greater than or equal to the number of bits in the left
expression type.

Example 5.20

unsigned int x, y, z ;

x = 0x00aa ;
y = 0x5500 ;
z = (x << 8) + (y>>8) ;

In the above example, ‘x’ is left shifted eight positions and ‘y’ is shifted right eight positions. The shifted
values are added giving 0xaa55, and assigned to ‘z’.

5.23 RELATIONAL OPERATORS

relational_expression :
expression < expression
expression > expression
expression <= expression
expression >= expression

The relational operators are less than (<), greater than (>), less than or equal to (<=) and greater than or
equal to (>=).

The usual arithmetic conversions are performed on arithmetic operands. The result is 0 if the relation is
false and is 1 if the relation is true. The resultant type is int.

Pointers to objects of same type may be compared; the result depends on the relative locations in the
address space of the pointed-to objects. Pointer comparison is defined only for parts of the same object.
If two pointers point to the same simple object, they compare equal; if the pointers are to members of the
same structure, pointers to objects declared later in the structure compare higher; if the pointers are to
members of the same union, they compare equal; If the pointer refers to members of an array, the
comparison is equal to comparison of the corresponding subscripts.

CC665S Ver.2.01 Language Reference

Page 100

A pointer may be compared to a constant integral expression with value 0, or to a pointer to void.

CC665S displays error when pointers to different memory (one pointing to code memory and the other to
data memory) are compared. However, if /WIN option is specified only warning message will be issued.
If both operands are pointers, pointer conversion is performed.

The operators group from left to right. a < b < c is parsed as (a < b) < c, and a < b evaluates to either 0 or
1.

Example 5.21

const static int x = 10, y = 10 ;
int z ;

z = x > y ;

Since x and y are equal, the value 0 is assigned to z.

Example 5.22

char array [10], *p ;

for (p = array ; p < &array[10] ; p ++)
*p = ‘\0’ ;

The above program initializes each element of array to a null character constant.

5.24 EQUALITY OPERATORS

equality_expression :
expression == expression
expression != expression

The == (equal to) and the != (not equal to) operators are analogous to the relational operators except for
their lower precedence. Thus a<b == c<d is 1 whenever a<b and c<d have the same truth value.

The equality operators follow the same rules as the relational operators. If both operands are pointers,
pointer conversion is performed.

Two useful functions are provided to illustrate the use of equality operators :

Expression And Operators

Page 101

Example 5.23

strcmp (char s[], char t[])
{

int i = 0 ;

while (s[i] == t[i])
if (s[i ++] == ‘\0’)

return (0) ;

return (s[i] - t[i]) ;
}

The above function uses the equality operator. The above function returns a negative value if ‘s’ is less than
‘t’, and zero if ‘s’ is equal to ‘t’, and a positive value if ‘s’ is greater than ‘t’.

Example 5.24

squeeze(char s[], int c)
{

int i, j ;

for (i=j=0; s[i] != ‘\0’; i++)
if (s[i] != c)

s [j++] = s [i] ;

s [j] = ‘\0’ ;
}

The above program removes all the occurrences of the character ‘c’ from the string ‘s’.

5.25 BITWISE AND OPERATOR

bit_and_expression :
expression & expression

Bitwise And operator (&) may be used only with integral operands. The usual arithmetic conversions are
performed.

The result is the corresponding bitwise AND function of the operands. Bitwise AND operator compares
each bit of its first operand with the corresponding bit of the second operand. If both bits are 1, the
resultant bit is 1; Otherwise the resultant bit is 0.

CC665S Ver.2.01 Language Reference

Page 102

5.26 BITWISE EXCLUSIVE OR OPERATOR

bit_xor_expression :
expression ^ expression

Bitwise Exclusive Or operator (^) may be used only with integral operands. The usual arithmetic
conversions are performed.

The result is the corresponding bitwise exclusive OR function of the operands. Bitwise exclusive OR
operator compares each bit of its first operand with the corresponding bit of the second operand. If one bit
is zero and the other bit is 1, the resultant bit is set to 1; Otherwise the resultant bit is set to 0.

5.27 BITWISE OR OPERATOR

bit_or_expression :
expression | expression

Bitwise inclusive OR operator (|) may be used only with integral operands. The usual arithmetic
conversions are performed.

The result is the corresponding bitwise OR function of the operands. Bitwise OR operator compares each
bit of its first operand with the corresponding bit of the second operand. If either bit is 1, the resultant bit is
1; Otherwise the resultant bit is 0.

5.28 LOGICAL AND OPERATOR

logical_AND_expression :
expression && expression

The && operator is used for logical AND operation. Operator && groups from left to right. The result of
the expression is either 1 or 0. Resultant type is int.

The operands need not have the same type, but each must have arithmetic type or pointer type.

Expression And Operators

Page 103

If CC665S is able to make an evaluation by examining only the left operand, it does not evaluate the right
operand.

For the expression e1 && e2, first operand e1 is evaluated, including all side effects; If it is equal to 0, the
value of the expression is zero and the second expression e2 is not evaluated. If it is non-zero, e2 is
evaluated, and if it is equal to zero, the result is zero, otherwise one.

5.29 LOGICAL OR OPERATOR

logical_OR_expression :
expression || expression

The || operator is used for logical OR operation. Operator || groups from left to right. The result of the
expression is either 1 or 0. Resultant type is int.

The operands need not have the same type, but each must have arithmetic type or pointer type.

If CC665S is able to make an evaluation by examining only the left operand, it does not evaluate the right
operand.

For the expression e1 || e2, first operand e1 is evaluated, including all side effects; If it is non-zero, the
value of the expression is one and the second expression e2 is not evaluated. If e1 is equal to zero, e2 is
evaluated, and if it is equal to zero, the result is zero, otherwise one.

Example 5.25

xor (int a, int b)
{

return ((a || b) && ! (a && b)) ;
}

The XOR operation is carried out by the above function. The XOR function returns a true value (1) when
only one operand is true (non-zero). The above function illustrates the use of both logical AND and OR.

5.30 CONDITIONAL EXPRESSION AND OPERATORS

conditional_expression :
expression1 ? expression2 : expression3

CC665S Ver.2.01 Language Reference

Page 104

‘C’ has one ternary operator; the conditional operator (?:).

The expression1 must be integral, floating or pointer type. It is evaluated in terms of its equivalence to 0.
Evaluation proceeds as follows :

If expression1 does not evaluate to zero, expression2 is evaluated and the result of the expression is the
value of expression2.

If expression1 evaluates to 0, expression3 is evaluated and the result of the expression is the value of
expression3.

Either expression2 or expression3 is evaluated but not both. Operator ? : groups from right to left.

The type of the result of a conditional operation depends on the type of expression2 or expression3 as
follows :

∗ If expression2 or expression3 has integral or floating type, the operator performs usual arithmetic
conversions. The type of the result is the type of the operands after conversion.

∗ If both expression2 and expression3 have the same structure, union or pointer type, the type of the
result is the same structure, union or pointer type.

∗ If both operands have void type, the result has type void.

∗ If either operand is a pointer to an object of any type, and the other operand is a pointer to void, the
pointer to the object is converted to a pointer to void and the result is pointer to void.

∗ If either of expression2 or expression3 is a near pointer and the other is a far pointer, pointer
conversion is performed.

∗ If either expression2 or expression3 is a pointer and the other operand is a constant expression with
the value 0, the type of the result is pointer type.

Example 5.26

int i, j ;

j = (i < 0) ? (-i) : (i) ;

The above example assigns absolute value of i to j. If i is less than 0, -i is assigned to j. If i is greater than
or equal to 0, i is assigned to j.

Expression And Operators

Page 105

5.31 ASSIGNMENT EXPRESSIONS AND OPERATORS

assignment_expression :
expression assign_op expression

There are several assignment operators and all group from left to right. Assignment operators are one of :

= += -= *= /= %= >>= <<= &= |= ^=

All require an lvalue as left operand, and the lvalue must be modifiable. It must not be an array, and must
not have an incomplete type, or a function. Also its type must not be qualified with const. The type of an
assignment expression is that of its left operand, and the value is the value stored in the left operand after
the assignment has taken place.

In the simple assignment with =, the value of the expression replaces that of the object referred to by the
lvalue. One of the following must be true :

∗ Both operands have arithmetic type, in which case the right operand is converted to the type of the left
by the assignment.

∗ One operand is a pointer and the other is a pointer to void.

∗ The left operand is a pointer and the right operand is constant expression with value 0.

∗ Both operands are pointers to functions or objects whose types are the same except for the possible
absence of const or volatile in the right operand.

∗ If a pointer to far memory is assigned to a pointer to near memory, the segment information is lost.
Further operations using the pointer may result in undefined behavior. CC665S issues error message
if a far pointer is assigned to a near pointer. However, if a near pointer is assigned to a far pointer there
is no loss of segment information. Default segment address will be assigned to the upper two bytes of
the near pointer. CC665S issues warning message, when a near pointer is assigned to a far pointer.

An expression of the form e1 op= e2 is equivalent to e1 = e1 op e2.

Example 5.27

float y ;
int x ;
y = x ;

CC665S Ver.2.01 Language Reference

Page 106

The value of x is converted to float and assigned to y ;

Example 5.28

define MASK 0Xff00
unsigned int n ;
n &= MASK ;

In the above example a bitwise AND operation is performed on ‘n’ and ‘MASK’, and the result is
assigned to ‘n’.

5.32 COMMA EXPRESSION AND OPERATOR

comma_expression :
expression, expression

The comma operator (,) evaluates its two operands sequentially from left to right. The result of the
operation has the same value and type as the right operand. Each operand can be of any type. The comma
operator does not perform type conversions between its operands.

The comma operator is typically used to evaluate two or more expressions in contexts where only one
expression is allowed.

Example 5.29

1. f (a, (t =3, t +2), c) ;

2. for (i = 0,j = 0; i< 10; i ++, j +=2)
array[i] = j ; /* Array of Even nos */

The value of the second argument in the above example (1) is 5.

If the result of the comma operation is an array, then it is converted to pointer.

5.33 CONSTANT EXPRESSIONS

A constant expression is any expression that evaluates to a constant. The operands of a constant
expression can be integral constants, character constants, floating-point constants, type casts, sizeof
expressions and other constant expressions. Operators can be used to modify and combine operators.

Expression And Operators

Page 107

Constant expressions used in preprocessor directives are subjected to certain restrictions. They cannot
contain sizeof expressions, type casts to any type or floating-point type constants.

Constant expressions involving floating-point constants, cast to non-arithmetic types and address of
expressions can only appear in initializers. The unary address-of operator (&) can be applied to variables
with fundamental types that are declared at the external level or to subscripted array references.

Statements

Page 109

6. STATEMENTS

6.1 INTRODUCTION

This section describes statements in ‘C’ language. Statements are executed in the order in which they
appear, except where a statement explicitly transfers control to another location.

Statements are executed for their effect, and do not have values. They fall into several groups.

statements :
labeled_statement
expression_statement
compound_statement
selection_statement
iteration_statement
jump_statement
asm_statement

Limits : The maximum number of levels to which compound statements, conditional statements and looping
statements may be nested is restricted to 32.

6.2 LABELED STATEMENT

labeled_statement :
identifier : statement
case constant_exp : statement
default : statement

Statements may carry label prefixes. A label consisting of an identifier declares the identifier. The only use
of an identifier label is as a target to goto statement.

CC665S Ver.2.01 Language Reference

Page 110

The scope of an identifier is the current function. Labels cannot be redeclared within the same function.
Label names do not collide with identifiers with same name in other declarations (local as well as global).
Because CC665S uses a separate name space for labels.

A label, consisting of the keyword case followed by a constant expression, is a case label. A label
consisting of the keyword default is called a default label. Case labels and default labels are used within
the switch statements. If used elsewhere, error is displayed by CC665S. The constant expression of the
case label must be of integral type. Case labels and default labels are explained in detail in the section for
switch statement.

Labels in themselves do not alter the flow of control.

6.3 EXPRESSION STATEMENT

expression_statement :
expression ;
;

Any valid expression can be used as a statement by terminating it with a semicolon. ‘C’ expressions are
explained in section 5.

Most expression statements are assignments or function calls. All side effects from the expression are
completed before the next statement is executed.

If the expression is missing, the construction is called a null statement; Null statements are used to provide
null operations in situations where the grammar of the language requires a statement, but the program
requires no work to be done.

Statements such as do, for, if, while require that an executable statement appear as the statement body.
The null statement satisfies the syntax requirement in cases that do not need a statement body.

The following are examples of expression statements :

Example 6.1

int x, y, z, i ;

x = y + z ; /* x is assigned the value of y + z */
i ++ ; /* i is incremented */

Statements

Page 111

Example 6.2

int i, table [100] ;

for (i = 0 ; i < 100; table[i++] = 0)
;

In this example, the loop expression of the for statement table[i++] = 0 initializes the first 100 elements of
the array table to 0. The statement body is a null statement, since no further statements are necessary.

6.4 COMPOUND STATEMENT

compound_statement :
{ declaration_list statement_list }
{ declaration_list }
{ statement_list }
{ }

declaration_list :
declaration
declaration_list declaration

statement_list :
statement
statement_list statement

A compound statement is also called a block. Compound statements are provided so that several
statements may be used, where a single statement is required by the language.

The compound statement contains optional declarations followed by a list of statements which is also
optional, all enclosed in braces. If declarations are included, the variables declared are local to the block,
and, for the rest of the block, they supersede any declarations of the variables of the same name. The outer
declaration becomes valid at the end of the block.

Initializations of automatic objects included in the block are performed each time the block is entered in the
order of the declarators. Initializations of static objects inside the block are performed only once.

CC665S Ver.2.01 Language Reference

Page 112

Example 6.3

int y, z ;

fn ()
{

int x = 10 ;

z = 1 ;

if (x > y)
x++ ;

else
y++ ;

}

6.5 SELECTION STATEMENTS

Selection statements test the specified condition and depending on the result, one of several flows of
control is chosen. There are two selection statements.

1. if statement
2. switch statement

6.5.1 if Statement

selection_statement :
if (expression) statement
if (expression) statement1 else statement2

‘if’ statements may or may not have the ‘else’ part. The ‘if’ statement must have an expression in
parentheses following the keyword ‘if’. Expression must be of arithmetic or pointer type. The expression
is evaluated with all side effects.

If result of the expression is non-zero, then statement1 is executed. If the expression is zero, statement1 is
not executed and statement2 is executed, if present.

When ‘if’ statements are nested within ‘else’ clauses, an ‘else’ clause matches the most recent ‘if’
statement that does not have an ‘else’ clause.

Statements

Page 113

Example 6.4

int i, j, x ;

if (i < j)
function (i) ;

else
{

i = x ++ ;
function (i) ;

}

6.5.2 switch Statement
selection_statement :

switch (expression) statement

The ‘switch’ statement transfers control to a statement within its body. Control passes to the statement
whose case constant-expression matches the value of the switch expression. The switch statement may
include any number of case instances. Execution of the statement body begins at the selected statement
and proceeds until the end of the body or until a ‘break’ statement.

The ‘default’ statement is executed if no case constant expression is equal to the value of switch
expression. If the ‘default’ statement is omitted, and no case match is found, none of the statements in the
switch body is executed. The ‘default’ statement need not come at the end; it can appear anywhere in the
body of the ‘switch’ statement.

The type of the switch expression is integral. Each case constant expression is converted using the usual
arithmetic conversions (explained in section 5.3.2). The value of each case constant expression must be
unique within the statement body.

The case and default labels of the switch statement body are significant only in the initial test that
determines where execution starts in the statement body. All statements, between the statement where
execution starts and the end of the body, are executed regardless of their labels unless a statement transfers
control out of the body entirely.

CC665S Ver.2.01 Language Reference

Page 114

The following example illustrates the use of switch to display three different LED display items :

Example 6.5

display_fn ()
{
/* This program displays three types of displays based on the input */

int display_item ;

while ((display_item = get_display_item ()))
{

switch (display_item)
{

case DATE : display_date () ;
break ;

case DAY : display_day () ;
break ;
case TIME : display_time () ;
break ;

}
}

}

Declarations Within A Switch

Declarations may appear at the head of the compound statement forming the switch body. But
initializations included in these declarations are not performed. The switch statement transfers control
directly to an executable statement within the body, bypassing the lines that contain initializations.

Example 6.6

int y ;
switch (character)
{

int x = 1 ; /* Improper initialization */

case ‘a’ :
{

int x = 10 ; /* Proper initialization */
y = x ;
break ;

}

case ‘b’ :
.
.

}

Statements

Page 115

6.6 ITERATION STATEMENTS

Statements in the following subsections execute repeatedly (loop), until an expression evaluates to false.

6.6.1 for Statement
iteration_statement :

for ([expression1] ; [expression2] ; [expression3]) statement

The ‘for’ statement evaluates three expressions and executes a statement (loop body) until expression2
evaluates to false. The ‘for’ statement is particularly useful for executing a loop body a specified number of
times.

The ‘for’ statement executes the loop body zero or more times. It uses three optional control expressions
as shown. A ‘for’ statement executes the following steps :

1. The optional expression1 is evaluated only once before the iteration of the loop. It usually specifies the
initial values for variables.

2. The optional expression2 is evaluated before each iteration. If the expression evaluates to false,
execution of the ‘for’ loop body terminates. If the expression is evaluated to true, the body of the loop
is executed.

3. The optional expression3 is evaluated after each iteration. It usually specifies step value for variables
initialized by expression1.

4. Iterations of the ‘for’ statement continue until expression2 produces a false value, or until some
statement such as break or goto or return interrupts.

Example 6.7

int i ;
char string1 [20], string2 [20] ;

for (i = 0; i < 15; i++)
string1 [i] = string2 [i] ;

The above example copies the first 15 characters of string2 to string1.

The following ‘for’ statement illustrates an infinite loop :

CC665S Ver.2.01 Language Reference

Page 116

Example 6.8

int i, j ;

for (;;)
{

j = i + 10 ;
}

Infinite loops can be terminated with a goto, break or return statement.

6.6.2 while Statement
iteration_statement :

while (expression) statement

The ‘while’ statement evaluates an expression and executes a statement (loop body) zero or more times,
until the expression evaluates to false.

If the expression in parentheses evaluates to false at the first time, the loop body never executes.

Example 6.9

int x, array [15] ;

fn ()
{

x = 0 ;

while (x < 10)
{

array [x] = x ;
x++ ;

}
}

The above example assigns the values 0 to 9 to the first ten elements of array.

 6.6.3 do Statement
iteration_statement :

do statement while (expression) ;

The ‘do’ statement executes a statement (the loop body) one or more times until the expression in the while
clause evaluates to false.

Statements

Page 117

The statement is executed at least once, and the expression is evaluated after each subsequent execution of
the loop body. If the expression is true the statement is executed again.

Example 6.10

int num ;

do
{

num = get_number () ;
} while (num <= 100) ;

The above example gets a number until it is greater than 100.

6.7 JUMP STATEMENTS

Jump statements transfer control unconditionally. The following statements are classified as jump
statements.

1. goto statement
2. break statement
3. continue statement
4. return statement

Statements other than the ‘goto’ statement may be used to interrupt the execution of another statement.
These statements are primarily used to interrupt ‘switch’ statements and loops.

6.7.1 goto Statement
jump_statement :

goto identifier ;

The ‘goto’ statement transfers control automatically to a labeled statement, where the label identifier must
be located in the scope of the function containing the goto statement.

Like other ‘C’ statements, any of the statements in a compound statement can carry a label. A goto
statement can transfer into a compound statement. However, transferring into a compound statement is
dangerous when the compound statement includes declaration that initialize variables. Since declarations
appear before the executable statements in a compound statement, transferring directly to an executable
statement within the compound statement bypasses the initialization. The results are undefined.

The following example illustrates both the ‘goto’ statement and the labeled statement :

CC665S Ver.2.01 Language Reference

Page 118

Example 6.11

int error_no ;

fn ()
{

extern int error ;
if (error)

goto error_process ;

.
error_process :
return (error_no) ;

}

In the above example, ‘goto’ statement transfers control to the point labeled error_process.

6.7.2 break Statement
jump_statement :

break ;

The break statement terminates the immediately enclosing while, do, for or switch statement. Control
passes to the statement following the loop body.

Example 6.12

int x ;

while (1)
{

x = fn () ;

if (x == 1)
break ;

}

In this example the while loop is executed until the function returns a value 1.

 6.7.3 continue Statement
jump_statement :

continue ;

The continue statement passes control to the end of the immediately enclosing while, do or for statement.
The control passes to the next iteration of the while, do or for statement in which it appears, bypassing any
remaining statements in the loop body.

Statements

Page 119

Example 6.13

even_fn ()
{

int x ;

for (x = 0; x <= 100; x++)
{

if (x%2)
continue ;

print (x) ;
}

}

The above function prints all the even numbers between 0 and 100.

6.7.4 return Statement
jump_statement :

return [expression] ;

The return statement causes a return from a function with or without a return value.

CC665S evaluates the expression, if one is specified, and returns the value to the calling function. If
necessary, compiler converts the value to the declared type of the function. If there is no specified return
value, the value is undefined.

Example 6.14

max (int a, int b)
{

if (a > b)
return (a) ;

else
return (b) ;

}

The above function returns the larger of its two integer arguments.

When a function which is declared to return nothing (void) returns a value, compiler issues a error
message.

CC665S Ver.2.01 Language Reference

Page 120

6.8 ASM STATEMENTS

asm_statement :
__asm (“string”)

The asm_statement can be used to output the string contents in the assembly output file directly. The string
is not processed by the compiler.

Example 6.15

INPUT:

__asm (“; Test for __asm”)
int gvar ;

fn (int arg)
{

gvar = arg ;

__asm (“\tinc dir _gvar\n”) ;
}

OUTPUT:

;Test for __asm

rseg $$NCODt

CFUNCTION 0
_fn :

;;{
CLINE 7

pushs usp
mov usp, ssp

;; gvar = arg ;
CLINE 8

mov dir _gvar, 6[usp]

;; __asm ("\tinc dir _gvar") ;
CLINE 9

inc dir _gvar

;;}
CLINE 10

pops usp
rt

Variations From ANSI Standard

Page 121

7. VARIATIONS FROM ANSI
STANDARD

The implementation of C language in CC665S differs from the standard ANSI X3. 159-1989 and
ISO/IEC 9899 proposed by ANSI (American National Standards Institute) due to the following
features :

1. Supports specification of INTERRUPT functions.

2. Qualifying a variable by ‘const’ causes the variable to be allocated in code memory (Read Only
Memory).

3. Members of a structure or union cannot be qualified by ‘const’.

4. Char bit fields are allowed in structures and unions

5. Arguments cannot be qualified by ‘const’. However, if /WIN option is specified, arguments can be
specified as const.

6. A declaration without a type specifier, a type qualifier or a storage class specifier is considered as
declaration of type ‘int’.

7. A pointer can be compared to a constant integral expression with value 0, or to a pointer to void using
relational operators also.

8. __far and __nfar memory model qualifiers are supported.

9. __accpass, __noacc and __interrupt function qualifiers are supported.

10. __asm keyword is supported.

11. The following built in functions are supported

__mulu __mulbu __divu __divqu
__divbu __modu __modqu __modbu

	Part1. CC665S Ver.2.01 User Guide
	1. OVERVIEW
	2. OPERATING ENVIRONMENT
	2.1 HARDWARE AND MEMORY REQUIREMENT
	2.2 SYSTEM CONFIGURATION
	2.3 ENVIRONMENT VARIABLES

	3. INVOKING CC665S AND COMMAND LINE OPTIONS
	3.1 INVOCATION OF CC665S
	3.2 COMMAND LINE OPTIONS
	3.2.1 Machine Model Options
	3.2.2 'C' Memory Model Options
	3.2.3 Mixed Memory Model Options
	3.2.4 'C' And Mixed Memory Model Combination
	3.2.5 Optimization Options
	3.2.6 Code Generation
	3.2.7 Output Files
	3.2.8 Preprocessor Options
	3.2.9 Stack
	3.2.10 Debugging Options
	3.2.11 Miscellaneous Options
	3.2.12 Invalid Combination Of Options

	4. MEMORY MODELS
	4.1 C MEMORY MODELS
	4.2 HARDWARE MEMORY MODELS
	4.3 OBJECTS AFFECTED BY MEMORY MODELS
	4.3.1 Memory Model Qualifiers
	4.3.2 Data Variables
	4.3.3 Tables
	4.3.4 Strings
	4.3.5 Functions

	4.4 COMBINATION OF C AND MIXED MEMORY MODEL OPTIONS
	4.4.1 Small C Memory Model
	4.4.2 Effective Medium C Memory Model
	4.4.3 Medium C Memory Model
	4.4.4 Compact C Memory Model
	4.4.5 Effective Large C Memory Model
	4.4.6 Large C Memory Model

	5. PRAGMAS
	5.1 INTERRUPT PRAGMA
	5.1.1 Preserving Register Contents

	5.2 INTVECT PRAGMA
	5.3 VCAL PRAGMA
	5.4 ACAL PRAGMA
	5.5 CAL PRAGMA
	5.6 INLINE PRAGMA
	5.7 ABSOLUTE PRAGMA
	5.8 SFR PRAGMA
	5.9 INPAGE PRAGMA
	5.10 SBAINPAGE PRAGMA
	5.11 USINGINPAGE PRAGMA
	5.12 GROUP PRAGMA
	5.13 WIINDOW PRAGMA
	5.14 ROMWINDOW PRAGMA
	5.15 FIXED PAGE PRAGMA
	5.16 DUAL PORT PRAGMA
	5.17 EDATA PRAGMA
	5.18 SBAFIX PRAGMA
	5.19 COMMONVAR PRAGMA
	5.20 COMMON PRAGMA
	5.21 STACKSIZE PRAGMA
	5.22 STACK CHECK PRAGMAS
	5.23 LOOP OPTIMIZATIONS PRAGMAS
	5.24 ASM and ENDASM PRAGMAS

	6. OUTPUT FILES
	6.1 ASSEMBLY OUTPUT
	6.1.1 Comment Section
	6.1.2 Assembler Initialization Pseudo Instructions
	6.1.3 Procedure Section
	6.1.4 Symbol Declarations Section

	6.2 ERROR LISTING
	6.3 CALLTREE LISTING
	6.4 DEBUGGING INFORMATION FILE

	7. OPTIMIZATIONS
	7.1 GLOBAL OPTIMIZATIONS
	7.1.1 Constant Propagation
	7.1.2 Common Sub-Expression Elimination
	7.1.3 Code Sinking
	7.1.4 Code Hoisting

	7.2 LOOP OPTIMIZATIONS
	7.2.1 Loop Invariant Code Motion
	7.2.2 Loop Variant Code Motion
	7.2.3 Induction Variable Elimination
	7.2.4 Strength Reduction
	7.2.5 Loop Unrolling

	7.3 OTHER OPTIMIZATIONS
	7.3.1 Dead Code Elimination
	7.3.2 Dead Variable Elimination
	7.3.3 Algebraic Transformation
	7.3.4 Optimizing Jumps

	7.4 PEEPHOLE OPTIMIZATIONS
	7.4.1 Removal Of Redundant Transfer Instructions
	7.4.2 Optimizing Relative Jumps

	7.5 LOCAL OPTIMIZATIONS
	7.5.1 Constant Propagation
	7.5.2 Common Sub-Expression Elimination
	7.5.3 Use Of Algebraic Identities

	7.6 EFFECT OF ALIASING ON OPTIMIZATIONS

	8. IMPROVING COMPILER OUTPUT
	8.1 CONTROLLING OPTIMIZATIONS
	8.2 USING REGISTER VARIABLES
	8.3 REMOVING STACK PROBES
	8.4 CONTROLLING ALLOCATION OF VARIABLES
	8.5 MIXED LANGUAGE PROGRAMMING
	8.5.1 Combining Assembly And 'C' Programs
	8.5.2 Calling Conventions Of CC665S
	8.5.3 Return Values
	8.5.4 Interrupt Handling Routines In Assembly
	8.5.5 Referring C Variables

	8.6 QUALIFYING FUNCTIONS WITH '_accpass' AND '_noacc'
	8.7 BUILT-IN FUNCTIONS
	8.7.1 Higher Precision Multiplication
	8.7.2 Higher Precision Division
	8.7.3 Higher Precision Remainder

	8.8 RUNTIME STACK PREPARATION
	8.9 REGISTER USAGE
	8.10 STARTUP ROUTINE

	9. EMULATION LIBRARIES
	10. ASSEMBLING AND LINKING
	11. EXIT CODES
	12. ERROR MESSAGES
	12.1 FATAL ERROR MESSAGES
	12.1.1 Command Line
	12.1.2 General
	12.1.3 Preprocessor
	12.1.4 Lexical
	12.1.5 Syntax And Semantic

	12.2 ERROR MESSAGES
	12.2.1 Preprocessor
	12.2.2 Lexical
	12.2.3 Syntactic And Semantic
	12.2.4 Expression
	12.2.5 Control Statements

	12.3 WARNING MESSAGES
	12.3.1 Preprocessor
	12.3.2 Lexical
	12.3.3 Syntactic And Semantic
	12.3.4 Expression
	12.3.5 Pragmas

	Part2. CC665S Ver.2.01 Language Reference
	1. PREPROCESSOR
	1.1 INTRODUCTION
	1.2 TRANSLATION PHASES
	1.2.1 Trigraph sequences
	1.2.2 Line Splicing

	1.3 MACROS
	1.3.1 Introduction
	1.3.2 Macro Dufinition

	1.4 MACRO EXPANSION
	1.4.1 Expansion Of Macros Without Parameters
	1.4.2 Expansion Of Macros With Parameters

	1.5 MACRO REMOVAL
	1.6 REDEFINITION OF MACROS
	1.7 FILE INCLUSION
	1.7.1 Introduction
	1.7.2 Include File Specification Using Double Quotation Marks
	1.7.3 Include File Specification Using Angle Brackets
	1.7.4 Macros In Include Directive

	1.8 CONDITIONAL COMPILATION
	1.8.1 Introduction
	1.8.2 Conditional Compilation Directives
	1.8.3 Restricted Constant Expression
	1.8.4 defined Operator
	1.8.5 Nesting
	1.8.6 Testing Symbol Definition With #ifdef and #ifndef

	1.9 LINE
	1.10 ERROR
	1.11 MIXED LANGUAGE PROGRAMMING
	1.12 PREDEFINED MACROS

	2. LEXICAL CONVENTIONS
	2.1 CHARACTER SET
	2.2 TOKENS
	2.2.1 Identifiers
	2.2.2 Keywords
	2.2.3 Comments
	2.2.4 Constants
	2.2.5 Operators

	3. PROGRAM STRUCTURE
	3.1 SOURCE PROGRAM
	3.2 SOURCE FILES
	3.3 FUNCTIONS AND PROGRAM EXECUTION
	3.4 LIFETIME AND VISIBLITY
	3.4.1 Blocks
	3.4.2 Lifetime
	3.4.3 Visibility

	3.5 NAMING CLASSES
	3.6 DATA TYPES

	4. DECLARATIONS
	4.1 INTRODUCTION
	4.2 TYPE SPECIFIERS
	4.3 TYPE QUALIFIERS
	4.4 DECLARATORS
	4.4.1 Memory Model Qualifiers
	4.4.2 Function Qualifiers
	4.4.3 Interpreting Declarations

	4.5 VARIABLE DECLARATIONS
	4.5.1 Simple Variable Declarations
	4.5.2 Structure Declarations
	4.5.3 Union Declarations
	4.5.4 Enumeration Declarations
	4.5.5 Array Declarations
	4.5.6 Pointer Declarations

	4.6 FUNCTION DECLARATIONS AND PROTOTYPES
	4.6.1 Formal Parameters
	4.6.2 Return Type
	4.6.3 List Of Formal Parameters
	4.6.4 Memory Model Qualifiers For Functions
	4.6.5 Function Qualifiers For Functions

	4.7 STORAGE CLASS SPECIFIERS
	4.7.1 Variable Declarations At The External Level
	4.7.2 Variable Declarations At The Internal Level
	4.7.3 Function Declarations At The Internal And External Levels

	4.8 INTIALIZATION
	4.8.1 Fundamental And Pointer Types
	4.8.2 Aggregate Types
	4.8.3 String Initializers

	4.9 TYPE DECLARATION
	4.9.1 Structure And Union Types
	4.9.2 Typedef Declarations

	4.10 TYPE NAMES
	4.11 FUNCTIONS
	4.11.1 Function Definitions
	4.11.2 Function Prototypes
	4.11.3 Function Calls

	4.12 ASM DECLARATION

	5. EXPRESSIONS AND OPERATORS
	5.1 OPERATORS
	5.2 LVALUES AND RVALUES
	5.3 CONVERSIONS
	5.3.1 Integral Promotion
	5.3.2 Arithmetic Conversions
	5.3.3 Pointer Conversions

	5.4 PRIMARY EXPRESSIONS AND OPERATORS
	5.4.1 Identifiers
	5.4.2 Constants
	5.4.3 Strings
	5.4.4 Parenthesized Expression

	5.5 ARRAY REFERENCES
	5.6 FUNCTION CALLS
	5.7 STRUCTURE AND UNION REFERENCES
	5.8 POST INCREMENT
	5.9 POST DECREMENT
	5.10 PRE INCREMENT
	5.11 PRE DECREMENT
	5.12 ADDRESS OPERATOR
	5.13 INDIRECTION OPERATOR
	5.14 UNARY PLUS OPERATOR
	5.15 UNARY MINUS OPERATOR
	5.16 ONE'S COMPLEMENT OPERATOR
	5.17 LOGICAL NOT OPERATOR
	5.18 SIZEOF OPERATOR
	5.19 CAST OPERATOR
	5.20 MULTIPLICATIVE OPERATORS
	5.21 ADDITIVE OPERATORS
	5.22 SHIFT OPERATORS
	5.23 RELATIONAL OPERATORS
	5.24 EQUALITY OPERATORS
	5.25 BITWISE AND OPERATOR
	5.26 BITWISE EXCLUSIVE OR OPERATOR
	5.27 BITWISE OR OPERATOR
	5.28 LOGICAL AND OPERATOR
	5.29 LOGICAL OR OPERATOR
	5.30 CONDITIONAL EXPRESSION AND OPERATORS
	5.31 ASSIGNMENT EXPRESSIONS AND OPERATORS
	5.32 COMMA EXPRESSION AND OPERATOR
	5.33 CONSTANT EXPRESSIONS

	6. STATEMENTS
	6.1 INTRODUCTION
	6.2 LABELED STATEMENT
	6.3 EXPRESSION STATEMENT
	6.4 COMPOUND STATEMENT
	6.5 SELECTION STATEMENTS
	6.5.1 if Statement
	6.5.2 seitch Statement

	6.6 ITERATION STATEMENTS
	6.6.1 for Statement
	6.6.2 while Statement
	6.6.3 do Statement

	6.7 JUMP STATEMENTS
	6.7.1 goto Statement
	6.7.2 break Statement
	6.7.3 continue Statenent
	6.7.4 return Statement

	6.8 ASM STATEMENTS

	7. VARIATIONS FROM ANSI STANDARD

