CC665S

User's Manual

Program Development Support Software

FIRST EDITION
ISSUE DATE:Mar. 1999

NOTICE

1

The informetion contained herein can change without natice owing to product and/or technica
Improvements. Before using the product, please make sure that the information being referred to is
up-to-date.

Theoutline of action and examplesfor gpplication dreuits described herein have been chosenasan
explanation for the gandard action and paformance of the product. When planning to use the
product, please ensure thet the externd condiitions are reflected in the actud drcuit, assembly, and
program desgns

When designing your product, pleese use our product bdow the spedified maximum ratings and
within the spedfied operating ranges induding, but not limited to, operaing voltage, power
disspation, and operating temperature.

OKI assumes no responsibility or liability whatsoever for any failure or unusual or
unexpected operation resulting from misuse, neglect, improper installation, repair,
alteration or accident, improper handling, or unusual physical or electrical stress
including, but not limited to, exposure to parameters beyond the specified
maximum ratings or operation outside the specified operating range.

Nether indemnity againg nor license of athird party'sindudtria and intdllectud property right, tc. is
granted by us in connection with the use of the product and/or the information and drawings
contained heran. No regponghility is assumed by us for any infringement of a third party’s right
which may resuit from the use theredf.

The products liged in this document are intended for use in generd dectronics equipment for
commadd goplicaions (eg.,, office automation, communication equipment, messurement
equipment, consumer dectronics, etc.). These products are not authorized for usein any sysemor
goplication that requires specid or enhanced qudlity and rdighility characteridics nor in any sysem
or goplication where the fallure of such sysem or gpplication may result in the loss or damege of
property, or desth or injury to humans. Such goplicationsindude, but are not limited to, traffic and
automotive equipment, safety devices, agrogpace equipment, nudear power control, medica
equipment, and life-support sysems

Certain products in this document may need government gpprova before they can be exported to
particular countries. The purchaser assumesthe responsibility of determining thelegdity of export of
these products and will take gppropriate and necessary Seps at tharr own expense for these,

No pat of the contents contained herein may be reprinted or reproduced without our prior
permisson.

MS-DOSisaregigered trademark of Microsoft Corporation.

Copyright 1999 Oki Electric Industry Co., Ltd.

CC665S User's Manual

Part 1. CC665S Ver.2.01 User Guide
Part 2. CC665S Ver.2.01 Language Reference

Partl.
CC665S Ver.2.01
User Guide

Table Of Contents

Table Of Contents

L OVERVIEW ...ttt bbb bbb 1

2. OPERATING ENVIRONMENT ..ottt bbb b bbb 3
21 HARDWARE AND MEMORY REQUIREMENTccviiiiiririeisisrsie e 3
2.2 SYSTEM CONFIGURATION........ctiiiriieitieiiisstissss s s bbb 3
23 ENVIRONMENT VARIABLES ...ttt s s 3

3. INVOKING CC665S AND COMMAND LINE OPTIONS.........cooitiriiiiisnis s sssssssssssssssssssssssssssnns 5
3L INVOCATION OF CCBBES........ccuriueriiiiiciiiessisssssss s s s s sss st

3.2 COMMAND LINE OPTIONS.......ccomrermemeresessessessssssssssssssssssssssssssssssssees
3.2.1 Machine Model OPLtioNS.........ccccvvereeineneeeeseses s sessssssssens
322 ‘C MeMOrY MOAEl OPLIONSc.cvieeceetriricieieisesie st sssssssss st ss st ssssssssssssssesessssssesessssssssssssssesesensans
3.2.3Mixed Memory MOOEl OPLIONS.........cccviieiririsieresisie st esses e ssss s s sesssssssessssssssesesssassesessssssesasnnes
324'C And Mixed Memory Model Combination
3.25 0ptimization OPLIONS........ccoeeeereeirriceieerereeessesas s ssessaseens
3.2.6 COUE GENEIBLION.......uceeriereriirenireneisess it seas e
BT A O U 11 o 11 1 =TT TTPTTRS
3.2.8 PreprOCESSOr OPLiONS......cccurieeereeresiesietstsessessssssssessssssssssesssssssssssssssssessssssssesssssssessssssssessssssssesasssssessssssssesssssnes
B.2.9 SEACK. c.tveeuereeee ettt sttt
3.2.10 Debugging OPLioNS........cceveeeeirirencserereeeesese s sessesassens
3.2.11 MisCellaneous OPLioNS........ccccvviiecieinensesesesse e ssssseesssssessssesssssens
3.2.12 Invalid Combination Of Options

4. MEMORY MODELS.......o oo bbb 35
41 CMEMORY MODELS.......cooiitiritiesiie it s bbb 35
4.2 HARDWARE MEMORY MODELS........cooinsie s

4.3 OBJECTSAFFECTED BY MEMORY MODELS
4.3.1 Memory Model QUAlITIErS.......cccovververereseee s
EC R A BT ir= QY £ = o] == PR
G T I o =TT
4.3 4 SINGS....cvvrrerrrrerrrerenns
4.3.5 Functions

4.4 COMBINATION OF C AND MIXED MEMORY MODEL OPTIONS........cccocnimenininienenesessssssssssssssesssssssssnsens 40
4.4.1 Small C Memory Model
4.4.2 Effective Medium C MemOry MOUEL ...ttt ssssassessssssssnes 41
4.4.3Medium C MeMOIY MOUEL.......c.ciecieiriicierees et s st es st s nnaes
4.4.4 Compact C Memory MOdEL...........ccvvreneneieessescse s
4.4.5 Effective Large C Memory Model
4.4.6 Large C MEMOIY MOE ..ottt sttt s st nnaes

CC665S User Guide

B PRAGIMAS ...ttt ettt b bbb E AR £ b E £ E AR R A e AR E £t b e et b et 47

5. 1LINTERRUPT PRAGMA ...ttt

5.1.1 Preserving Register Contents
B2INTVECT PRAGMA ...ttt E e Rt E e bbb ettt ettt 52
BBV CAL PRAGMA ...ttt E b E R E s e bbb b bbbt 53
DA ACAL PRAGMA ...ttt ettt £ £t E £ e s bbb et b bbbt 56
D5 CAL PRAGMA ..ttt E £ AR E s bbb bbbt 58
BB TNLINE PRAGIMIA ...ttt sttt £ s £ 4t E e Rt E s bbb e bbbttt 60
B.7 ABSOLUTE PRAGMA ...ttt £ et e e bbb ettt s et 63
BB SFR PRAGIMA ...ttt £ b E e A e R En bbb et b et b et
5.9 INPAGE PRAGMA
5.10 SBAINPAGE PRAGMA ..ottt sttt e £ bbbttt b et 68
B.IT USINGINPAGE PRAGMA ...ttt bbb e e b s bbbttt ettt s s 70
5.12 GROUP PRAGMAL......coctitiirttieirirtsis sttt sttt essas sttt b e £ b b s £ e s b8 42 bt E e e Rt e e s et bbb e st b e bt et s et 73
5. I3 WINDOW PRAGMA ..ottt sttt bbb £ st E e Rt e st bbbt b et st 76
5.14 ROMWINDOW PRAGIMAL......coteieirititieiresteistses s ise sttt se bbb s s b e st e s s s st b b se s ssbebebsasbeseesaes 76
5. IS5 FIXED PAGE PRAGMA ...ttt ettt bbbt st 78
5.16 DUAL PORT PRAGMA ..ottt sttt ettt bbb £ st e st a e e s bt st bbbttt 79
B.17 EDATA PRAGMA ...ttt ettt £ st E e b E s bbbttt b st 80
DI SBAFIX PRAGMA ...ttt bbb E e R bbb b bbbt 81
5.19 COMMONV AR PRAGMA ..ottt ettt £ bt e e bbbttt s et 82
5.20 COMMON PRAGIMAL...... oottt sttt e st bbb e b b s e b £ s bt e e e R b e s et bbb e et et b ettt
5.21 STACKSIZE PRAGMA
5.22 STACK CHECK PRAGMAS........otiteetretreeteetsestssessessssessessseessessssessessssessesssssssesssessestssessestsssssesssssssesssnsssesssssssesssnes 84
5.23LO0OP OPTIMIZATIONS PRAGIMAS.......cotetrereeieiresttists sttt bbbt ss st ssb e ses s ssaes 85
5.24 ASM and ENDASM PRAGMAS ...ttt isetse sttt bbb bbbttt 85

B. OUTPUT FILES.......oo ottt bbbt b bbbt n 89

B.1 ASSEIMBLY OUTPUT ...outitiericietsereeusieesetis st e s s s b et essa b st bbbt s e R £ st e e b eb bt re s

6.1.1 COMMENE SECHION ..evvveeeeeseeeee s ses s

6.1.2 Assembler Initialization Pseudo Instructions

6.1.3 ProCEAUIE SECHION. ... ceveeeereereeeseeserses s sseen

6.1.4 SymbOol DECIarations SECHONc.c.cviucieiriiceeesee e se bbbt s st an st es s ansesnaen
6.2 ERROR LISTING.......cutttitutieiriritieireseeietsesestes et esesess st sss b b sesesseeassesse st b s e e s b ee e e b b e s st e bbb e sebesne s et s s 102
6.3 CALLTREE LISTING......cttitiiritieirirecieisere sttt sesess sttt bbb bbb b e bbb s s 106

6.4 DEBUGGING INFORMATION FILE ..ottt sss s ssssssnssnes 107

Table Of Contents

7. OPTIMIZATIONS ...ttt bbb bbb 111

7.1 GLOBAL OPTIMIZATIONS........ovveereenereeesesessessssssssssssssssssessssssssssssssssnes
7.1.1 Constant Propagation..........ccccceeeeeernensesessenssssesesssssessssssssssssssssens
7.1.2 Common Sub-EXPression EliMiNation...........ccccciencsesese e ssesssessssssssssesssssssssssssssesesses
8T oo L= 1 1 o TR
250 @[] o (o1 o TR

7.2 LOOP OPTIMIZATIONS......ocotietretseereinsiesssessesssssssssssssssssssssssessessesssssssssssssssssssassassessessessssssssssssssstassassessessessessesnsans
7.2.1 Loop Invariant Code MOtioN.........c.ccceuveveereesenseee s ssessaeeens
7.2.2Loop Variant Code MOtioN........cccveeeeieunereeeseee e saeeens
7.2.3 Induction Variable Elimination
7.2.4 SIrENGth REAUCLION.......coceieciecceeieste sttt ettt s s st s ae b s s
7.2.5 100D UNTOHING....coiiueretiiicieiseies ettt ssas s tes e st seses s s et s st b s st es s et s es et et s s s aes s s anaetesaen

7.3 OTHER OPTIMIZATIONS
7.3.1 Dead Code Elimination
7.3.2Dead Variahl€ ElIMINGLONccccuviicieeirecceesee ettt bbbttt s s aeten s 123
7.3.3 AlQEDIAiC TraNSfOrMEALION.......cccveuieccie ettt s e b et st s s s s s st ten s 124
7.3.4 OPLIMIZING JUMPS.....cuctetiiiuireteeeesessesessee et e sssessssssssesessssssssessssssssessssssssesssssssesasssssesassssssesssssssesessnssesessnssesases 125

7.4 PEEPHOLE OPTIMIZATIONS ...ttt ettt ettt as bbbttt s st bbb bbbt b st et eb sttt es st b et essbabebanaes 125
7.4.1 Removal Of Redundant Transfer INStTUCLIONS..........ccvuciiriieiecicee ettt sn s 125
7.4.2 OptimiZiNg REGHVE JUMPS......cocueiieeeieeirecicte ettt se s e ss st ss s es st s s st b s s s aesesssssesesaen 125

7.5 LOCAL OPTIMIZATIONS.......cotittreereieeiesieessesssssssssssssssssssssssessessesssssssssssssssssssassassessessessesssssssssssssassassassessessessesnsans
7.5.1 Constant Propagation..........ccccceeeeeenensesessesseesesssssesssssssssssssssssens
7.5.2 Common Sub-Expression Elimination
7.5.3Use Of AIQEDIaiC IHBNLITIEScucveveeeceeterece ettt ae b s s

7.6 EFFECT OF ALIASING ON OPTIMIZATIONS........cotirtterierrieese s sssssssssnes 128
8. IMPROVING COMPILER OUTPUTccuiiiirinisiiissisessr e sess s ses st ssssssssssssssssssnes 131
8.1 CONTROLLING OPTIMIZATIONS. ...ttt ssss s ssssssssnes 131
82USING REGISTER VARIABLES........ooi ottt 132
8.3 REMOVING STACK PROBES. ..ottt sssnes 133
84 CONTROLLING ALLOCATION OF VARIABLES ... nsesssees 133

8.5 MIXED LANGUAGE PROGRAMMING......c.oiiriirititissinsinsiesssessssssssssssssssssssssssssesssssesssssssssssssssssssassessessessessesssans
8.5.1 Combining Assembly ANd‘C' PrOGIaIMScccceuririiicieienissessessss st tsssssssesssssssessssssssssesssssssssssssseseses
8.5.2 Calling Conventions Of CCTBB5S.........ccovuviieiririeietresisie e ssessssesssssss e ssssssssessssssssessssssssessssssssssesssssssssssssseseses
B.5.3RELUIMN VEIUES.......coeieeeerieire sttt ettt bbb bbbttt bbbt
8.5.4 Interrupt Handling Routines In Assembly
855 REFETING CVAADIES ...ttt b bbbt s e ae b s s

8.6 QUALIFYING FUNCTIONSWITH‘__accpass’ AND*_|

8.7 BUILT-IN FUNCTIONS.......ccvvrrtreireenernernesesesssssssssssssssssssssssssssssssssssssssnes
8.7.1. Higher Precision MUltipliCationcccoceceevenecienesesieesesse s
8.7.2. HIGhEr PreCiSiON DIVISIONcccueuieicieteisecicteesee sttt se st se st et s st es s snsessaen
8.7.3. Higher PreCiSion REMEBINGEY........c.ccccvuciiiricicirerecie et se s s ssssss et ss s st s sssssessssssessssssessaen

8.8 RUNTIME STACK PREPARATION ..ottt ssss s sssssssssssssnes 152

CC665S User Guide

BIREGISTER USAGE........co oottt b bbb 153
8.10 STARTUP ROUTINE ...ttt bbb 154
9. EMULATION LIBRARIES........oo ottt s bbb 155
10. ASSEMBLING AND LINKING.......ccccitieiitrinirieriees s ssss sttt ssssssssssssssssans 157
L1 EXIT CODES. ...ttt s b b bbb
12. ERROR MESSAGES

12.1 FATAL ERROR MESSAGES...... .ottt s sess bbbttt 161
12.1.1 Command Line
L2, 1.2 GENEYA.....oceeeeeeecte sttt bbb e e At e R b s e A e AR e AR b b s e A b p s s aet e e nnaatas
R B o 1= o000 o PP
12.14LEXICA o
12.1.5 Syntax And Semantic

122 ERROR MESSAGES.........cooittrieireneireaeiseasiseaseseesess s asessbsessbsess s bbbt se st bbbttt 167
12.2.1 Preprocessor
D222 LEXICA ..ottt bbb b bbbt
12.2.3 SYNtaCtic ANG SEMANTIC.......ceeeeeeteiecee sttt b s b et es st s s s assen s nnaatas 170
12,2, EXPIESSION....vvuiucueteeetetetsessessssssssstessssssstesssssesesessssssessssssss et as s ssseses s sese s s sesssetes s s seses e sesebesas s antesasasaesesnnnaates 175
12.2.5 CONLIOl SEBEEIMENEScuvreeiieeereerereeseseesessesesseseas bbbttt se s bbbt bbbttt es 179

12.3WARNING MESSAGES.........coootiitriirteireie ettt sess b sea s reb bbbttt
12.3.1 Preprocessor
1232 Lexicd...cccnunnee
12.3.3 Syntactic And Semantic
12.3.4 EXPIESSION..c..vvueueuetreestetetsessesessssssetessssssesesss s sesesesssasses s sesssetes s asseses e et et s seseAe b e s s s seses e se b et s as e aebes s anaesesnnnantas
R o = 117 TP

Overview

1. OVERVIEW

The C language is apowerful generd purpose programming language that can generate efficient, compact
and portable code. C is managesble because of its smdl sze, flexible because of its ample supply of
operators and powerful in its utilization of modern control flow and data structures.

CC665Sisan optimizing C Compiler. It incorporates the featuresthat are fundamentd tothe* C’ language
and that exist in most C compilers.

Sdient features of CC665S are listed below:

1. ‘C’ language supported by CC665S is implemented according to ANSl standard. Variations
from the standard are imposed due to architecturd constraints.

Variety of command line options are provided.

Fadilities to write interrupt handling routines are avallable.

Set of pragmeas are provided to utilize the architectura features.

Emulation libraries are provided to support long, float and double types.
Facilities to access any memory location in RAM and ROM are provided.

N o g b~ 0w DN

Mixed language programming can be done.

Page 1

Operating Environment

2. OPERATING ENVIRONMENT

21 HARDWARE AND MEMORY REQUIREMENT

MACHINES : NEC PC-9801 series, IBM-AT compatible and clones
OPERATING SYSTEM : MSDOS Ver. 5.0 and above
PC MEMORY 640K with at least 384K extended RAM

2.2 SYSTEM CONFIGURATION

CC665S requires the following information to be included in the CONFIG.SY S file
files=20

Thisinformation must be added to the CONFIG.SY Sfile beforeinvoking CC665S. It dlowsthe compiler
to open atlas 20 files a atime.

2.3 ENVIRONMENT VARIABLES

CC665S uses two environment variables INCL66K and TMP.

INCL66K can be used to specify a directory to search the include files, specified with #include
preprocessor directive.

Page 3

CC665S Ver.2.01 User Guide

The INCL66K environment variable can be defined using the DOS command SET. The SET command
has the following format:

SET INCL 66K =path

CC665S uses temporary files during the process of compilation, the path for these temporary files can be
specified inthe TMP environment variable. Thefollowing line may beincluded inthefileautoexec.bat that
enables CC665S to create temporary files during compilation in the given path.

SET TMP=PATH
Example:
SET TMP=C.\\RAMDRIVE
CC665S uses ' C\RAMDRIVE' asthe path for its temporary files

If the environment variable TMPis not specified, compiler creates temporary filesin the current directory.

Page 4

Invoking CC665S And Command Line Options

3. INVOKING CC665S AND
COMMAND LINE OPTIONS

3.1 INVOCATION OF CC665S

CC665S may be invoked by specifying the following command line:
C:\> CC665S [options...] file[file...] <CR>

Each filenameisan input 'C' source file and the name should have either “.C”, “.c”, “.H” or “.h” extengon.
If CCB65S encounters any other extenson afatal error messageisissued and the compilation processis
terminated. The file may have pathname.

CC665S creates an assembly file as output for each of the files specified in the command line. The output
file contains MSMI66K “500” core assembly mnemonics or assembly mnemonics that are vaid only in
“500S” core, depending on the core option specified in the command line.

By default, the output file has the same name as the input file with an extenson “.asm’. The output file is
aways crested in the current working directory even if the input file resdes in some other directory.

Page 5

CC665S Ver.2.01 User Guide

Following are the command line options:

T specify the operand string for TY PE ingtruction
IMS smal C memory modd

IMEM effective medium C memory model
MM medium C memory model

IMC compact C memory model

IMEL effective large C memory mode
/ML large C memory model

ImixC compact mixed memory modd
/mixL large mixed memory model

/mixiVi medium mixed memory model

/0t optimize for speed

/0l enable loop optimizations

/Om optimize for space

/0g enable global optimizations

/Cd disable optimizations

/Oa ignore diasing

/nX500generate code for NX-8/500
/nX500S generate code for nX-8/500S

ILE generaelig file

/Fa as=mbly liding file

ICT lig cdltreein afile

/ILP preprocessed output in afile

N include file directory

/PC preprocessed output with comment

/D define macro

IST generate stack probe routine

ISS change sack sze

/SD generate debug information with “cals menu’ option enabled
/OSD generate debug information with ‘ cals menu’ option disabled
/SL change maximum identifier length

1J default char typeisunsigned

IPF use comma as ddimiter for pragma arguments

IREG use register for argument/ return value

/WIN assgn window attribute to table

/AWIN assign awin attribute to table

ISYS change compiler ssgment naming Sirategy

Command line options are explained in more detail in section 3.2.

Page 6

Invoking CC665S And Command Line Options

On invocation, following copyright message is displayed.

CC665S C Compiler, Ver.2.01 Apr 1996
Copyright (C) 1992, Oki Electric Ind. Co., Ltd.

For the command ling,
C\> CC665S <CR>

the following usage is displayed.

CC665S C Compiler, Ver.2.01 Apr 1996
Copyright (C) 1992, Oki Electric Ind. Co., Ltd.

Usage: CC665S /T dring [option ...] filename...
[T string Specify the operand string for TY PE ingtruction

-C MEMORY MODEL-

/IMS small mode /IMC compact model
IMEM effective medium modedl IMEL effective large modd
/MM medium mode /ML large model
-MIXED MEMORY MODEL -

/mixC compact moddl /mixL large modd
/mixM medium model

-OPTIMIZATION-
/Ot optimize for speed /Ol enable loop optimizations
/Om optimize for space /Og endble globd optimizations
/Od disable optimizations /Oaignore diasng

-CODE GENERATION-
/nX500 generate code for nX-8/500 /nX500S generate code for nX-8/500S

-OUTPUT FILES
/LE generaeli file /Ffilename] assambly ligting file
ICT <filename> lig cdltreein afile
(Press <return> to continue)
-PREPROCESSOR-
/LP preprocessed output in afile /I <directory> include file directory
/PC preprocessed output with comments /D<identifier>[=[string]] define macro
-STACK-
IST generate stack probe routine ISS <congtant> change stack size
-DEBUG-

/SD generate debug information with ‘ cals menu’ option enabled
/OSD generate debug information with * calls menu’ option disabled

Page 7

CC665S Ver.2.01 User Guide

-MISCELLANEOUS
/SL<congtant> change maximum identifier length
/J default char typeisunsigned
/PF use comma as ddlimiter for pragma arguments
/REG use regiger for argument/ return value
/WIN assign window attribute to table
ITAWIN assign awin attribute to table
ISY S change compiler segment naming srategy

3.2COMMAND LINE OPTIONS

This section describes various options that may be specified in the command line. All command line
options are case sendtive. Options/I, /Faand /D may be specified more than oncein the command line. If
any option other than /I, /Fa.or /D is specified more than once in the command line, CC665S issues fatal
error message. Options /Faand /D may aso be specified between source filesin the command line,

3.2.1 Machine M odel Options

This section describes the machine mode option /T.

3211 TYPE STRING
Syntax : /T gtring

Any string may be specified with /T option. The string isnot vaidated by CC665S. CC665S outputs the
specified string in the assembly file using TY PE pseudo ingruction. This parameter is compulsory unless
one of the preprocessor options/LP or /PC is specified.

Example3.1
C:\> CC665S /T m66589 test.c <CR>
/T mB6589 in the above example, ingructs CC665S to output TY PE pseudo ingruction as follows.
type (Mm66589)

Page 8

Invoking CC665S And Command Line Options

3.2.2 ‘C’ Memory Model Options

CC665S supportsthe following ‘C’ memory modds.
Smadl C memory modd

Effective medium C memory mode

Medium C memory model

Compact C memory mode

Effective large C memory modedl

© o b~ 0w NP

Large C memory mode

Memory mode can be specified by the corresponding command line options. One of these options may
be specified in the command line. If more than one option is specified, CC665S issues a fatd error
message. The C memory mode options are described in detail in this section.

3.2.2.1/MSOPTION
Syntax : IMS

/M S option ingtructs CC665S to compile programsin smal C memory model. Thesmdl C memory mode
uses one physica data segment for data variables and one physical code segment for both functions and
tables. This option is the default C memory modd option. If no memory mode option is specified in the
command line, programs are compiled in this modd.

Example 3.2
C:\> CC665S /T m66589 /MStestl.c <CR>

The command line option /M Sin the above example, ingructs CC665S to compile the sourcefile®test1.c”
in smal memory modd.

3.2.2.2. IMEM OPTION
Syntax : IMEM

/IMEM option ingructs CC665S to compile programsin effective medium C memory modd . The effective
medium C memory model uses one physica data segment for data variables, one physical code segment
for functions and one separate physica code segment for tables. This memory model is an extenson of
smdl memory modd.

Page 9

CC665S Ver.2.01 User Guide

Example 3.3
C:\> CC665S/T m66589 /MEM test2.c <CR>

The command line option /MEM in the above example, ingtructs CC665S to compile the source file
“test2.c” in effective medium memory modd.

3.2.2.3/MM OPTION
Syntax : IMM
/MM optioninstructs CC665S to compile programsin medium C memory modedl. The medium C memory

mode uses one physica data segment for data variables and one or more physica code segments for
functions. In this modd, tables are dlocated in one of the physical code segments used by functions.

Example 34
C:\> CC665S /T m66589 /MM test3.c <CR>

The command line option /MM in the above example, ingtructs CC665S to compile the source file
“test3.c” in medium memory modd.

3.2.2.4/MC OPTION
Syntax : IMC

IMC option ingtructs CC665S to compile programs in compact C memory model. The compact C
memory mode uses one or more physical datasegmentsfor datavariablesand one physica code segment
for both functions and tables.

Example 35
C:\> CC665S /T m66589 /MC testd.c <CR>

The command line option /MC in the above example, ingructs CC665S to compile the source file
“test4.c” in compact memory modd.

3.2.25/MEL OPTION
Syntax : IMEL

/IMEL option ingructs CC665S to compile programs in effective large C memory mode. The effective
large C memory mode uses one or more physica data segments for data variables, one physicd code
segment for functions and one separate physical code segment for tables. This memory modd is an
extenson of compact memory model.

Page 10

Invoking CC665S And Command Line Options

Example 3.6
C:\> CC665S/T m66589 /MEL tests.c <CR>

The command line option /MEL in the above example, ingtructs CC665S to compile the source file
“test5.c” in effective large memory modd.

3.2.2.6 /ML OPTION
Syntax : /ML
/ML option ingructs CC665S to compile programsin large C memory modd. Thelarge C memory model

uses one or more physica data segments for data variables and one or more physica code segments for
functions. In this mode, tables are dlocated in one of the physical code segments used by functions.

Example 3.7
C:\> CCB65S /T m66589 /ML test6.c <CR>
The command line option /ML in the above example, ingructs CC665S to compilethe sourcefile“test6.c”
in large memory modd.

Example 3.8
C:\> CC665S /T m66589 /MC /MM test.c <CR>

For the above command line option, CCE65S issues afata error because more than one memory model
option is specified.

3.2.3 Mixed Memory M odel Options

Mixed memory mode options specify the available memory in the hardware. Hardware supports the
following memory models

Smdl memory model
Medium memory mode
Compact memory model

A 0 DN P

Large memory mode

Page 11

CC665S Ver.2.01 User Guide

The mixed memory model options are described in this section.

3.2.3.1/mixM OPTION

/mixM option ingructs the compiler that the hardware supports medium hardware memory modd.
Medium hardware memory mode contains one physica data segment and more than one physica code
Ssegment.

Example 3.9
C:\>CC665S /T m66589 /IMEM /mixM test2.c <CR>

For the above command line, CC665S compiles “test2.c” in medium mixed memory modd.

3.2.3.2/mixC OPTION

/mixC option ingructs the compiler that the hardware supports compact hardware memory modd.
Compact hardware memory mode contains more than one physical data segment and one physica code
segment.

Example 3.10
C:\>CC665S /T m66589 /M S /mixC test3.c <CR>

For the above command line, CC665S compiles “test3.c” in compact mixed memory modd.

3.2.3.3/mixL OPTION

/mixL option ingructs the compiler that the hardware supports large hardware memory mode. Large
hardware memory model contains more than one physica data segment and more than one physica code
segment.
Example 3.11
C:\>CC665S /T m66589 /MS /mixL test3.c <CR>

For the above command line, CC665S compiles “test3.c” in large mixed memory modd.

Page 12

Invoking CC665S And Command Line Options

3.2.4'C’ And Mixed Memory M odel Combination

A mixed memory modd option may be specified with a C memory mode option. If it is specified without
a C memory model option, CC665S issues a fatd error message. Some combinations of C and mixed
memory models are not alowed.

The vdid and invadid combinations of C and mixed memory modes are shown in the following teble:

TABLE 3.1

/mixM /mixC /mixL

IMS vdid vdid vdid
MEM vdid Invdid vdid
IMM vdid Invdid vdid
IMC Invdid Invdid vdid
IMEL Invdid Invdid vdid
/ML Invdid Invdid vdid

Page 13

CC665S Ver.2.01 User Guide

In the absence of amixed memory mode option in the command line, mixed memory mode! is st based
on C memory mode option. Thefollowing table specifies how C and mixed memory models are assumed
based on C and mixed memory mode options specified in the command line:

TABLE 3.2
MEMORY MODEL C MEMORY MIXED MEMORY
OPTIONS MODEL MODEL
none smd| sl
IMS smd| smdl
IMS /mixM gl medium
IMS /mixC gmdl compact
/IMS /mixL smdl large
IMEM /mixM effective medium medium
/MEM effective medium medium
/IMEM /mixL effective medium large
/MM medium medium
/MM /mixM medium medium
/MM /mixL medium large
MC compact compact
/IMC /mixL compact large
IMEL effective large large
/MEL /mixL effective large large
/ML large large
/ML /mixL large large

3.2.5 Optimization Options

The optimizing capabilities available with CC665S can reduce the target storage space and/or target
execution time. Thisis achieved by diminating unnecessary ingtructions and rearranging the code.

By default, CC665S performsal optimizations. One of the following optimization options may be used to
uppress the optimization or to control the optimization.

Page 14

Invoking CC665S And Command Line Options

The various optimization options are shown in the following table:

TABLE 3.3
OPTION OPTIMIZING PROCEDURE
/0d Disables optimization
/0l Enables|oop optimization
/Og Enables globd optimization
/Oa Enables dlias checks
/Om Maximizes optimization
/Ot Speed optimization

Following optimizations are performed by defaullt.
1. Common subexpression dimingtion

2. Condant folding.

3. Peephole optimizations.

The above mentioned optimizations are performed by examining only short sections of theinput program.
These optimizations cannot be suppressed by specifying /Od option.

The following optimizations will be performed aways unless suppressed by /Od option.

TABLE 34
Eliminating dead code
Eliminating dead blocks

Optimizing jumps
Optimization using adgebraic identities

gal d| ¥ V] &

Globa Regigter dlocation and assgnment

Other options have no control over these optimizations.

Page 15

CC665S Ver.2.01 User Guide

3.2.5.1/0d OPTION
Syntax : /Od

/0d option ingtructsthe compiler not to perform any optimization. Thisoption may be useful when asource
program is compiled for debugging. Some of the optimizations will ill be performed.

This option increases the size of the generated code and executable time.
Other optimization options cannot be specified with this option. If specified, a fata error message
indicating theillegd combination of optimization optionsis issued.
Example 3.12
C:\> CCB65S /0d /T m66589 test.c <CR>
For the above command line, output file “test.asm’” with unoptimized code is created.
Example 3.13

C:\> CC665S/0d /Ol /T m66589 test.c <CR>
A fatd error “Illegd combination of optimization options” isissued for the above command line.

3.2.5.2/0g OPTION

Syntax : /Og

When /Og option is specified, CC665S performs only the globa optimizations. The globa optimizations
performed by CC665S are

1. Globd common subexpresson eimination

2. Globa congant folding

3. Code sinking

4. Code hoidting.

/Og option enables CC665S to perform common subexpression dimination and congtant folding by
examining an entire function.

Example 3.14
C:\> CC665S/0g /T m66589 test.c <CR>

Loop optimizations and dias checks are not performed for the above command line. However, other
optimizations shown in table 3.4 are performed.

Page 16

Invoking CC665S And Command Line Options

3.25.3/0l OPTION
Syntax : /Ol

When /Ol option is specified, CC665S performs only those optimizations that involve loops.

Loops involve sections of code that are executed repeatedly. These sections of code are targets for
optimization. These optimizations involve moving code or rearranging code so that it executes fagter.
Following loop optimizations are performed:
1. Loop invariant code motion
2. Loop variant code maotion
3. Strength reduction in loops
4. Induction varigble dimination
5. Loop unralling.

Example 3.15

C:\> CCB65S /0l /T m66589 test.c <CR>

/Ol option enables CC665S to perform loop optimizations. Globa optimizations and dias checks are not
performed for the above command line. However, other optimizations shown in table 3.4 are performed.

Example 3.16
C:\> CC665S /01 /0g /T m66589 test.c <CR>

/Ol option enables CCB65S to perform loop optimizations and /Og enables globa optimizations. Alias
checking is not performed for the above command line. Other optimizations shown in table 3.4 are
performed.

3.25.4/0a OPTION
Syntax : /Oa

/Oa option enables the compiler to perform dias checks which results in safe optimization.

Aliasesare multiple names (that is, symbolic references) for the same memory location inaprogram. When
/Oa option is specified, CC665S detects and maintains the information about aliases. It then uses this
information, during optimizations.

Page 17

CC665S Ver.2.01 User Guide

If /Oa option is not specified, the Sze of the output may be reduced or the speed of the output may be
increased. However, the user is highly recommended to use the /Oa option to get a safe output. The user
may ignore this option, only when, aiases are not used in the program.
Example 3.17
C:\> CC665S /0Oa/T m66589 test.c <CR>

/Oaoption enables CC665S to perform alias checks. Loop optimizations and global optimizations are not
performed for the above command line. Optimizations shown in table 3.4 are performed.

3.2.5.5 /Om OPTION
Syntax : /Om

/Om option enables CC665S to perform maximum possible optimizations. When /Om option is specified,
CC665S peforms dl the optimizations iteratively until no more optimization can be performed. When
/Om is specified, /Og and /Ol options are redundant. Globa optimizations and loop optimizations will be
carried out, when /Om is specified.

Example 3.18
C:\> CC665S/0Om /T m66589 test.c <CR>
/Om option enables CC665S to perform al the optimizations iteratively. Alias checks are not performed.
Example 3.19
C:\> CC665S/0m /Og /T m66589 test.c <CR>

/Om option enables CC665S to perform al optimizations iteratively. /Og option in the above command
lineis redundant since globa optimizations are aso performed because of /Om option.

3.2.5.6 /0t OPTION
Syntax : /Ot
/Ot option enables CC665S to perform optimization for speed. This also enables CC665S to perform

globa optimization, loop optimizations. By default, alias checks are not performed. Sometimes, the speed
optimization increases the output code size. The options/Om , /Ot and /Od are mutudly exclusive.

Page 18

Invoking CC665S And Command Line Options

Example 3.20
C:\> CC665S /Ot /T m66589 test.c <CR>

/Ot option enables CC665S to perform optimization for speed.

3.25.7 SUMMARY OF OPTIMIZATION OPTIONS

The actions performed when the above optimization options are pecified is summarized in the following
table

TABLE 35
Optimization L oop Optimizations | Global
Options Optimizations
Default no/Oa | peformed - unsafe | performed - unsafe
/Oa performed - safe performed - safe

/0d no/Oa | not performed not performed
/Oa Error Error

/0l no/Oa | performed - unsafe | not performed
/Oa performed - safe not performed

/Og no/Oa | not performed performed - unsafe
/Oa not performed performed - safe

/Om no/Oa | peformed - unsafe | performed - unsafe
/Oa performed - safe performed - safe
/Ot no/Oa | peformed - unsafe | performed - unsafe
/Oa performed - safe performed - safe

A combination of /Ol, /Og and /Oa optimization options may be specified.

Page 19

CC665S Ver.2.01 User Guide

3.2.5.8 COMBINATION OF OPTIMIZATION OPTIONS

The following table summarizes the combination of the optimization options.

TABLE 3.6

No. | Combinations Validity | Optimizations Performed If
The Combination IsValid

1 /0d /Og Invdid -

2. /0d /Ol Invdid -

3. /0d /Oa Invdid -

4. /0d /Om Invdid -

5. /0d /Ot Invdid -

6. /Om /Ot Invdid -

7. /Og /Ol vdid Loop Optimizations
Globd Optimizations
Other Optimizations

8. /0g /Oa vdid Globd Optimizations
Alias Checking
Other Optimizations

9. /Og /Om vdid Loop Optimizations
Globd Optimizations
Other Optimizations

10. |/Og/Ot vdid Loop Optimizations
Globd Optimizations
Speed Optimization
Other Optimizations

11. | /Ol /Oa vdid Loop Optimizations
Alias Checking
Other Optimizations

12. | /Ol /Om vdid Loop Optimizations
Globd Optimizations
Other Optimizations

13. | /OI'/0t vdid Loop Optimizations
Globd Optimizations
Speed Optimization
Other Optimizations

Page 20

Invoking CC665S And Command Line Options

No.

Combinations

Validity

Optimizations Performed If
The Combination IsValid

14.

/Oa/Om

vdid

Loop Optimizations
Globa Optimizations
Alias Checking
Other Optimizations

15.

/Oa /Ot

vdid

Loop Optimizations
Globd Optimizations
Speed Optimization
Alias Checking
Other Optimizations

16.

/Og /0l /Oa

vdid

Loop Optimizations
Globa Optimizations
Alias Checking
Other Optimizations

17.

/Og /Ol /Om

vdid

Loop Optimizations
Globa Optimizations
Other Optimizations

18.

/Ol /Oa/Om

vdid

Loop Optimizations
Globa Optimizations
Alias checking
Other Optimization

19.

/0Ol /Og /0a/Om

vdid

Loop Optimizations
Globd Optimizations
Alias checking
Other Optimizations

20.

/Og /Ol /Ot

vdid

Loop Optimizations
Globa Optimizations
Speed Optimization
Other Optimizations

21

/0l /0a /Ot

vdid

Loop Optimizations
Globa Optimizations
Speed Optimization
Alias checking
Other Optimization

/0l /Og /Oa /Ot

vdid

Loop Optimizations
Globd Optimizations
Speed Optimization
Alias checking
Other Optimizations

Page 21

CC665S Ver.2.01 User Guide

3.2.6 Code Generation

3.2.6.1 /nX500 OPTION
Syntax : /nX500

The /nX500 option instructs CC665S to generate code for nX-8/500 core.

Example3.21
C:\> CC665S/nX500 /T m66589 test.c <CR>
This option cannot be specified aong with the other core option (/nNX500S). If specified, CCB65S issues
afata error message “Duplicate core option’.

Example 3.22
C:\> CC665S /nX500S/nX500 test.c <CR>

A fad error message is generated for the above command line, since the core options /NX500 and
/nX500S are mutudly exclusive,

3.2.6.2 /nX500S OPTION
Syntax : /nX500S

The option /nX500S instructs CC665S to generate code for nX-8/500S core. Thisisthe default option. If
no coreis pecified in the command line, CC665S generates code for nX-8/500S core.

Example 3.23
C:\> CC665S /nX500S /T m66589 test.c <CR>
This option cannot be specified dong with the other core option (/nX500). If specified, CC665S issuesa
fatal error message : “Duplicate core option’.

Example 3.24
C:\> CCB65S /nX500 /nX500S test.c <CR>

A fata error messageis generated for the above command line, as the core options /nX500 and /nNX500S
aemutudly exdusve.

Page 22

Invoking CC665S And Command Line Options

3.2.7 Output Files

3.2.7.1 ERROR LISTING OPTION
Syntax : /LE
/LE option enables CC665S to generate listing of source files along with error messages, if any. The

complete source codeislisted with line numbers. The name of thelidting fileisthe same asinput filewith an
extenson “.LST".

This option cannot be specified along with one of the preprocessor options/LP or /PC. If specified, fatal
eror isissued.

Information about the Sze of stack used in each function is aso output in the list file, if no error messages
or fatal error messages are generated.

Example 3.25
C:\> CC665S/LE /T m66589 test.c <CR>

CC665S generates a ligting file “test.Is” for the above command line. The output liging file contains the
source with line numbers and the generated errors, if any.

3.2.7.2 CALLTREE OPTION
Syntax : /CT filename

This option enables CC665S to generate alisting of function calls. Cdltree listing file contains an indented
listing showing function names a the left margin and cals in each function.

Filename must be specified dong with the option /CT. If file nameis not specified CC665S issues an error
message. No default extension is assumed by CC665S.

This option cannot be specified along with one of the preprocessor options/LP or /PC. If specified, fatal
eror isissued.

Example 3.26
C:\> CC665S/CT test.cal /T m66589 test.c <CR>

/CT option in the above command line enables CC665S to generate a caltree listing file “test.cal”. An
indented listing of function names and the callsin each function isoutput in “test.cal”.

Page 23

CC665S Ver.2.01 User Guide

Example 3.27
C:\> CC665S/CT test.cd /T m66589 t1.c t2.c <CR>

I/CT option in the above command line enables CC665S to generate acdltreeliging file“test.cal”. Cdltree
ligting of both the files tl.c and t2.c is output in “test.cal” one after the other. However, the function
information is not carried from one file to another.

Example 3.28
C:\> CC665S/CT test.cal /LPtest.c <CR>

A fatd eror isissued by CC665S for the above command line, snce /CT and /LP options are mutualy
exclusve

3.2.7.3 ASSEMBLY LISTING FILE
Syntax : /Fafpath]

/Faoption enables CC665S to generate assembly listing file in the specified name, path or adirectory . If
afile name with or without path is specified with /Fa.option then assembly listing will be output in thet file.
If the specified file name has no extension then the output file will have “.ASM” extenson.

If adirectory is done specified with /Fa option, then the assembly listing will be crested in that specified
directory with the default file name.

The argument * path’ isoptiond. If no argument ispecified with /Faoption, then the assembly listing will be
created in the current directory with the defaullt file name.
If thefile or path specified with /Faoption isinvalid, CC665S issuesfatd error message

If adirectory is specified with /Fa option then that will be considered for dl the source files following that
/Faoption if no other /Fa option is specified in between.

/Faoption can be specified any number of timesin the command linefor asourcefile. If morethan one/Fa
option is specified before asourcefile then only the latest /Fa.option will be consdered for that sourcefile.

/Faoption may aso be specified between source files in the command line.

Example 3.29
C:\> CC665S/Fa.\ /T m66589 test.c <CR>

For the above command line, assembly lig file “test.asm” will be created in the parent directory of the
current working directory.

Page 24

Invoking CC665S And Command Line Options

Example 3.30
C:\> CC665S /Fad:\asm\ /T m66589 test].c test2.c<CR>

For the above command line, the assembly ligting output files*testl.asm’ and “test2.asm” will be created
in“d:\asm’ directory.
Example 3.31
C:\> CC665S /Faoutl /Faout? /T m66589 test.c <CR>
For the above command line, the assembly listing will be in the name “out2.as’.

3.2.8 Preprocessor Options

3.28.1/LPOPTION
Syntax : /LP
This option enables CC665S to generate listings of preprocessed output of each of the input files. When

thisoptionis specified CC665S acts as atext processor that manipulatesthe text of the sourcefiles. It
performs the following functions :

1. Macro expansion

2. Comment remova

3. Fleinduson

4. Conditiona compilation
5. Line control

6

. Error generation

by processing the preprocessor directives indgde the source files.

The name of the preprocessed file is same as the input file with an extenson “.P66”. When this option is
specified, source files are not compiled.

Lig fileoption (/LE) and cdltree option (/CT) cannot be specified with /L P option. Theinput filename may
have any extengon (including empty extension) when this option is specified.

Example 3.32
C:\> CC665S/LP test.c <CR>

Page 25

CC665S Ver.2.01 User Guide

/LP in the above example instructs the compiler to create a preprocessed output file test.p66. Comments
will be stripped.

Example 3.33
C:\> CC665S/LP/LE test.c <CR>

A fatd error is generated for the above command line, since /LE option and /LP option are mutualy
excdudve

3.2.8.2/PC OPTION
Syntax : /PC

The preprocessor, while preprocessing, normally removes al comments present in the source file. /PC
option ingructs the compiler to preserve comments during preprocessing. CC665S produces a
preprocessed output listing with the comments specified in the sourcefile. All other functionsaresmilar to
that of /LP option.

The preprocessor options/PC and /L P are mutualy exclusive. Only one of these options may be specified
in the command line. When both these options are specified together, CC665S issues a fata error
“Duplicate preprocessor option’.

The name of the preprocessed file isthe same asinput file but with an extension “.P66”. When this option
IS specified, source files are not compiled.

Ligt fileoption (/LE) and calltree option (/CT) cannot be specified with /PC option. Theinput filename may
have any extension (including empty extension) when this option is specified.
Example 3.34
C:\> CC665S /PC test10.inp <CR>
/PC in the above example ingructs the compiler to create a preprocessed output file test10.p66.
Comments are preserved in the outpuit file.

Example 3.35
C:\> CC665S/PC /LP key.c <CR>

A fad error messageis generated for the above command line, sincethe options/LP and /PC are mutualy
exclusve

Page 26

Invoking CC665S And Command Line Options

3.2.8.3/1 OPTION
Syntax : /I directory
A directory to search the included files can be given with /I option. This option temporarily overrides or

changes the effect of environment variable INCL66K. CC665S searches the directory specified in this
option first, before searching the standard places given in INCL66K environment variable.

Only one directory name shal be specified with an /1 option. If more than one directory names are to be
Specified, /1 option may be used repegtedly.
Example 3.36
C:\> CC665S/1 \include /T m66589 test.c <CR>
The above command line ingtructs CC665S to search the included files in the directory “\indude’ before
searching in the directories specified using the environment variable INCL66K.

Example 3.37
C:\> CC665S/I include/I lib /LP test.c <CR>

For the above command line, CC665S searches the included file in the directory “include’ firgt. Andif not
found, it searchesin the directory “lib”. If gtill not found, CC665S searchesin the directories specified by
the environment variable INCL66K.

3.2.8.4/D OPTION
Syntax : /D<identifier>[=[string]]

where ‘identifier’ isthe macro and ‘ sring’ is the replacement text.

A macro without argument can be defined in the command line using /D option. The macro processing is
same asif it is gpecified in the sourcefile.

If the argument specified with /D option is not an identifier then CC665S ignores /D option without giving
warning message.

Example 3.38
C:\> CC665S /Tm66589 /DVALUE(a) test14.c <CR>
For the above command line, CC665S ignores /D option since ‘VALUE(@)’ isnot an identifier.

Page 27

CC665S Ver.2.01 User Guide

Whitespaces may or may not be specified in between /D’ and themacro. If only identifier is specified with
/D option then the replacement text for the macrois‘1’.

Whitespaces cannot be specified between the identifier and ‘=". If the argument ends with ‘=" then the
replacement text for the macro is empty.

Whitespaces cannot be specified between ‘=" and the replacement string.

/D option can be specified before each source file name in the command line. The macro defined with /D
option is considered for dl the files specified after that /D option in the command line.

Example 3.39
C:\> CC665S /Tm66589 /DVALUEL test15.c /DVALUE2= test16.c <CR>

Themacro‘VALUEL’ isdefined as 1 and it isconsidered for both ‘test15.¢” and ‘test16.¢’. Wheress, the
macro ‘VALUE2' is defined with no replacement text and it is consdered only for the file ‘test16.c’.

3.2.9 Stack

3.2.9.1 STACK SIZE OPTION
Syntax : /SS congtant
ISS option sets the size of the program stack. CC665S outputs the size specified in this option using the

pseudo ingruction STACKSEG. This enablesthe linker RL66K, at alater stage, to alocate memory for
the program stack.

If this option is not specified, CC665S sets a default stack size of 1024 bytes.

The congtant must be a decima congtant. The valid range of the congtant is between 2 and 65534,
inclusve of both. If an odd number is specified, afatd error is issued. The space between /SS and the
condant is optiond.

Example 3.40
C:\> CC665S/SS 2048 /T m66589 test.c <CR>

STACKSEG pseudo ingtruction with size 2048 is output by CC665S for the above command line.

Example 341
C:\> CC665S /SSOx0800 /T m66589 test.c <CR>

Page 28

Invoking CC665S And Command Line Options

A fatd error isissued by CC665S for the above command line, since only adecimal constant is expected
as aparameter for /SS option.

Example 3.42
C:\> CC665S/SS 1023 /T m66589 test.c <CR>

A fatd error isissued for the above command line, Since an even number is expected as a parameter for
ISS option.

3.2.9.2 STACK CHECKING OPTION
Syntax : /ST

When /ST option is specified, stack probes are added in the assembly output by CC665S.

A “stack probe” is a short routine caled on entry to function, to verify if there is enough room in the
program stack to alocate loca variables required by the function. The stack probe routine jumpstoaC
function‘_stack_error’, when it determinesthat the required sizeisnot available in the stack. Thefunction
‘_stack_error’ hasto be defined by the user.

When this option is not specified, stack probe routineis not called, and stack overflow may occur without
being diagnosed.
Example 343
C:\> CCB65S/ST /T m66589 test.c <CR>

Cadlls to stack probe routine is generated at the entry code of each function in “test.c” for the above
commeand line.

3.2.10 Debugging Options

3.2.10.1/SD OPTION
Syntax : /SD
If /SD option is specified, CC665S generates the necessary information for the C’ source level debugger

CDB665S. Files compiled without /SD or /OSD option cannot be debugged using the debugger
CDB665S at source levd.

Debugging informetion are stored in a separate file. The name of the debugging information fileisthe same
asinput filewith an extenson “.DBG”.

Page 29

CC665S Ver.2.01 User Guide

This option cannot be specified dong with the other debugging option /OSD. If specified, fata error is
issued.

Example 3.44
C:\> CC665S/SD /T m66589 test.c <CR>

For the above command line, adebug information fileis crested. The name of the debug informetion fileis
“test.dbg’. Thisfile will not be created when CC665S issues error message or afatal error message.

Example 345
C:\> CC665S/SD /OSD test.c <CR>
A fad error isgenerated for the above command line, snce/SD and /OSD optionsare mutudly exclusive.

3.2.10.2 /OSD OPTION
Syntax : /OSD

Thisoptionissameas/SD option except that the source level debugger CDB665S does not support ‘ cdls
menu’ option if /OSD option is used in compilation. /SD and /OSD options are mutualy exclusive.

If both /SD and /OSD options are specified together, fatd error isissued.

Example 3.46
C:\> CC665S/0SD /T m66589 test.c <CR>

For the above command line, adebug information fileis crested. The name of the debug informetion fileis
“test.dbg’. Thisfile will not be created when CC665S issues error message or afatal error message.

Example 3.47
C:\> CC665S/0SD /3D test.c <CR>

A fad error isgenerated for the above command line, snce/SD and /OSD optionsare mutudly exclusive.

Page 30

Invoking CC665S And Command Line Options

3.2.11 Miscellaneous Options

3.2.11.1/SL OPTION
Syntax : /SL constant

/SL option setsthe maximum length of anidentifier. The constant must be aninteger in therange 31 to 254,
indusive of both.

If this option is not pecified, CCB65S assumes the maximum length of an identifier as 31.

Example 348
C:\> CC665S/SL 40 /T m66589 test.c <CR>

In the above example, CC665S takes maximum length of an identifier as 40 characters. If in “test.c” any
identifier isencountered whose length exceeds 40 characters, only first 40 characterswill be consdered as
identifier name and awarning message will be given.

Example 3.49
C:\> CCB665S /T m66589 test.c <CR>
In the above example, CCB65S takes maximum length of an identifier as 31 characters (default maximum
identifier length).
Example 3.50
C:\> CC665S/SL 1023 /T m66589 test.c <CR>

A fatd error is issued for the above command line, sSince the expected range of the congtant vaue is
between 31 and 254, inclusive of both.

Example 351
C:\> CC665S/SL /T m66589 test.c <CR>

A fatd error isissued for the above command line, Snce a congtant vaue is expected after /SL.

3.2.11.2. /JJOPTION
Syntax : /J

/Joption instructs CC665Sto treat default‘ char’ typeas‘unsigned char’ type. If /Joptionisspecifiedin
the command line, CC665Streats al ‘char’ typewithout ‘signed specifier as‘unsigned char’ type.

Page 31

CC665S Ver.2.01 User Guide

Example 3.52

char chr;

By default, CC665S treets the variable ‘chr’ as ‘signed char’ type. If /J option is specified in the
command line, CC665S treats the varidble ‘ chr’ as ‘unsigned char’ type.

3.2.11.3/PF OPTION
Syntax : /PF

The default pragma argument delimiter is whitespace. This can be changed to “,” (comma) by specifying
/PF option in the command line.

The following is the pragma syntax, when /PF option is not specified:
#pragma pragma_keyword [argumentl argument2 ...]

If /PF option is specified in the command line, the pragma syntax is as follows:
#pragma pragma_keyword [argumentl, argument2, ...
Example 353

#pragmainpage segl int_varl, int_var2, int_var3

The above pragma syntax is vaid if /PF is specified in the command line. Otherwise, CC665S issues a
warning message and ignores pragma.

3.211.4 /REG OPTION
Syntax : /IREG

/REG option ingructs the compiler to treat dl the functions except * noacc’ specified functions as
‘* _accpass functions. Thefirgt argument and return value may be passed through the accumul ator to and
from*__accpass function.

Example 3.54
C:\> CC665S /REG /T m66589 test.c <CR>

Inthe above example, dl thefunctionsthat are not quaifiedwith* __noacc’ will beassumed to bequdified
with* __accpass qudifier.

Page 32

Invoking CC665S And Command Line Options

3.2.11.5/WIN OPTION

/WIN option directs the compiler to assign al non-far tables to ROMWINDOW region. Data memory
addressing is used to access non-far tables.

Example 3.55
C:\> CC665S/WIN /T m66589 test.c <CR>

In the above example, al the non-far tablesin sourcefile“test.c” arealocated in ROMWINDOW region.

3.2.11.6 /AWIN OPTION

JAWIN option ingtructs the compiler to output the pseudo ingruction “awin” in the assembly liding.
ITAWIN option may be used while compiling library routines as they may be invoked from both programs
compiled using /WIN option and programs compiled without /WIN option.

/WIN and /AWIN options are mutualy exclusive. If both options are specified in command line, CC665S
issues fatal error message.

Example 3.56
C:\> CC665S/AWIN /T m66589 test.c <CR>

In the above example, “awin” pseudo is output in the assembly lidting file “test.asm’”.
Example 3.57
C:\> CC665S/AWIN /T m66589 /WIN test.c <CR>

In the above example, CC665S outputs fatal error message as /WIN and /AWIN options are mutualy
exclusve,

3.2.11.7/SYSOPTION

ISY S option directs the compiler to change the segment naming strategy. This option may be used during
compiling sysem files.

Example 3.58
C:\> CC665S/SY S /T m66589 test.c <CR>

In the above example, CC665S uses a different ssgment naming strategy while compiling “test.c”.

Page 33

CC665S Ver.2.01 User Guide

3.2.12 Invalid Combination Of Options

Thefollowing are invalid combinations of command line options.

Both preprocessor options (/LP and /PC)

Both debugging options (/SD and /OSD)

/WIN and /AWIN

/LE and preprocessor options (/LP or /PC).

/CT and preprocessor options (/LP or /PC).

/Faand preprocessor options (/LP or /PC).

/Om and /Ot.

/Od and other optimization options (/Ol, /Og, /Oa, /Om and /Ot).
Both core options (/nX500 and /nX500S)

10 Invaid C and mixed memory model combingtions as given in table 3.1.

CoNoOr®WNRE

Page 34

Memory Models

4. MEMORY MODELS

This section describes about the various memory models supported by CC665S and the additional
memory modd qudifiers provided.

4.1 C MEMORY MODELS

CC665S supports the following C memory mode options:
Smal C memory modd

Effective medium C memory model

Medium C memory modd

Compact C memory mode!

Effective large C memory modd

o o &~ w Dd

Large C memory model

Command line options corresponding to the C memory modds are as follows:
1. /IMS option for Smal C memory modd

/MEM option for Effective medium C memory modd

/MM option for Medium C memory modd

/IMC option for Compact C memory model

IMEL option for Effective Large C memory model

o g &~ w N

/ML option for Large C memory model

Page 35

CC665S Ver.2.01 User Guide

4.2 HARDWARE MEMORY MODELS

MSM665xx chips can be classified into the following four types based on memory availability:

1. Smdl Memory Modd

2. Medium Memory Modd

3. Compact Memory Mode

4. Large Memory Modd
Small Memory Modd architecture supports one physica datasegment and one physical code segment. In
Medium Memory Modd, one physical data segment and more than one physical code segment are
available. Compact Memory Modd chips contain more than one physical data segment and one physica
code segment. Large Memory Modd architecture supports more than one physica data segment and
more than one physica code segment.
Commeand line options to specify the hardware memory modd options are as follows:

1. /mixM to specify Medium hardware memory model

2. /mixC to specify Compact hardware memory mode

3. /mixL to specify Large hardware memory model

4.3 OBJECTSAFFECTED BY MEMORY MODELS

The objects of a C program that are affected by memory modds may be divided into the following four
magor divisons
1. DataVariables
2. Tables
3. Strings
4. Functions

Variables that are alocated in data memory are cadled Data Variables. Variables that are alocated in
code memory are called Tables.

Page 36

Memory Models

4.3.1 Memory Model Qualifiers

The following memory modd qudifiers are supported by CC665S:
1. far

2. _ nfar

__far qudifier may be used with data variables, tables and functions. __nfar qudifier may be used only
with functions

4.3.2 Data Variables
4.3.2.1 NEAR DATA VARIABLES

If the C memory mode option ingtructs the compiler to use a most one physicad data segment, then
CC665S dlocates dl the data variables which are not qudified by _ far in physica segment #0. These
data variables are cdled near data variables. CC665S will not consder Data Segment Register for
accessing near datavariables. Thesize of pointer to anear data variable is 2 bytes.

4.32.2 LARGE DATA VARIABLES

If the C memory modd option instructs the compiler to use more than one physica data segment, then
CC665S dlocates data variables in any physica data segment. These data variables are called large data
variables. CC665S will switch the Data Segment Register accordingly before each access of large data
variables. The sze of pointer to alarge datavariable is 4 bytes.

4323 FARDATA VARIABLES

If the C memory mode option ingtructs the compiler to use a most one physicd data segment, but the
hardware memory mode supports more than one physical data ssgments, then the _ far quadified data
variables will be alocated in any physicd data segment. Such data variables are caled far data variables.
CC665S will switch the Data Segment Register accordingly before and after each access of far data
variables The sze of pointer to afar datavariable is 4 bytes.

Page 37

CC665S Ver.2.01 User Guide

4.3.3 Tables

4331 NEAR TABLES

If the C memory modd option ingtructs the compiler to use at most one physica code segment and one
physica data ssgment, then the non _ far qudified tables will dways be dlocated in physica code
segment #0. Such tables are cdled near tables. CC665S will not consider Table Segment Register while
accessing near tables. The size of pointer to anear tableis 2 bytes.

4.3.3.2 EFFECTIVE NEAR TABLES

If the C memory model option ingtructs the compiler to use more than one physical code segment and at
most one physica data segment, then the non _ far qudified tables will be alocated in any physicd
segment. However, only one physical segment will be used for dl the non far qudified tables in the
program. Tota size of the tables cannot exceed 64 Kilobytes. The gartup routine initiaizes the Table
Segment Register with the number of the segment alocated for tables. CC665S will not consder Table
Segment Regigter while accessing effective near tables. The Sze of pointer to a effective near teble is 2
bytes.

4.3.3.3 XNEAR TABLES

If the C memory mode option instructs the compiler to use a most one physica code segment and more
than one physical data segment, thenthenon __ far qudified tables will be dlocated in physica segment
#0. Such tables are called xnear tables. CC665S will not consider Table Segment Register whileaccessing
xnear tables. The size of pointer to a xnear table is 4 bytes. In these C memory modes, the compiler
assumesthe datavariables aslarge datavariables. If the tableis alocated in ROMWINDOW region data
memory ingdructions are used to access these tables. Asthe Size of pointersto datamemory is4 bytes, the
Sze of pointersto axnear tables are also 4 bytes.

4.3.3.4 EFFECTIVE XNEAR TABLES

If the C memory mode option ingructs the compiler to use more than one physica code segment and
more than one physica data segment, thenthenon __ far qudified tableswill be dlocated in any physicd
segment. However, dl non __far qualified tables will be restricted to one physical code segment. Such
tables are caled effective xnear tables.

Page 38

Memory Models

The gartup routine initidizes the Table Segment Register with the number of the segment alocated for
tables. CC665S will not consider Table Segment Register while ng effective xnear tables. Thesize
of pointer to aeffective xnear table is4 bytes. In these C memory modds, the compiler assumes the data
variables as large data variables. If the table is dlocated in ROMWINDOW region data memory
Ingtructions are used to access these tables. As the Size of pointers to data memory is 4 bytes, the size of
effective xnear tables are also 4 bytes.

4.335FARTABLES

If the hardware memory model supports morethan one physical code segment, then _ far qudified tables
will be alocated in any physical code segment. These tables are called far tables. CC665S will switch
Table Segment Register accordingly before and after each accessto the far table. The Size of pointer to a
far tableis4 bytes.

4.3.4 Strings

I rrespective of memory models, astring typeis same asdefault type of table. Strings cannot be qualified by
__far. All strings are restricted to one physica segment only. Size of pointersto stringsis 2 bytesif theC
memory mode optionsingtructsthe compiler to use a most one physica datasegment. Otherwise, thesize
of pointersto stringsis 4 bytes. Allocations of strings are Smilar to that of tables.

4.3.5 Functions

4.3.5.1 NEAR FUNCTIONS

If C memory modd option ingtructs the compiler to use at most one physical code segment, then al non
__far qudified functions will be dlocated in physica code segment #0. These functions are caled near
functions. Cdlsto these functionsisthrough “cal” ingruction. These functions return using “rt” indruction.
Size of pointer to anear function is 2 bytes.

4.3.5.2 LARGE FUNCTIONS

If C memory modd option indructs the compiler to use more than one physica code segment, then
CC665S dlocates functions in any physical code segment. These functions are called large functions.
Large functions are called using “fca” indruction. These functions return using “frt” indruction. Size of
pointer to alarge functionis 4 bytes.

Page 39

CC665S Ver.2.01 User Guide

4.3.5.3 FAR FUNCTIONS

If the hardware memory mode supports more than one physica code segment, then CC665S dlocates
__far qudified functions in any physica segment. __ far qualified functions are called far functions. Far
functionsare cdled usng “fca” ingruction. Far functions return through “frt” ingtruction. Size of pointer to
afar function is4 bytes.

Far functions can be cdled by any other function. But far functions cannot call near functions.

4.3.5.4 NFAR FUNCTIONS

CCe65S allocatesdl _ nfar qudified functionsin physica code segment #0. __ nfar qudified functions
are cdled nfar functions. Nfar functions are caled using “fca” ingruction. Nfar functions return through
“frt” ingtruction. Size of pointer to anfar function is 4 bytes.

Nfar functions may be caled by any other function. Nfar function may cal any other function. Nfar
functionsact asabridge between far functionsand near functions. Cadlsto near functionsfrom far functions
must be through nfar functions,

4.4 COMBINATION OF C AND MIXED MEMORY MODEL OPTIONS

4.4.1 Small C Memory Model

CC665S generates output code for Smal C memory modd option when /MS option is specified in
command line or when no C memory mode option is specified in command line. Smal C memory modd
option ingtructs the compiler to use one physical code segment and one physical data segment. Under this
memory model, default data variables are near data variables, default tables are near tables and default
functions are near functions.

4411 WITHOUT ANY MIXED MEMORY MODEL OPTIONS

Under Smdl C memory mode option, if no mixed memory mode optionisspecified in command line, then
CC665S assumes the hardware memory modd option to be Smal memory model. As the hardware
supports only one physical code segment and one physica data segment, far and nfar objects are not
dlowed inthismemory modd. CC665S issueswarning message, if adata, atable or afunctionisqudified
by far orif afunctionisqudifiedby nfar.

Page 40

Memory Models

4.4.1.2WITH /mixM OPTION

Mixed memory mode option /mixM specifies that the hardware supports Medium memory model.
Medium hardware memory modd contains more than one physica code segment and one physical data
segment. Under this option, CC665S dlows far tables, far functions and nfar functions. CC665S issues
warning message, if adatavariableisqudified by _ far.

4.41.3 WITH /mixC OPTION

Mixed memory model option /mixC specifies that the hardware supports Compact memory mode.
Compact hardware memory mode contains one physica code segment and more than one physica data
segment. Under this option, CC665S alows far data variables. CC665S issues warning message, if table
or functionisqudified by __ far orif functionisqudified by _ nfar.

4414 WITH /mixL OPTION

Mixed memory modd option /mixL specifies that the hardware supports Large memory modd. Large
hardware memory model contains more than one physical code segment and more than one physica data
segment. Under this option, CC665S dlowsfar datavariables, far tables, far functions and nfar functions.

4.4.2 Effective Medium C Memory M odel

Command line option /MEM ingtructs CC665S to generate code for Effective medium C memory mode!.
In effective medium C memory model, CC665S usesat most one physica datasegment for datavariables,
one separate physical code segment for functions and a separate physical code segment for tables and
srings. Under this option, default data variables are near data variables, default tables are effective near
tables and default functions are near functions.

4421 WITHOUT ANY MIXED MEMORY MODEL OPTIONS

If no mixed memory modd option is specified dong with Effective medium C memory mode option,
CC665S assumes the hardware memory mode to be Medium memory model. Under this combination,
CC665Sissueswarning message, if data, tableor functionisquaifiedby _ far or if functionisquadified by
__nfar.

Page 41

CC665S Ver.2.01 User Guide

4.4.2.2 WITH /mixM OPTION

Under this memory mode, CC665S dlows far functions, nfar functions and far tables. CC665S issues
warning message, if dataisquaified by _ far

4.4.2.3 WITH /mixC OPTION

If IMEM and /mixC options are specified in command line, CC665S issues the fatd error message
indicating illega combination of C and mixed memory modd options.

4424 WITH /mixL OPTION

Under this memory mode, CC665S dlows far data variables, far functions, nfar functions and far tables.

4.4.3 Medium C Memory M odel

Command line option /MM ingtructs the compiler to generate code for Medium C memory mode option.
Under this option, CC665S uses one physical data segment for variables, more than one physica code
segment for functions and one physical code segment for tables and strings. In this option, default data
variables are near data variables, default functions are large functions, default tables are effective near
tables.

Asdl functionsare large functions, if afunctionisqudified by __ far, irrespective of mixed memory mode
option, CC665S ignoresthe __ far qudifier without giving any warning message.
4.43.1WITHOUT ANY MIXED MEMORY MODEL OPTIONS

If no mixed memory modd option is specified aong with Medium C memory mode option, CC665S
assumes the hardware memory mode to be Medium memory mode. Under this combination, CC665S
issues warning message, if adataor atableisqudifiedby _ far.

4.4.3.2 WITH /mixM OPTION

Under thismemory mode, CC665S dlowsfar tables. CC665S issueswarning message, if adatavariable
isqudifiedby __ far.

Page 42

Memory Models

4.43.3WITH /mixC OPTION

If /MM and /mixC options are specified in command line, CC665S outputs the fatd error message
indicating illega combination of C and mixed memory mode options.

4.43.4WITH /mixL OPTION

Under this memory model, CC665S dlows far data variables and far tables.

4.4.4 Compact C Memory M odel

Command line option /M C ingtructs the compiler to generate code for Compact C memory model option.
Under this option, CC665S uses more than one physicd data segment for variables and one physica
code segment for functions, tablesand strings. In thisoption, default datavariablesarelarge datavariables,
default functions are near functions, default tables are xnear tables.

Asdl datavaridbles are large data variables, if adatavariableisqudified by _ far, irrespective of mixed
memory modd option CC665S ignoresthe _ far qudifier without giving any warning message.
4.44.1 WITHOUT ANY MIXED MEMORY MODEL OPTIONS

If no mixed memory mode option is specified dong with Compact C memory mode option, CC665S
assumes the hardware memory modd to be Compact memory modd . Under this combination, CC665S
outputs warning messageif atable or afunctionisqudifiedby _ far or if afunctionisqudifiedby _ nfar.

4.44.2 WITH /mixM OPTION

If /IMC and /mixM options are specified in command line, CC665S outputs the fatd error message
indicating illegd combination of C and mixed memory mode options.

4443 WITH /mixC OPTION

If /IMC and /mixC options are specified in command line, CC665S outputs the fatal error message
indicating illegd combination of C and mixed memory mode options.

Page 43

CC665S Ver.2.01 User Guide

4444 WITH /mixL OPTION

Under this memory mode, CC665S dlows far functions, nfar functions and far tables.

4.4.5 Effective Large C Memory Model

Command line option /MEL ingtructs CC665S to generate code for Effective large C memory modd. In
effective large C memory model, CC665S uses more than one physica data segment for variables, one
separate physical code segment for functions and a separate physical code segment for tables and strings.
Under this option, default data variables are large data variables, default tables are effective xnear tables
and default functions are near functions.

Asdl datavaridbles are large data variables, if adatavariableisqudified by _ far, irrespective of mixed
memory mode option CC665S ignoresthe __far qudifier without giving any warning message.
4.45.1WITHOUT ANY MIXED MEMORY MODEL OPTIONS

If no mixed memory modd option is specified dong with Effective large C memory moded option,

CC665S assumes the hardware memory moded to be Large memory modd. Under this combination,
CC665S outputs warning message if atable or afunctionisquaified by _ far or if afunctionisqudified

by nfar.

4452 WITH /mixM OPTION

If IMEL and /mixM options are specified in command line, CC665S outputs the fatal error message
indicating illega combination of C and mixed memory mode options.

4.453 WITH /mixC OPTION

If IMEL and /mixC options are specified in command line, CC665S outputs the fata error message
indicating illegad combination of C and mixed memory mode options.

Page 44

Memory Models

4454 WITH /mixL OPTION

Under this memory model, CC665S alows far functions, nfar functions and far tables.

4.4.6 Large C Memory M odel

Command line option /ML instructs CC665S to generate code for Large C memory model. In Large C
memory model, CC665S uses more than one physica data segment for variables, more than one physica
code segment for functions and one physical code segment for tablesand strings. Under thisoption, default
data variables are large data variables, default tables are effective xnear tables and default functions are
large functions.

Asdl datavaridbles are large data variables, if adatavariableisquaified by _ far, irrespective of mixed
memory model option CC665S ignoresthe __ far qudifier without giving any warmning message. Smilarly,
as dl functions are large functions, if afunction is qudified by _ far or __ nfar, irrespective of mixed
memory modd option, CC665S ignores the qudifier without giving any warning message.

4.4.6.1 WITHOUT ANY MIXED MEMORY MODEL OPTIONS

If no mixed memory modd option is specified dong with Large C memory mode option, CC665S
assumes the hardware memory mode to be large memory modd. Under this combination, CC665S
outputs warning message if atableisqudified by _ far.

4.4.6.2 WITH /mixM OPTION

If /ML and /mixM options are specified in command line, CC665S outputs the fatd error message
indicating illegd combination of C and mixed memory mode options.

4.4.6.3WITH /mixC OPTION

If /ML and /mixC options are specified in command line, CC665S outputs the fatal error message
indicating illegd combination of C and mixed memory mode options.

4.4.6.4 WITH /mixL OPTION

Under this memory model, CC665S dlows far tables.

Page 45

Pragmas

5. PRAGMAS

Syntax :
#pragma pragma._keyword arguments

The directive #pragma directs CC665S to define architecture specific ingructions in the assembly lising
file. Pragmawith ingtructions not recognized by the compiler areignored after issuing awarning message.
Pragma keywords are not case sendtive. The pragmas supported by CC665S are explained in this
Section.

By default, the delimiter which separates the pragmaargumentsiswhitespace. Thisdefault ddimiter can be
changed to “,” (comma) by specifying /PF option in the command line.

5.1 INTERRUPT PRAGMA

Syntax:
a /PF option specified:
#pragma INTERRUPT function_name, address
b. /PF option not specified:
#pragma INTERRUPT function_name address
The pragmainterrupt isused to soecify interrupt handling functions coded in *C’. If afunction is defined
in ‘C’ source program with function_name specified in this pragma, then it is treated as an interrupt
handling routine. This pragma must appear before definition of the function specified in the pragma. If this

pragma appears after the definition, pragmais ignored after issuing a warning message. Extern functions
may be specified in interrupt pragma.

Page 47

CC665S Ver.2.01 User Guide

The function_name in this pragma specifies the name of the interrupt handling function. The
function_name must be followed by an interrupt vector addr ess. The vaue must be an even addressin
the range, Ox8 and Oxfffe, inclusive of both. The interrupt vector address range 0x0 to 0x06, inclusive of
both, is reserved.

If this pragma.is used more than once with the same interrupt vector address but different function names,
compiler issues a warning and takes the first pragma as vaid. However, same function name may be
specified with different interrupt vector addresses.

CC665S pushes dl registers used in interrupt handling function at the entry to this function and it popsthe
corresponding registers at the exit. “rti” ingtruction is used to return from the interrupt handling routine.
CC665S issues warning for the following cases:

If the specified symbal is not afunction.

If function “main” is specified in this pragma.

If afunction specified in this pragma.is not declared in the file being compiled.

If afunction specified in this pragma has arguments or returns a vaue.

If afunction specified in this pragmais aready specified in apragmadirective other than interrupt and

usinginpage.

If a_ far or __nfar qudified function is specified in this pragma

If the pragmais specified after the function definition.

If afunction specified in this pragmais used in an expresson.

If the specified address is not in range 0x8 to Oxfffe, inclusive of both.

If an odd addressis specified.

If the function is caled in sourcefile,

Example 5.1

INPUT
pragmainterrupt fn 0x10
void fn (void)

{
}

output_fn();

Page 48

Pragmas

OUTPUT
$SINTERRUPTCODE segment code #0h
rseg $SINTERRUPTCODE
CFUNCTIONO
_fn
o{
CLINE4
pushs pr
pushs er
5 output_fn () ;
CLINES
cal _output_fn
"
CLINE 6
pops er
pops pr

rti

extrn code: _output_fn
public_fn
extrncode: _main

cseg #0h at 010h
dw _fn

The following are erroneous cases:
Example 5.2
INPUT
inta;
pragmainterrupt a 0x10
In the above example, variable ‘a’ isnot afunction.
Example 5.3

INPUT

pragmainterrupt function 9

In the above example, an odd address is specified.

Page 49

CC665S Ver.2.01 User Guide

Example 54

INPUT
intint10 (void) ;
pragmainterrupt int10 0x10

In the above example, ‘intl0" hasreturn vaue.

5.1.1 Preserving Register Contents

To ensure that a program runs correctly after an interrupt is serviced, CC665S pushes the registers that
may be used during the interrupt handling process in the entry code. The registers pushed, are dependent
on the use of floating point emulation routines and function cdls in the interrupt routine. The pushed
registers are popped in the exit code.

5.1.1.1INTERRUPT FUNCTION HAS NO FUNCTION CALL AND EMULATION ROUTINE
CALL

When an interrupt function has no function calls and emulation routine cdls, locd regigters and pointing
registers used in the interrupt function are pushed and popped.
Example 5.5
INPUT
inta;
pragmainterrupt fn 0x10

voidfn ()
{

}

a=a* a;

The following is the code generated for the above interrupt function definition:

OUTPUT
$SINTERRUPTCODE segment code #0h
rseg 3INTERRUPTCODE
CFUNCTION 0
fn

Page 50

Pragmas

o{
CLINE 6
pushs e

N a=a* a;

CLINE7
I a, dir_a
sqr a
mov dir_a, e0

"

CLINES
pops &0
rti

public_fn
_acomm data 02h #00h
extrncode: _main

cseg #0h at 010h
dw _fn

In the above assembly codefor theinterrupt function “fn” which has no function callsand emulation routine
cdls, er0 regigter is pushed and popped sinceit is used in the interrupt function.

5.1.1.2 INTERRUPT FUNCTION HAS FUNCTION CALL OR EMULATION ROUTINE CALL
When an interrupt function cals afunction or an emulation routine, al locd registers and pointing registers
are pushed and popped.
Example 5.6
INPUT
inta;
pragmainterrupt fn 0x10

voidfn ()
{

}

a=a* output_fn();

Page 51

CC665S Ver.2.01 User Guide

OUTPUT
$SINTERRUPTCODE segment code #0h
rseg $$INTERRUPTCODE
CFUNCTION O
_fn
f
CLINEG6
pushs pr
pushs er
5 a=a* output_fn();
CLINE7
mov X2, dir_a
cal _output_fn
I a, x2
mul dp
mov dir_a, e0
"
CLINES
pops er
pops pr

rti

extrn code: _output_fn
public_fn

_acomm data 02h #00h
extrncode: _main

cseg #0h at 010h
dw _fn

In the above assembly code, dl local registers and pointing registers are pushed and popped since the
interrupt function has afunction cal.

52INTVECT PRAGMA
Syntax:

a. /PF option specified:

#pragma INTVECT function_name, address
a. /PF option not specified:

#pragma INTVECT function_name address

Page 52

Pragmas

The pragmaintvect is same as interrupt pragma except for the following :

1. Intvect pragmamay dso be specified after the function definition.

2. Thefunction specified in intvect pragma should be qudified by the keyword __interrupt.
Example 5.7
INPUT

pragmaintvect func 0x40

void __interrupt func (void)

{
}

output_fn();

In the above example, function “func” is specified in pragmaintvect and isaso quaified by the keyword
‘ _interrupt’. Thefunction “func” is treated as interrupt service routine.

The following examples show erroneous cases :
Example 5.8

INPUT

void func (void) ;
pragmaintvect func 0x10

In the above example, function “func” is not qudified by the keyword *__interrupt’.

5.3VCAL PRAGMA

Syntax:
a /PF option specified:
#pragma VCAL function_name, address
b. /PF option not specified:
#pragma VCAL function_name address
The pragmavcal isused to specify functions, codedin *C’, which can be invoked by VCAL ingructions.
The addresses of such functions are placed in the VCAL table areain code memory.

If afunction isdefined in ‘C’ source program with function_name same as that specified dong with this
pragma, then it istreated asaVCAL routine,

Page 53

CC665S Ver.2.01 User Guide

Thefunction_name in this pragma specifies the name of the vea function. The function_name must be
followed by avca table address. The table addr ess must be an even number between Ox4a and 0x68,
inclusive of both. The appropriate VCAL table address in code memory is initialized with the address of
the function. Extern functions may be specified in ved pragma.

This pragma must appear before the definition of function specified in the pragma. CC665S issues a
warning message if this pragma gppears after the definition of the function and ignoresit.

If this pragmais used more than once with the same VCAL address but different function names, compiler
issues awarning and takes the first pragma as valid. However, same function name may be specified with
different VCAL addresses.

CC665S issues warning for the following cases:
If the specified symbal is not afunction.
If function “main” is specified in this pragma.
If afunction specified in this pragma.is not declared in the file being compiled.
If afunction specified inthis pragmaisaready specified in apragmacther than vcal and usinginpage.
If a__far or __nfar function is specified in this pragma.
If the pragmais specified after the function definition.
If the specified addressis not in range Ox4ato 0x68, inclusive of both.
If an odd address is specified.
Ifan‘__interrupt’ qudified function is specified in this pragma

Example 5.9
INPUT
pragmavcal fn 0x64
void fn (void)
{
output_fn();
}
void fnl (void)
{

fnQ;
}

Page %4

Pragmas

OUTPUT
$SNCODUES09 segment code #0h
$$VCALSEG segment code #0h
rseg $$VCALSEG
CFUNCTIONO
_fn
5 output_fn () ;
CLINES
j _output_fn
"
CLINE 6
rseg $$NCODUES09
CFUNCTION 2
_fnl
- fnQ;
CLINE 10
vcal 064h
"
CLINE 11
r
extrn code: _output_fn
public_fnl
public_fn
extrncode: _main
cseg #0h at 064h
dw _fn

Following examplesillusirates erroneous cases.

Example 5.10

INPUT

In the above example, function is pecified in ved pragmaaswel asin interrupt pragma

pragmainterrupt function 0x10

pragmavcal function 0x50

Example 5.11

INPUT

In the above example, the specified addressis not in vea range.

pragmavcal fn 0x24

CC665S Ver.2.01 User Guide

5.4 ACAL PRAGMA

Syntax:
a. /PF option specified:
#pragma ACAL function_name [, function_name...]
b. /PF option not specified:
#pragma ACAL function_name [function_name...|

The pragma acal is used to specify functions, coded in ‘C’, which can be invoked usng ACAL
indructions. The entry points to such functions would be placed in the ACAL areain code memory.

If afunction isdefined in *C’ source program with function_name same as that specified dong with this
pragma, then it istreated asa ACAL routine.

A near, static far or static large function can be specified in acd pragma. If any other function is specified
in acal pragma, CC665S outputs warning message. If near and static far functions are specified in same
aca pragma, CC665S outputs warning message. Extern functions may be specified in this pragma.

This pragma must appear before the definition of function specified in the pragma. CC665S issues a
warning message if this pragma gppears after the definition of the function and ignoresit.

A ligt of function names may be specified in this pragma. CC665S issues warning messageif symbols other
than functions are specified in this pragma
CC665S issues warning for the following cases:
If the specified symbal is not afunction.
If “function “man” is specified in this pragma.
If afunction specified in this pragmais not declared in the file being compiled.
If afunction specified in this pragmais dready specified in a pragma other than usinginpage.
If the specified function is not anear, static far or static large function.
If both near and static far functions are specified in same acal pragma.
If the pragmais specified after the function definition.
Ifan‘__interrupt’ qudified function is pecified in this pragma

Page 56

Pragmas

Example 5.12

INPUT
pragmaacal fn

void fn()

{
output_fn();

}

fnl()

{
fnQ);

}

Inthe above program, near function “fn” iscaled usng ACAL ingruction asshown in thefollowing output :

OUTPUT
$SNCODUES12 segment code #0h
$SNACODUES12 segment code inacal #00h
rseg $$NACODUES12

CFUNCTION 0

_fn :

5 output_fn();

CLINE S
i _output_fn
Y
CLINE 6
rseg $$NCODUES12
CFUNCTION 2
_fnl
5 fnQ);
CLINE 10
acal _fn
Y
CLINE 11
rt
extrn code : _output_fn
public _fnl
public_fn

Page 57

CC665S Ver.2.01 User Guide

Thefollowing example shows an erroneous case:
Example 5.13

INPUT

#pragmaACAL fnl
int__nfar fnl (void) ;

For the above example, CC665S issues awarning message because, nfar function cannot be specified in
acal pragma.

5.5 CAL PRAGMA

Syntax:
a. /PF option specified:
#pragma CAL function_name[, function_name...]
b. /PF option not specified:

#pragma CAL function_name[function_name....]

The pragma cal isused to specify functions, which can beinvoked usng CAL ingtructions. A static far or
datic large function can be specified in cd pragma. If any other function is specified in this pragma,
CC665S outputs warning message.

CC665S issuesawarning messageif this pragmaappears after the definition of the function and ignoresit.

A ligt of function names may be specified in this pragma. CC665S issues warning messageif symbols other
than functions are specified in this pragma.
CC665S issues warning for the following cases:

If the specified symbal is not afunction.

If function “main” is specified in this pragma.

If afunction specified in this pragmais not declared in the file being compiled.

If afunction specified in this pragmais dready specified in a pragma other than usinginpage.

Page 58

Pragmas

If the specified function isnot astatic far or static large.
Ifan‘__interrupt’ qudified function is specified in this pragma

Example 5.14

INPUT

pragmacal funl
staticint __far funl (void) ;

int__far funl (void)

{
}

void main (void)

{
}

return (1) ;

funl();

In the above program, static far function “funl” is cdled usng CAL indruction as shown in the following

outpu :

OUTPUT

$SNCODUES14 segment code #0h
$$SFCODUES14 segment code
STACKSEG 0400h

rseg $$FCODUES14

CFUNCTIONO
_funl

5 return (1) ;
CLINE®6
mov dp, #01h
2}
CLINE7
n

rseg $SNCODUE514

CFUNCTION 2
man

" funl();
CLINE 11
ca _funl

Page 59

CC665S Ver.2.01 User Guide

"

CLINE 12

_$$end _of main:
Sj $

public _funl
public_main
extrn code : $$start_up

cseg #0h at Oh
dw $$start_up

The following example shows an erroneous case:

Example 5.15

INPUT

pragmacal funl fun2
void funl (void) ;
void __nfar fun2 (void) ;

In the above example, both “funl” and “fun2” cannot be specified in ca pragma since “fun?” is a nfar
function and “funl” isanear function.

5.6 INLINE PRAGMA

Syntax:
a. /PF option specified:
#pragma INLINE function_name [, function_name....]
b. /PF option not specified:

#pragma INLINE function_name [function_name....]

The pragmainlineis used to specify functions, which can be inlined instead of calling that function.

Thispragmamust appear before the definition of that function. If this pragma appears after the definition of
the function, CC665S issues a warning message.

A ligt of function names may be specified in thispragma. CC665Sissues warning messageif symbols other
than functions are specified in this pragma The functions specified in this pragma are trested as static
function. So, functions specified in inline pragma should be defined in the samefile.

Page 60

Pragmas

A function specified in this pragmaiis not expanded (inlined) in the following cases:
If the function is recursive.
If the function has variable number of arguments.
If the function is defined before the inline pragma specification.
If the function contains loop, branch, label or “ goto” statements.
If there is any aam block in the function.
If the function istoo big.

If dl theinline function cdls are expanded then code for the function body will not be generated. CC665S
outputs warning message if an inline function cal is not expanded.

CC665S issues warning for the following cases.
If the specified symboal is not afunction.
If function “main” is specified in this pragma.
If afunction specified in this pragmais not defined in the file being compiled.
If afunction pecified in this pragmais aready specified in apragmacther than inline.
If acdl to inlinefunction is not expanded (inlined).
If the pragmais specified after the function definition.
Ifan‘__interrupt’,*_ far’ or __nfar’ qudified function is gpecified in this pragma
Example 5.16

INPUT

intvar;
pragmainlinefn

intfn (int arg)

{
return (arg*arg) ;
}
void fnl()
{
var =fn (var) ;
}

Page 61

CC665S Ver.2.01 User Guide

OUTPUT
$ENCODUES516 segment code #0h
rseg $$NCODUES16
CFUNCTION 1
_fnl
5 var =fn(var) ;
CLINELL
I a, dir _var
sqr a
mov dir _var, er0
"
CLINE12
rt
public_fnl
_var comm data 02h #00h
extrncode: _main
Example 5.17
INPUT

pragmainlinefn

voidfn ()

{
fnQ;

fnQ;

Theinlinefunction “fr” isnot expanded sinceit isrecursive. CC665S outputs warning messagein thiscase.

Page 62

Pragmas

5.7 ABSOLUTE PRAGMA

Syntax:
a. /PF option specified:
#pragma ABSOLUTE name, [segment:]offset
b. /PF option not specified:
#pragma ABSOLUTE name [segment:] offset

The pragma absolute assigns an absolute address to a global variable or Satic loca variable.

Variablesdeclared in * C’ will be alocated in re-locatable segments. So pointersin ‘C' are normally used
to access specific addresses. But this requires a two byte pointer or four byte pointer depending on the
memory modd and it isinefficient. In MSM66K “500” core and “500S" core, the addresses of Specia
Function Regigers (SFR) are fixed. To access a SFR it is preferable to use direct specification of
addresses. This pragma is used to specify absolute addresses for global variables and static local
variables.

If physica segment addressis not specified, it is consdered as zero. CC665S issues awarning message
when physica segment address other than zero is specified for near variables.

The physicad segment address can take any value between 0 and Oxff, while the offset can teke a vaue
between 0 and Oxffff.

Absolute pragmacan be specified for avariable before or after itsdeclaration. Variablesaready initidized
cannot be used in this pragma, however, this pragma can appear before the variable’ sinitidizetion. If this
pragma is used more than once for the same variable, CC665S flags a warning and assigns the address
specified with the first pragma. Extern variables may be specified in this pragma.

Physcad segment address must be specified in the absolute pragma directive for effective near and
effective xnear varidbles,

An odd address cannot be specified for initialized variables. However, odd addresswithin SFR region can
be specified for any type of uninitidized variables. Both, odd and even addresses can be specified for
variables of type char and array of char.

The valid range of absolute addressis as follows:

Segment address OxO (for near variables)
0x0 to Oxff (for far and large variables)
Offset address 0x0 to Oxffff

Page 63

CC665S Ver.2.01 User Guide

CC665S issues warnings for the following cases:
If the symbol specified in this pragmais not aglobd or satic loca variable.
If the varidble is dready specified in any pragma.
If the varidble specified in this pragmais not declared within the same file.
If an odd address is specified for initidized variables.

If an odd address outside SFR region is specified for uninitiaized variables other than char and array
of char.

If segment addressis not specified for * effective near’ and ‘ effective xnear’ variables.
If specified addressis not in absolute range.
If the pragmais specified after variable initidization.

Example 5.18

INPUT

int acc;
pragma absol ute acc 0x40

OUTPUT
_acc data 040h

Example5.19

INPUT

long_ farla;
pragma absol ute |a 0x2:0x1000

OUTPUT
public _la

dseg #02h at 01000h

ds 04h

Page 64

Pragmas

Following exampleillusirates an erroneous case:
Example 5.20

INPUT
pragma absolute abs _data var 100
void fn (void)
{
}
In the above example, locd variable “abs data var” is specified in the pragma

int abs data var

5.8 SFR PRAGMA

Syntax:
a. /PF option specified:
#pragma SFR name, [segment:] offset
b. /PF option not specified:
#pragma SFR name [segment:] of fset

This pragmais smilar to absolute pragma except for the following :
Only data variables can be specified in this pragma.

The address specified in this pragma should be in sfr region (0x0 to Oxff) or in xsfr region (0x100 to
Ox1ff). The physica segment address specified in this pragma is dways ignored since sfr and xdfr
regionisin COMMON area.

CC665S will not output debug information for St variables.

CC665S issues warnings for the following cases :
If the specified symbal is not agloba variable or datic loca varidble.
If the specified varidble is qudified by ‘const’.
If the variable is dready specified in any pragma.

Page 65

CC665S Ver.2.01 User Guide

If the variable specified in this pragmais not declared within the samefile.
If specified addressis not in Sfr region or in xsfr region.
If an odd address is specified for initidized variables.
If the pragmais specified after variable initidization.
Example 521

INPUT

int acc;
pragma sfr acc 0x40

OUTPUT
_acc data040h

Following example illustrates an erroneous case:
Example 5.22

INPUT
pragma sfr a0x400

In the above example, the address specified in the pragmais not in Sr area.

5.9 INPAGE PRAGMA

Syntax:
a. /PF option specified:
#pragma INPAGE [(no)] segment_name, name [, name....]
b. /PF option not specified:
#pragma INPAGE [(no)] segment_name name [name .|

Page 66

Pragmas

This pragmaingtructs the compiler to allocate one or more globa variables or atic loca variables, given
by the list of namesin an inpage segment.

If the ‘no’ which indicates the page number is specified, then the segment would be dlocated in the
indicated page. ‘'no’ being optiond, if omitted, the segment would be dlocated in any one of the 256
pages. ‘no’ is an integer condant, takes value between 0 and 255 (inclusive of both). Segment name
specified in this pragma, must not be specified in ashainpage pragmaearlier, however, same page number
‘no’ can be specified in both inpage and sbainpage pragmas.

If more than one inpage pragma appears with same segment name, then al variables specified in thelist of
namesin each of these pragmas, are dlocated in the same segment.

CC665S issues warning for the following cases.
If the symbol specified in this pragmais not agloba or gatic locd variable,
If the varigble pecified in this pragmais qudified by ‘const’.
If the variable is dready specified in any pragma.
If the segment name specified in this pragmais dready specified in sbainpage pragma
If two different page numbers are specified for same segment.
If both, near and far variables are specified with same segment name
If the pragmais specified after variable initidization.
Example 5.23

INPUT

inta;
pragmainpage pagel a

OUTPUT

pagel segment data 2h inpage #00h
public_a

rseg pagel

ds 02h

In the above example, variable ‘&’ is dlocated in an inpage segment. Page number is not specified in the
pragma, so, it will be alocated in any one of the 256 pages.

Page 67

CC665S Ver.2.01 User Guide

Example 5.24
INPUT
inta;
pragmainpage (5) pagel a
OUTPUT
pagel segment data 2h inpage(5) #00h
public_a
rseg pagel
_a:
ds 02h

In the above example, page number is specified. Therefore, the variable *a’ is output in a segment which
will be dlocated in page 5.

Following example illustrates an erroneous case:
Example 5.25

INPUT

inta;
int__farb;
pragmainpage (5) pagel ab

In the above code, both near and far variables are specified with inpage segment ‘pagel’.

5.10 SBAINPAGE PRAGMA

Syntax:
a. /PF option specified:
#pragma SBAINPAGE [(no)] segment_name, name [, name ...]
b. /PF option not specified:
#pragma SBAINPAGE [(no)] segment_name name[name ...]

The pragma shainpage specifies the variables to be dlocated in a segment with SBA attribute. SBA isa
Specid Bit Addressable Area

Page 68

Pragmas

This pragma ingtructs CC665S to alocate one or more globa variables or static loca variables given by
thelist of namesin a segment with SBA attribute. All the variables specified with the same segment name
aredlocated inthe same SBA segment. If optionally, a‘no’ which indicates the page number isgiven, then
the segment would be dlocated in the indicated page. The ‘no’ can take any value between 0 and 2565.
Segment name specified in this pragma, must not be specified in ainpage pragma earlier, however, same
page number ‘no’ can be specified in both inpage and shainpage pragmes.

I more than one shainpage pragmagppears with same segment name, then dl variablesspecified inthelist
of namesin each of these pragmas, are dlocated in the same SBA segmernt.

Variables qudified by const cannot be specified in this pragma.
CC665S issues warning for the following cases.
If the symbol specified in this pragmais not agloba or gatic locd variable,
If the varigble pecified in this pragmais quaified by ‘const’.
If the variable is dready specified in any pragma.
If the segment name specified in this pragmais dready pecified in inpage pragma.
If two different page numbers are specified for same segment.
If both, near and far variables are specified with same segment name.

If the pragmais specified after variable initidization.

Example 5.26
INPUT
pragma SBAINPAGE SEG1 bit_var
struct tag
{
unsignedint bitl:1;
unsigned int bit2: 1;
unsigned int bit3: 1;
} bit_var;
OUTPUT
SEGL1 segment data 2h sba #00h
public _bit_var
rseg SEG1
_bit_var:
ds 0zh

Page 69

CC665S Ver.2.01 User Guide

Example 5.27

INPUT
pragma SBAINPAGE (5) seg2 hit_var

struct tag
{

unsignedinta: 1;
unsignedintb:1;
} bit_var;

OUTPUT

seg2 segment data 2h sha(5) #00h
public _bit var

rseg seg2

_hit_var:
ds 02h

Following example illustrates an erroneous case:
Example 5.28

INPUT

inta, b;

int__farc;

pragma shainpage sha pageab
pragma shainpage sba_page c

In the above code, both near and far vari ables are specified with shainpage segment ‘ sha_page’. CC665S
ignores second pragma with awarning message.

5.11 USINGINPAGE PRAGMA

Syntax:
a. /PF option specified:

#pragma USINGINPAGE [-Irb] function_name, sesgment_name
#pragma USINGINPAGE [-Irb] function_name, pageno

Page 70

Pragmas

b. /PF option not specified:

#pragma USINGINPAGE [-Irb] function_name segment_name
#pragma USINGINPAGE [-Irb] function_name pageno

This pragmaspecifiesan inpage or shainpage segment “segment_name” or page number “pageno” to be
used in afunction specified by “function_name”. In such cases the pageno is used to initidize the Local

Regigter Base (LRB). “pageno” is an integer congtant that takes vaue between 0 and 255, inclusive of
both.

CC665S uses current page addressing for the variables dlocated in the same page, which is used in this
function.

If *-Irb’ option is not specified in the pragma, then LRB register is saved in the entry code and restored in
the exit code of the usnginpage function. If *-Irb’ optionis specified, CC665Swill not save and restorethe
LRB regiger. The*-Irb’ option isintended to save unnecessary manipulation of the LRB register when the
function and its caler use the same page.

Either ‘segment_name’ or ‘page number’ specified in this pragma must be specified in inpage or
shainpage pragma prior to this directive. Extern functions and function “man” may be specified in this
pragma.

This pragma must gppear before the definition of function specified in the pragma CC665S issues a
warning message if this pragma appears after the definition of the function and ignoresit.

CC665S issues warning for the following cases:
If the specified symbal is not afunction.
If the function specified in this pragmais not declared in the file being compiled.

If the segment name or page number specified in the pragmaiis not defined in inpage or shainpage
pragma prior to this directive.

If the function specified in this pragmalis dready specified in a pragma other than interrupt, intvect,
vcal, acal and cal.

If the pragmais specified after the function definition.
Example 5.29

INPUT

pragmainpage segl varl var2

pragma usinginpage funl segl

pragma usinginpage -Irb fun2 segl
intvarl, var2 ;

Page 71

CC665S Ver.2.01 User Guide

void funi()

{
varl=10;
fun2 () ;

}

fun2 ()
{

}

var2=varl* varl;

The following is the code generated for functions “funl” and “fun2”.

OUTPUT
$SNCODue529 segment code #0h
segl segment data 2h inpage #00h
rseg $$NCODue529
CFUNCTION O
_funl
f
CLINE7
pushs Irb
movb ALRBH, #page segl
using page segl
N varl=10;
CLINES
mov off _varl, #0ah
5 fun2 () ;
CLINE9
cal _fun2
"
CLINE 10
pops Irb
using page any
rt
CFUNCTION 2
_fun2
f
CLINE 13

using page segl

Page 72

Pragmas

var2=varl* varl;

CLINE 14
I a, off varl
sqr a
mov off var2, e0
"
CLINE 15
using page any
rt
public _fun2
public _funl
public _var2
public_varl
extrncode: _main
rseg segl
_var2:
ds 02h
_varl:
ds 02h

5.12 GROUP PRAGMA

Syntax:
a. /PF option specified:
#pragma GROUP segment_name [, segment_name .|
b. /PF option not specified:
#pragma GROUP segment_name [segment_name ..
The pragma group ingructs the compiler to alocate the pecified segments in the same physica segment

by using the pseudo ingtruction group. Segment names specified in the group pseudo indruction must have
been specified earlier in pragmainpage or shainpage.

All segments specified in a group pragma should be either near segments or far ssgments. If mix of near
and far segments are specified in a group pragma, then near segments will be ignored with warning

message.

The following defines the three types of segments based on the variables specified with that segment in
Inpage/shainpage pragma:

A segment specified in inpage/sbainpage pragmais said to be anear segment if, only near variables
are specified with that segment name.

Page 73

CC665S Ver.2.01 User Guide

A segment issaid to be afar segment if, only far varigbles are specified with that segment name in
Inpage/sbai npage pragma.

A segment is said to beundefined segment if, dl the variables specified with that segment nameisnot
declared in the sourcefile.

CC665S issues warning for the following cases:
If both near and far segments are specified in the same group pragma.
If the segment is not defined in inpage or shainpage pragma prior to the group pragma.
If the segment is*“undefined”.
Example 5.30

INPUT

pragma INPAGE segl varl var2

pragma SBAINPAGE (2) seg2 var3 var4
pragma GROUP segl seg2

intvarl, var2, var3, var4 ;

fn()

{
varl =var2 + var3 +vard ;
var2=varl +var3 +var4;
var3=varl +var2 +vard;
vard =varl + var2 + var3;

}
This example shows how group pragma can be used with inpage or shainpage pragmes. If the above
program is compiled in large data memory mode, DSR switching will be done only once to compute the
values of varl, var2, var3 and var4, because, the segments “segl” and “seg2” are in same physicd
segment, so these four variables are in the same physical segment.

Page 74

Pragmas

The following code is output for the function “fr’:

OUTPUT
CFUNCTIONO
_fn
u varl=va2 +var3+var4;
CLINE8
movb DSR, #SEG _var2
I a, OFFSET _var2
add a, OFFSET _var3
add a, OFFSET _var4
st a, OFFSET _varl
u var2=varl +var3+var4;
CLINE9
add a, OFFSET _var3
add a, OFFSET _var4
st a, OFFSET _var2
i va3=val+va2+va4;
CLINE 10
| a, OFFSET _varl
add a, OFFSET _var2
st a, er0
add a, OFFSET _var4
st a, OFFSET _var3
5 vard =varl + var2 + var3;
CLINE 11
add a, a0
st a, OFFSET _vard
7}
CLINE 12
frt

group segl seg2

The following examples show erroneous cases:

Example 5.31

INPUT

pragma INPAGE inpage_seg varl var2
pragma SBAINPAGE sha _seg var3 vard
pragma GROUP inpage_seg sha_seg

int_ farvar3, farvar4;

intvarl, var2 ;

Page 75

CC665S Ver.2.01 User Guide

For the above example, CC665S outputs warning message and ignores the near segment “inpage_seg’
specification in the group pragma with far ssgment “sba_seg’.

Example 5.32

INPUT

pragma INPAGE SEG5 varl var2
pragma GROUP SEG5 SEG6
intvarl, var2 ;

For the above example, CC665S issues awarning message as segment SEG6 was not specified ether in
INPAGE or SBAINPAGE pragmeas.

5.13 WINDOW PRAGMA

window pragma is not supported by CC665S from verson 1.70. If window pragma is specified, it is
ignored with awarning message.

5.14 ROMWINDOW PRAGMA

Syntax:
a. /PF option specified:
#pragma ROMWINDOW variable [, variable .|
b. /PF option not specified:
#pragma ROMWINDOW variable[variable ..]
The pragmaromwindowinstructs the compiler to dlocate one or more globd varigbles given by thelist of

variableswithinthe ROMWINDOW ares, but excluding the EEPROM, DUAL PORT and interna RAM
ranges.

Local variables cannot be alocated in ROMWINDOW, because they are dlocated in stack. CC665S
issues a warning message if a varigble pecified in this pragma is not qudified by ‘const’, because
ROMWINDOW areaisin ROM.

This pragmaisignored when /WIN or /AWIN option is specified in the command line.

Page 76

Pragmas

Romwindow pragma can be specified to a variable before or after its declaration. Variables dready
initidized cannot be used in this pragma, however, this pragma can appear before the variable’s
initidization.

CC665S accesses variables alocated in ROMWINDOW area using RAM addressing modes and not
through ROM addressing modes.
CC665S issues warning for the following cases :

If the specified symbol is not aglobd or static loca variadle.

If avariable specified in this pragmais not declared in the file being compiled.

If the varigble is not qudified by ‘const’.

If the variable is dready specified in any pragma.

If the varigbleisinitidized before specifying in this pragma directive.

Example 5.33

INPUT

const int romvar ;
pragma romwindow romvar

OUTPUT

$ENWINUES33 segment code window #0h
public _romvar

rseg $SNWINUES33
_romvar :
dw 00h

The following case is erroneous because, romwindow variables must be qudified by ‘const’.
Example 5.34

INPUT

intvar;
pragma romwindow var

Page 77

CC665S Ver.2.01 User Guide

5.15 FIXED PAGE PRAGMA

Syntax:
a. /PF option specified:
#pragma FIX variable [, variable .]
b. /PF option not specified:
#pragma FIX variable[variable ..]

The pragmafix ingtructs the compiler to dlocate one or more globa varigbles given by thelist of variables
within the FIXED PAGE areain RAM.

Local variables cannot be alocated in FIXED PAGE area, because they are allocated in stack. CC665S
issues a warning message if a variable gpecified in this pragmais quaified by ‘const’, because FIXED
PAGE areaisin RAM.

CC665S accesses the variables dlocated in FIXED PAGE area using fixed page addressing modes.

CC665S issues warning for the following cases :
If the specified symbal is not aglobd or static locad variadle.
If avariable pecified in this pragmais not declared in the file being compiled.
If the varigbleis qudified by ‘const’.
If the variable is dready specified in any pragma.
If afar variableis specified.
If the varidble isinitidized before this pragma directive.
Example 535

INPUT

int fix_var;
pragmafix fix_var

OUTPUT
_fix_var comm data 02h fix #00h

Page 78

Pragmas

5.16 DUAL PORT PRAGMA

Syntax:
a. /PF option specified:
#oragma DUAL variable [, varidble ..]
b. /PF option not specified:
#pragma DUAL varidble [variable .]

The pragma dual ingtructs the compiler to alocate one or more globa variables or static loca varigbles
given by thelist of variables within the DUAL PORT areain RAM.

Loca variables cannot be alocated in DUAL PORT area, because they are dlocated in stack.
SnceDUAL PORT areaisRAM, CC665Sissuesawarning messageif avariable specified inthispragma

isqudified by ‘const’.
CC665S issues warning for the following cases :
If the specified symbal is not aglobd or static locd variadle.
If avariable pecified in this pragmais not declared in the file being compiled.
If the variableis qualified by ‘const’.
If the variable is dready specified in any pragma.
If afar variable is specified.
If the varidble isinitidized before this pragma directive.
Example 5.36

INPUT

int dual_var ;
pragmadual dua_var

OUTPUT
_dua_var comm data 02h dua #00h

Page 79

CC665S Ver.2.01 User Guide

5.17 EDATA PRAGMA

Syntax:
a. /PF option specified:
#pragma EDATA variable [, variable ..]
b. /PF option not specified:
#pragma EDATA variable [varigble .]
The pragma edata ingtructs the compiler to alocate one or more globa variables or static loca variables
given by thelist of variables within the EEPROM areain RAM.
Loca variables cannot be dlocated in EEPROM area, because they are dlocated in stack. CC665S
issues awarning message if avariable specified in this pragmais quaified by ‘ const’, because EEPROM
areaisin RAM.
CC665S issues warning for the following cases :
If the specified symbal is not aglobd or static locd variadle.
If avariable gpecified in this pragmalis not declared in the file being compiled.
If the variableis qualified by ‘const’.
If the variable is dready specified in any pragma.
If afar variableis specified.
If the varidble isinitidized before this pragma directive.

Example 5.37

INPUT

int edata var ;

pragma edata edata_var
OUTPUT

$SNEDATAUES37 segment edata 02h
public _edata var

rseg $SNEDATAUES37
_edata var:
dw 00h

Page 80

Pragmas

5.18 SBAFI X PRAGMA

Syntax:
a. /PF option specified:
#pragma SBAFIX variable [, variable ..]
b. /PF option not specified:
#pragma SBAFIX variable [varigble ..]

The pragmasbafix ingructs the compiler to alocate one or more globa varigbles or static loca varigbles
given by theligt of variableswithin the SBA AREA in the fixed page.

Loca variables cannot be alocated in SBA area in fixed page because, they are alocated in stack.
CCB65S issues awarning message if avariable specified in this pragmais qudified by ‘const’, because
SBA aeaisin RAM.

CC665S issues warning for the following cases :
If the specified symbal is not aglobd or static locd variadle.
If avariable pecified in this pragmais not declared in the file being compiled.
If the variableis qualified by ‘const’.
If the variable is dready specified in any pragma.
If afar variable is specified.
If the varidble isinitidized before this pragma directive.
Example 533

INPUT

int sbafix_var ;
pragma sbafix sbafix_var

OUTPUT
_shafix_var comm data 02h shafix #00h

Page 81

CC665S Ver.2.01 User Guide

5.19 COMMONVAR PRAGMA

Syntax:
a. /PF option specified:
#pragma COMMONVAR variable [, variable .|
b. /PF option not specified:
#pragma COMMONVAR variable [variable ..]

The pragma commonvar ingructs the compiler to dlocate one or more globd variables or static local
variables given by the lig of variables within the COMMON AREA in RAM.

This pragma is vaid only in large data C memory modd programs (compect, effective large and large
modds). CC665S issues awarning if it is specified in other memory mode programs.

Loca variables cannot be alocated in COMMON area because, they are alocated in stack. CC665S
issuesawarning messageif avariable specified inthispragmaisqudified by * const’, because COMMON
areaisin RAM.
CC665S issues warning for the following cases :

If the data memory mode is not large.

If the specified symboal isnot agloba or static locd varidble.

If avariable specified in this pragmais not declared in the file being compiled.

If the variableis qualified by ‘const’.

If the variable is dready specified in any pragma.

If afar variable is specified.

If the varidble isinitidized before this pragma directive.

Page 82

Pragmas

Example 5.39

INPUT

int com_var ;
pragma commonvar com_var

CC665S generates the following when the above code is compiled in large data memory modd!:
OUTPUT

_com_var comm data 02h #00h

5.20 COMMON PRAGMA

common pragma is not supported by CC665S from version 1.70. If common pragma is specified, it is
ignored with awarning message.

5.21 STACKSIZE PRAGMA

Syntax :
#pragma STACK S ZE congtant

The pragmastack size sets sacksize. The constant specifiesthe sze of the stack in bytes. Any even vaue
between Ox1 and Oxffff may be specified asthe stack sze. This pragmaand the command line option /SS
behave in the same way.

If /SS option is pecified in the command line then this pragma will be ignored without giving warning
message. This pragmais vaid only if the source file has “man” function definition.

CC665S issues warning for the following case:

If the pragmalis specified more than once in the sourcefile.

The following example shows erroneous case:
Example 5.40

INPUT
pragma STACKSIZE 3001

For the above pragma, CC665S issues warning message since the stacksize pragma specifies an odd
number as stacksize.

Page 83

CC665S Ver.2.01 User Guide

5.22 STACK CHECK PRAGMAS

Syntax :
#pragma CHECKSTACKON
#pragma CHECK STACKOFF

The pragma check stackon ingtructs the compiler to add a cal to stack probe routine in entry code of
functions defined &fter this pragma

The pragmacheck stack off ingtructsthe compiler not to add acall to the stack proberoutinein entry code
of functions defined after this pragma.
These two pragmas are processed irrespective of /ST option in the command line.

Example 5.41

INPUT
pragma CHECKSTACKON

void fn (void)
{
}

CC665S generates the following code for function “fn” in /MM option :

fn1(0);

OUTPUT

CFUNCTION 0

_fn :

o

CLINE3
mov dp, #06h
fcal __chsts50m
fn1(0);

CLINE4
clr a
pushs a
fcal _fnl
pops a

"

CLINES
frt

Page 84

Pragmas

5.23LO0OP OPTIMIZATIONS PRAGMAS

Syntax :
#pragma L OOPOPTON
#pragma L OOPOPTOFF

The pragma loopopton ingructs the compiler to perform loop optimizations in functions that are defined
after this pragma This pragmaisignored if the command line option /Od is pecified.

The pragma loopoptoff ingructs the compiler not to perform loop optimizations in functions defined after
this pragma. This pragmaisignored if the command line option /Od is specified.

5.24 ASM and ENDASM PRAGMAS

Syntax :

pragma ASM
[* assembly ingtruction block */
#pragma ENDASM

The pragmas “asm’” and “endasm’ are Smilar to the directives “#asm” and “#endasm”. Any text can be
given indde “#pragma asm’ and “#pragma endasm’. CC665S does not process this block of text. This
block will be output in the assembly listing file as given in the sourcefile.

CC665S issues warning for the following case:
If an endasm pragmais specified without its corresponding asm pragma.
CC665S issuesfatal error message for the following case:

If an asm pragmais specified without its corresponding endasm pragma.

Page 85

CC665S Ver.2.01 User Guide

The following example shows the usage of “#pragma asm - # pragma endasn’

Example 5.42
INPUT
fn()
{
pragmaasm
clrb TSR 5 clear table segment register
clrb DSR 5 clear data segment register
pragma endasm

}
CC665S generates the following function body for function “frn’:

OUTPUT

CFUNCTION O

_fn

5 # pragmaasm

CLINE3
clrb TSR 5 clear table segment register
clrb DSR 5 clear data segment register

"

CLINE7
rt

The following are erroneous cases.

Example5.43
INPUT
fn()
{
pragma endasm
pragma asm
clrb TSR 5 clear table segment register
clrb DSR 5 clear data segment register
pragma endasm

}

Page 86

Pragmas

CC665S issues a warning message for the firsd endasm pragma because, it is specified without its
corresponding asm pragma.

Example5.44
INPUT
fn()
{
pragmaasm
crb TSR 5 clear table segment register
crb DSR 5 clear data segment register

}

CC665S issues afata error message for the asm pragma because, its corresponding endasm pragmais
not specified.

Page 87

Output Files

6. OUTPUT FILES

The different output files with their default extensons are listed below.

TABLE 6.1
Output File Extension
* Assembly Output ASM
Source/Error Ligting LST
**Cdlltree Liging -
Debug Informetion File .DBG
Preprocessed Output .P66

* indicates that the assembly file name extension may be changed using /Fa option in the command line.
** indicates that cdltree listing file has no default extenson.

Command line options to obtain corresponding output file is listed below.

TABLE 6.2

Output File Command Line
Option

* Assembly Output /Fa
Source/Error Listing ILE
Cdltree Liging ICT
Debug Informetion File /SD or /OSD
Preprocessed Output /LPor /PC

* indicates that CC665S generates assembly file with default assembly file name, if /Fa option is not
gpecified in the command line.

Page 89

CC665S Ver.2.01 User Guide

6.1 ASSEMBLY OUTPUT
Theoutput file produced by CC665Sis an assembly file which containsMSM66K “500” core or “500S”
core assembly mnemonics.

This section explains the conventions followed by the compiler in generating the output code.

6.1.1 Comment Section

The gart of the output assembly file has a comment section. It contains the following information:
1. Compile Options

2. Verson Number

3. HleName

6.1.1.1 Compile Options
The compile options specified dong with the file name in the commeand line are listed in a sequence.
Example 6.1

COMMAND LINE
C:\>CC665S /Tm66589 /M S /mixC /SS 10000 test.c

For the above command line, the compile options are output in the comment section as follows:

OUTPUT
;; Compile Options: /TmM66589 /M S /mixC /SS 10000

6.1.1.2 Verson Number

The compiler verson in which the sourcefile is compiled, is output in the comment section.

Example 6.2
;; Verson Number : Ver.2.01 Apr 1996

Page 90

Output Files

6.1.1.3 File Name
The source file name, as specified by the user in the command line, is output in the comment section.

Example 6.3

COMMAND LINE
C:\>CC665S/Tm66589 /M S ..\source\test.c

For the above command line, the source file nameis output in the comment section as follows:

OUTPUT

;; FileName : .\source\test.c

6.1.2 Assembler Initialization Pseudo I nstructions
This section contains the pseudo ingtructions output by CC665S, which are required by RAS66K.

6.1.21 TYPE INSTRUCTION

The TYPE pseudo ingruction is generated a the beginning of the output. The string specified with /T
option is output with this pseudo ingtruction.

Example 6.4
COMMAND LINE

C:\>CC665S /Tm66589 test.c <CR>
For the above command line, the following pseudo indruction is output in “test.asm’:

OUTPUT

type (M66589)

Page 91

CC665S Ver.2.01 User Guide

6.1.2.2 CMODEL PSEUDO INSTRUCTION

The CMODEL pseudo ingruction is used to specify the C memory modd in the assembly ligting file. One
of the following is output based on the C memory mode!:

amdl for amdl C memory modd

emedium for effective medium C memory modd
medium for medium C memory modd
compact for compact C memory model

darge for effective large C memory mode
large for large C memory mode

Example 6.5
COMMAND LINE
C:\>CC665S /MC /Tm66589 test.c <CR>
For the above command line, the following pseudo ingtruction is output in “test.asn’

OUTPUT

cmodel compact

6.1.2.3 MODEL PSEUDO INSTRUCTION

The MODEL pseudo ingruction is used to specify the mixed memory mode in the assembly lidting file.
One of the following is output based on the mixed memory modd:

amdl for amdl mixed memory modd
medium for medium mixed memory modd
compact for compact mixed memory model
large for large mixed memory modd

Example 6.6

COMMAND LINE
C:\>CC665S /MM /mixL /Tm66589 test.c <CR>

For the following command line, the following pseudo ingruction is output in “test.asm’

OUTPUT

model large

Page 92

Output Files

6.1.2.4 WIN/AWIN PSEUDO INSTRUCTION
The WIN pseudo ingruction is output by CC665S when /WIN option is specified in the command line.
Example 6.7
COMMAND LINE
C:\>CC665S /Tm66589 /WIN test.c
For the above command line, the following pseudo indruction is output in “test.asm’:
win
The AWIN pseudo ingtruction is output by CC665S when /AWIN option is specified in the command
line.
Example 6.8
COMMAND LINE
C:\>CC665S /Tm66589 /AWIN test.c
For the above command line, the following pseudo indruction is output in “test.asm’:

awin

6.1.2.5 SEGMENT DEFINITION PSEUDO INSTRUCTION

This section contains the definitions of al the relocatable segments, that have been used in the assembly
output file. Each segment definition contains the name of the segment and the properties associated with
that segment.

Example 6.9
$SNCODfile segment code #0h

The above segment definition indicates thet, the segment * $$NCODfile isdlocated in 0" physica code
segment.

Page 93

CC665S Ver.2.01 User Guide

6.1.3 Procedur e Section

This section contains the assembly ingtructions and assembly directives, generated for dl the functions
defined in the sourcefile.

The contents of this section can be further classified asfollows:
1. relocatable ssgment definition

2. function name labdl

3. Csourceleved debug information

CFILE directive
CFUNCTION directive
CBLOCK directive

C sourceline

CLINE directive

4. assembly indructions for each statement

6.1.3.1 RELOCATABLE SEGMENT DEFINITION

A function is placed in asegment which is determined by the type of the function. To specify afunctionin
aparticular segment, ‘rseg pseudo ingtruction isused. For example, to specify that the function should be
dlocated in ‘NCODfile' segment, the following is output:

rseg NCODfile
Example 6.10

INPUT

[* ue610.c*/
voidfn ()

{
}

OUTPUT
rseg $$NCODue610
All the functions are output in the assembly file, in the order they appear in the sourcefile. If the segment in

which the current function isto be dlocated is same as that for the previous function, ‘rseg’ directiveisnot
outpuit.

Page 94

Output Files

6.1.3.2 FUNCTION NAME LABEL

Each beginning of a function is marked by the function name followed by a colon (:). This labd indicates
that the assembly indructions following this label are part of this function code. The function name is
preceded by a“ .

Example 6.11

INPUT

int func ()

{
}

Thefunction name labd is output as follows for the function ‘func’ in the above example:

OUTPUT

_func:

6.1.3.3 C SOURCE LEVEL DEBUG INFORMATION
6.1.3.3.1 CFILE directive

To diginguish the output of include files and source file, CFILE directive is output. CFILE directive is
followed by the file number. On encountering an include file this directive is output dong with file number
associated with theincludefile. CFILE directiveis output only when /SD or /OSD option isspecified inthe
commeand line.

Example 6.12

INPUT
* content of ue612.h */
inta b, c;
intmul_arg (inta, intb)
{

}

[* content of ue612.c */
#include “ue612.h”

return(a* b);

int funcl ()
{

}

a=b+c;

Page 95

CC665S Ver.2.01 User Guide

OUTPUT
CFILEO
... code for the function ‘mul_arg’ infile‘ue612.h’
CFILE1
...code for the function ‘func? file‘ue612.c’

In the above example ‘CFILE’ directive is output for file ‘ue612.h with file number O and ‘CFILE' is
output for ‘ue612.c’ with file number 1.

6.1.3.3.2 CFUNCTION directive
Each function name labd is preceded by ‘CFUNCTION’ directive. Each CFUNCTION directive hasa
function number associated with it, which is output along with the directive,
Example 6.13
INPUT
int func_id ()
{

}
OUTPUT

CFUNCTION O
_func_id:

funl();

In the above example, 0 is assgned as the function number for the function *func id’.

6.1.3.3.3 CBLOCK/CBLOCKEND directives

CBLOCK and CBLOCKEND directives are output only when /SD or /OSD option is specified in the
command line. For each *{" in the sourcefile, aCBLOCK directiveis output. Along with CBLOCK the
function id and the block number isaso output. Similarly, for each ‘}’ inthe sourcefile, aCBLOCKEND
directivesis output along with the function id and the corresponding block number (specified in CBLOCK
directive).

Example 6.14

INPUT

inta b, c;

voidfn ()
{
{

}

a=b+c;

Page 96

Output Files

OUTPUT

CBLOCK 02

b a=b+c;

CLINE7
I a, dir b
add a, dir _c
st a, dir_a

CBLOCKEND 02

6.1.3.3.4 C sourceline
For each executable line for which assembly ingtructions are output, the corresponding C statement is
output as comments.
Example 6.15
INPUT
a=fn();
For the above C statement, the C source line is output in the assembly file as follows:

OUTPUT

na=fn();

6.1.3.3.5 CLINE directive

CLINE directive is output for each executable statement, for which assembly ingtructions have been

generated. The CLINE directiveisfollowed by the line number of the C statement in the source file.
Example 6.16

INPUT
inta b, c;

void
fn()
{

}

a=b*c; /* line number 06 */

Page 97

CC665S Ver.2.01 User Guide

OUTPUT
5 a=b*c; /* line number 06 */
CLINEG6
I a, dir b
mul dir _c
mov dir_a, e0

In the above example, for the C statement ‘a=b * ¢ at line number 6, ‘CLINE 6’ is output.

6.1.3.4 ASSEMBLY INSTRUCTIONS

One or more assembly ingtructions are generated for aC statement. They are grouped together and output
after the CLINE directive.

Example 6.17

INPUT
intb, c;

void

fn()

{
b=funl();
c+=bh;

}

OUTPUT

b c+=b;

CLINE7

I a, dp
add dir ¢, a

In the above example, the assembly instructions that follow CLINE 6 are generated for ‘b = funl () ;
expression and those following CLINE 7 are for the expresson ‘c+=b ;.

Page 98

Output Files

6.1.4 Symbol Declarations Section

This section contains the symbol declarations for different types of variables specified in the sourcefile.
The three types of symbol declarations are as follows:
1. comm
2. public
3. extrn
Uninitidized globa datavariables, which are not specified in pragmas, are output using the’ comnt’ pseudo
indruction.
Example 6.18

INPUT

long &
OUTPUT
_acomm data 04h #00h

In the above example, ‘a is assigned alocation in 0" data segment with size 4 bytes.
Initidized globd data variables are output using ‘public’ pseudo ingtruction.

Example 6.19

INPUT
inta=7;
OUTPUT
public _a
In the above example, the variable ‘a’ is output as public.

A function which has been called but whose body is not defined in the current file, is output as ‘extern’.
Similarly, variables that have been declared as ‘extern’ in source are also output as ‘extrn’.

Page 99

CC665S Ver.2.01 User Guide

Example 6.20
INPUT
externint a;
main ()
{
a=1;
fnQ;
}
OUTPUT

extrncode: fn

extrndata: _a

Inthe above example, the body of thefunction *fn" isnot defined and therefore, it isoutput as* extrn' . Also,
‘a has been declared as ‘extern’. Therefore, no storage is dlocated and output as ‘ extrn’.

The memory initidization pseudo ingructions DW and DB and memory alocation pseudo ingruction DS
are used to output the initialized globa data variables. CC665S follows smilar methods to output atic,
non-dtatic and aggregate (array, sructure/union) initidized globa data variables. Memory initidization
indructions DW and DB are used to dlocate and initidize const variables in code memory.

Example 6.21
INPUT
longvar=10;
constintcint=20;
OUTPUT
rseg $$NINITTAB
dw Oah
dw 00h
rseg $SNTABue621
_cint:
dw 014h
rseg $SNINITVAR
_var:

ds 04h

Page 100

Output Files

Inthe above example, 4 bytesaredlocated in* $$NINITVAR’ datasegment usng DS pseudo ingtruction.
The initid vaue is output in “$$NINITTAB’ usng DW pseudo indructions. Smilarly, for the const
varigble ‘ant’ DW pseudo ingruction is used to dlocate and initidize in code memory.

Initidizetion of globa dataand static variables are performed by alocating memory for these varigblesin
a RAM segment and defining those initid vaues in a ROM segment. Startup code copies these initid
vaues from the ROM segment to the RAM segment before the function “man” isinvoked.

A sample output of an assembly fileis given below:

Example 6.22
INPUT
int ab;
int c=10;
void fn (void)
{
b=fnl();
a=b*c;
return ;
}
OUTPUT

;; Compile Options: /TmM66589 /M S /mixC /SS 10000
;; Verson Number : Ver.2.01 Apr 1996
;; FileName : ue622.c

type (Mm66589)

cmodel small

model compact

$ENCODue622 segment code #0h
SENINITTAB segment code
$ENINITVAR segment data 02h #0h

Page 101

CC665S Ver.2.01 User Guide

rseg $$NCODUe622

CFUNCTION 0
_fn

s b=fnl();
CLINE6
cal _fnl

mov dir _b, dp

0 a=b*c;
CLINE7
I a, dp
mul dir _c

mov dir_a, e0

Y
CLINEQ
r

extrncode: fnl
public_c

public_fn

_acomm data 02h #00h
_b comm data 02h #00h
extrncode: _main

rseg SSNINITTAB
dw Oah

rseg $SNINITVAR
ds 02h

end

6.2 ERROR LISTING

Sourceligtingsare hdpful in debugging programs asthey arebeing developed. Theseligtingsare aso useful
for documenting the structure of finished programs.

The source ligting contains the numbered source code lines of each function in the source file, dong with
diagnostic messages that were generated. Any error or warning messages issued during compilation
gppear in the liging after the line that caused the error, as shown in the following example:

Page 102

Output Files

Example 6.23
INPUT
int a;
inth;
voidfn ()
{
output_fn();
if (a==b[1])
returna;
}

The following lig file is generated when the above program “ue623.c” is compiled in /LE /Tm66589
options:

OUTPUT

Page : 1
Date : 04-23-1996
Time: 14:.0234
CC665S C Compiler Ver.2.01 Apr 1996, Source List
Source File: ueb23.c

Line# SourcelLine

lint a;
2intb;
3
4voidfn()
5{
6 output fn();
7 if(a==b[1])
**%%% 1e623.¢(7) : Error : E5003 : Subscript on non array
8 return a;
9}
**%%% 11623.¢(8) : Error : E5039 : Void function returning value
10

Error(s) : 2
Warning(s) : 0

If the source file compiles without an error or fatd error, then alist of stack information used in different
functionsis issued. The following example shows a complete source ligting with stack informetion.

Page 103

CC665S Ver.2.01 User Guide

Example 6.24

INPUT

inta;
intb;

void

begin (x,y)

intx;

inty;

{
function () ;
end (X,Y);
return;

int

end (X,)

intx;

inty;

{ .
intz;
z=functionl () ;
function2 () ;
Z+=X+Y,
return (2) ;

}

OUTPUT

Page: 1

Date : 04-23-1996

Time: 141212
CC665S C Compiler Ver.2.01 Apr 1996, Source List
Source File: ue624.c

Line# SourcelLine
linta;

2intb;
3

Page 104

Output Files

4void
5begin(X,y)
6intx;

7inty;

8{

9 function();
10 end(x,Y);
11 return;
12}

13

14int

15end (x,y)
16intx;
17inty;

18

19 intz;

20 z=functionl();
21 function2 () ;

22 Z+=X+Y;
23 return(2);
24}
25
Error(s) : 0
Warning(s) : 0

Page: 2
Date: 04-23-1996
Time: 141212

CC665S C Compiler Ver.2.01 Apr 1996, Source List
Source File: ue624.c

STACK INFORMATION

FUNCTION LOCALS ARGUMENTS OTHERS TOTAL
begin 0 4 8 12
end 0 4 6 10

OTHERS include the size of stack used for storing the return address of the function and the size of stack
used for pushing the base regigters at the entry of the function.

Page 105

CC665S Ver.2.01 User Guide

6.3 CALLTREE LISTING

The cdltree liging file produces an indented listing showing the procedure names a the left margin. Cdls
are shown indented three spaces per levdl.

If apath has aready been viewed, it is shown asdlipsis(...). A recursive cal is shown as an asterisk (*).
If acdl to an undefined procedure is made, a question mark(?) appears.

Example 6.25

INPUT

void

fn()

void
fnl()

fn(Q;
fnl();
fn2();

}

For the above sourcefile “ue625.c”, the caltree listing generated by CC665S is shown below.

CC665S C Compiler, Ver.2.01 Apr 1996, Calltree Ligting
Source File : ue625.c

fn
fnl

| fn...
| fn1*
| fn2?

Inthe above example, dlipssfollowsfunction “fn” because cdltreefor function “fri” islisted previoudy. An
adterisk follows function “fnl” because it is cdled recursvely. A question mark follows “fn2” because
definition of function “fn2” was not encountered prior to that function cal.

When more than one sourcefileis specified for compilation, the cdltreelisting of each sourcefileis output
inthesame cdltreefile. However, the cdltree information of one sourcefileisnot carried to another source

file

Page 106

Output Files

Example 6.26

INPUT

[* ueb26a.c */
voidfn ()

{
}

[* ue626b.c */
void fnl ()

{
}

In the above code, the function “frn” is defined in source file “ue626a.c” and function “fnl” in “ue626b.c”
cdlsfunction “fr".

OUTPUT
CC665S C Compiler, Ver.2.01 Apr 1996, Calltree Listing

fn(Q);

fn(Q);

Source File : ue626a.c

fn
| fn*

Source File : ue626b.c
fnl

| fn?

Inthe calltree lising of function “fnl”, a question mark follows “fri” Snce function “fn" was not defined in
source file “ue605b.c”.

6.4 DEBUGGING INFORMATION FILE

CC665S creetes debug information file with an extenson “.dbg” and the base name derived from the
source file when /SD or /OSD option is specified in the command line. Compiler stores symbol
information, line number and block information of source file in debugging information file for the source
level debugger CDB665S.

Page 107

CC665S Ver.2.01 User Guide

Debugging information file is crested as a binary file in a predefined format. This file is opened and
processed by RAS66K when /CC option is specified in the command line. Assembler creates the object
file which includes the debugging information. The absolute addresses and vaues are fixed by the linker
RL66K when the /SD option is specified in the command line of RL66K and transferred to the absolute
file. C source level Debugger CDB665S reads the absolute file to obtain the debugging information.

CC665S aso outputs information to support calls menu option in source level debugger CDB665S if
/SD option is specified in the command line. A debugging information file created by specifying /OSD
option in the command line does not contain information to support calls menu option in the debugger
CDB665S.

Example 6.27

INPUT
inta;

void

fn()

The following output is generated when the above program “ue627.c” iscompiled in /SD option:

CFUNCTION 0
_fn :
CBLOCK 01
f
CLINES
I a, _$baseptr
pushs a
mov _$baseptr, ssp
N a=1;
CLINE6

mov dir_a, #01h

nt

CLINE7
pops a
mov _$baseptr, a
rt

CBLOCKEND 01

Page 108

Output Files

The following output is generated when the above program “ue627.c” is compiled in /OSD option:

CFUNCTION O
_fn :
CBLOCK 01

n a=1;
CLINE6
mov dir_a, #01lh

nt
CLINE7

it
CBLOCKEND 01

Page 109

Optimizations

7. OPTIMIZATIONS

CC665S performs a variety of optimizations that reduce the storage space or execution time required for
aprogram. Thisis achieved by diminating unnecessary ingructions and rearranging code.

CC665S performs optimizations of the following types :

1. It modifies or moves sections of code s0 that fewer and/or faster instructions are used.
2. It diminates sections of code that are redundant or unused.

CC665S performs al optimizations by default. The optimization options/Od, /Ol, /Oa, /Og, /Ot and /Om
may be used to exercise greater control over the optimizations performed.

7.1 GLOBAL OPTIMIZATIONS

Globa optimizations are those that are performed across different basic blocks of code. (A basic block
corresponds to a sequence of executable statements through which control flows from the first statement
to the lagt statement, sequentidly).

The following optimizations are classified as globd optimizations :

Congtant propagation
1. Common sub-expression dimination
2. Codesnking
3. Code hoigting

The above optimizations may be enabled or disabled, usng /Og option.

Page 111

CC665S Ver.2.01 User Guide

7.1.1 Constant Propagation

Variablesused in expressonsare replaced by their constant values. The resultant constant expressionsare
computed at compile time and the computed result is used in the expression.

Example 7.1
inta b,x,y,mn;
const_propagate ()
{
a=45;
if (b<x)
{
m=a+20; /* changedtom=65*/
}
y=a+m; /* changedtoy =45+ m*/
}
Assembly code generated by CC665S for the above function ‘const_propagate’ is shown below
CFUNCTION 0
_const_propagate
s a=45;
CLINES
mov dir _a, #02dh
N if (b<x)
CLINE7
I a, dir _b
anp a, dir _x
jges 81
5 m=a+20; /* changedto m =65 */
CLINE9
mov dir_m, #041h
5 }
CLINE 10
_$L1:
5 y=a+m; [* changedtoy =45+ m*/
CLINE 12
| a, dir_m
add a, #02dh
st a, dir _y
"
CLINE 13
rt

Page 112

Optimizations

7.1.2 Common Sub-Expression Elimination

Sub-expressionsthat are repeated more than once are eliminated. These are replaced by atemporary that
hold the result of a Single evauation.

Example 7.2
inta b,x,y,mn;
common_sub_exp ()
{
Xx=a+b; /* a+ bisalso assigned to atemporary */
if (a<b)
m=a+b+y; /* a+ bisreplaced by the temporary */
else
n=(a+b)>>4; [*a+bisreplaced by thetemporary */
}

Assembly code generated by CC665S for the above function ‘common_sub_exp’ is shown below:

CFUNCTION 0
_common_sub_exp

5 x=a+b; /* a+ bisalso assigned to atemporary */
CLINES
| a, dir_a
add a, dir b
st a, dir _x
st a, er0
N if (a<h)
CLINE7
| a, dir_a
amnp a, dir _b
jges _$L1
5 m=a+b+y; /* a+ bisreplaced by the temporary */
CLINES8
I a, er0
add a, dir _y
st a, dir_m
5 else
CLINE9
rt

Page 113

CC665S Ver.2.01 User Guide

$L1:

CLINE 10
|
ga
st
Y
CLINE 11
r

7.1.3 Code Sinking

n=(a+b)>>4; [*a+bisreplaced by thetemporary */

a,
a,
a,

er0
04h
dir_n

If control passesto asingle point, after executing same sequence of statements aong different paths, the
gatements are sinked (moved down) to the single common point. The unnecessary copies of statements

are removed.

Example 7.3

inta b, exy, zmn;

sink ()
{

if (a==h)

{

func();
m=e+25;

return (e) ;

}

X=y+z;
m=e+25;

return (e) ;

}

/* two statements are sinked */

/* two statements are removed */

Assembly code generated by CC665S for the above function ‘snk’ is shown below :

CFUNCTION O

_sink

CLINES
I

amp

jne

CLINE7
cal

if (a==h)

a,
a,
$L1

func();

_func

dir_a
dir_b

Page 114

Optimizations

"

CLINE 16

_$LO:
I a, dir _e
add a, #019h
st a, dir_m
mov dp, dir _e
rt

- }

CLINE 10

_$L1:

N X=y+2;

CLINE 12
I a, dir y
add a, dir_z
st a, dir _x
return (e) ;

CLINE 15
Sj _$L0

7.1.4 Code Hoisting

Thisis amilar to code sinking, but the direction of code movement is reversed. If control passes from a
single point, and same sequence of statements are executed aong different paths, the satements are
hoisted (moved up) to the single common point. The unnecessary copies of statements are removed.

Example 7.4
inta b, x,y,z,m;
hoist ()

{
if (a==b)
{
m=x+y; [* statement hoisted */
X=2z;

else

{

m=x+y; * statement removed */
fnl();

Page 115

CC665S Ver.2.01 User Guide

Assembly code generated by CC665S for the above function ‘hoidt’ is shown below:

CFUNCTION O

_hoist
I a, dir _x
add a dir _y
st a, dir_m

N if (a==b)

CLINES
| a, dir _a
anp a, dir _b
jne $L1

5 X=z

CLINES
mov dir_x, dir_z
else

CLINE 10
rt

_$L1:

5 fnl();

CLINE 13
j _fnl

s}

CLINE 15

7.2LO0OP OPTIMIZATIONS

L.oop optimizations are those that are performed on statements within loops.
Thefollowing optimizations are classified as |oop optimizations:

Loop invariant code motion
Loop variant code motion
Induction variable dimination
Strength reduction

Loop unralling

arowbdE

The above optimizations may be enabled or disabled usng the /Ol option.

Page 116

Optimizations

7.2.1 Loop Invariant Code Moation

Expressons whose vaues do not change through each execution of a loop are termed as invariant
expressions. Such expressions are detected and moved to a position outside the loop, so that they are

evauated only once.
Example 7.5
unsigned intx, m, n, o, p, r, i,y [10] ;
loop_invar ()
{
do
{
p=n/o; /* moved outside the loop */
X=m*r+i; I* sub-expression m* r is moved outside the loop */
yli]+=x;
i ++;
} while(x<i);
}
Assembly code generated by CC665S for the above function ‘loop_invar’ is shown below:
CFUNCTIONO
_loop_invar
mov e, dir_n
clr a
divg dir o
st a, dir_p
I a, dir_m
mul dir _r
mov erl, e0
n do
CLINES
_$L3:
5 X=m*r+i; [* subexpression m* r is moved outside the loop */
CLINE8
I a, el
add a, dir i
st a, e0
st a, dir _x

Page 117

CC665S Ver.2.01 User Guide

3 y[i]+=x;
CLINE9
I a, dir i
sl a, 01h
st a, xL
I a, a0
add _y[x1], a
s i+
CLINE 10
inc dir i

} while(x<i);

CLINE 11
I a, dir _x
anp a, dir i
jit _$L3

"

CLINE 12
rt

7.2.2 Loop Variant Code Motion

Expressions whose vaues change by constant step val ue through each execution of aloop are termed as
variant expressions. Such expressions are detected and moved to a position outside the loop, so that they
are evauated once with the final vaues of the variables (values at loop exit).

Example 7.6
inti,a;

loop_variant_code_motion ()

{
for(i=1;i<11;i++)
a+=i;

}

The above loop is replaced by

a+=55;
i=11;

Page 118

Optimizations

Assembly code generated by CC665S for the above functionloop _variant_code motionisshown below:

CFUNCTION O
_loop_variant_code_moation
add dir_a, #037h
mov dir i, #Obh
"
CLINE7
rt

7.2.3 Induction Variable Elimination

An induction variable is one whose vaue changes by a function of another variable or congtant, within a
loop. When two or more induction variables are present, variables which are alinear function of another
vaiable are diminated and dl uses of the diminated varidble are replaced by a function of the other
vaigble. Eliminated variables are initidized to ther find vaues, if necessary.

Example 7.7
char a[10] ;
inti,j;

induction_var_elim ()

{
for(i=0,j=0;i<10;i++,j++)
{ [I*i,jareinduction variables*/
afi]=j+3;
}
}
The above loop istransformed to
j=10;
for (i=0;i<10;i++)
{
ali]=i+3; /*jisreplaced by i */
}

Page 119

CC665S Ver.2.01 User Guide

Assembly code generated by CC665S for the above function ‘induction var_dim’ is shown below:

CFUNCTION O
_induction_var_elim

- for(i=0,j=0;i<10;i++,j++)

CLINE6
clr dir _i
mov dir_j, #0ah
_9$L3:
N afi]=j+3;
CLINE8
b 3, dir i
addb g, #03h
mov x1, dir i
stb a, _ax]]
i for(i=0,j=0;i<10;i++,j++)
CLINE6
inc dir _i
anp dir i, #0ah
jits _$.3
7}
CLINE10
rt

7.2.4 Strength Reduction

Expressions, in loops, that use costly operations are modified to use cheaper operations.

Example 7.8
inta[10] ;
inti;

strength_reduction ()

{
for(i=0;i<10;i++)
{
ali]=0; [* for accessing ith element of the ‘a’, multiplication by 2 */
[* isnecessary, because ‘a’ isan array of ‘int’ */
}
}

Page 120

Optimizations

The above loop is transformed to

for (temp=0,i =0;temp<20; temp+=2,i ++)
{
* (a+temp)=0; /* multiplication inside the loop is*/

/* removed by varying the loop */
/* control (incremented by 2 instead */
/* of 1) and the exit condition (less*/
/* than 20 instead of lessthan 10), */
/* by using atemporary loop */
/* control variable (temp) */

}

As CC665 Ver.1.52 and later give priority to Space optimization over speed optimization, strength
reduction is not performed. Assembly code generated by CC665S for the above function
‘drength_reduction’ is shown below:

CFUNCTIONO
_strength_reduction

for (i=0;i<10;i++)

CLINE6
clr dir i
_$L3:
5 ali]=0; [* for accessing ith element of the ‘a’, multiplication by 2*/
CLINES8
I a, dir i
sl a, 01h
st a, x1
clr _gx1]
5 for (i=0;i<10;i++)
CLINE6
inc dir i
anp dir i, #0ah
jlts _$L3
"
CLINE11
rt

7.2.5 Loop Unralling

The body of aloop which would execute a constant number of times, is expanded that many number of
times, if feasble. The loop control statements are removed.

Page 121

CC665S Ver.2.01 User Guide

Example 7.9

loop_unroll ()

{
inti;
for(i=0;i<2;i++)
function () ;

}
The above loop is transformed to

function () ;
function () ;

Assembly code generated by CC665S for the above function ‘loop_unroll’ is shown below:

CFUNCTION O
_loop_unrall
cal _function
j _function
"
CLINE7

/.30THER OPTIMIZATIONS

The other optimizations performed include:

1. Dead code éimination

2. Dead variable dimination
3. Algebraic trandformation
4

. Optimizing jumps
7.3.1 Dead Code Elimination

Parts of code that will never be executed are referred to as ‘dead’ code. These can be statements that
could be detected as dead, by looking at the input source program, or those that could be detected
because of prior optimizations such as constant propagation.

Example 7.10

inta,p,q,r;

dead code ()
{
a=10;
r=p+q;

Page 122

Optimizations

if (a<10) /* if statement removed */
fnl(); /* statement removed */

}
Assembly code generated by CC665S for the above function ‘dead _code’ is shown below:

CFUNCTION O
_dead_code
a=10;
CLINES
mov dir_a, #0ah
LR r = p + q 1
CLINE6
| a, dir_p
add a, dir _g
st a, dir _r
"
CLINE 10
rt

7.3.2 Dead Variable Elimination

Variables are assigned vaues by expressons. The vaues of some variables may not be used later in the
program. Such variables are referred to as ‘dead variables. These dead variables are detected and
removed. Dead variables dso include variables, that are assigned values, before a previoudy assigned
valueisusad. The unnecessary assgnment is removed.

Example 7.11
intx,m,n,r,p,q;

dead var ()
{
intl;
X=m+n; /* statement removed */
r=p*q;
X=r>>2;
l=x+r; [* statement isremoved variable| isadead variable */

}

Assembly code generated by CC665S for the above function ‘dead var’ is shown below:

CFUNCTIONO
_dead_var

Page 123

CC665S Ver.2.01 User Guide

" r=p*q;
CLINES8
I a, dir_p
mul dir g
mov dir r, e0
N X=r>>2;
CLINE9
I a, e0
sra a, 02h
st a, dir _x
"
CLINE 11
rt

7.3.3 Algebraic Transformation

Expressons are modified, usng commutative and associative laws, for optima use of regisers.
Example 7.12
inta x,b,c;
ag_transfer ()
{

}

a=x+(b-c); I* requires 2 registers*/

The above statement is transformed to
a=(b-c)+x; [* requires 1 register */

Assembly code generated by CC665S for the above function ‘ag_transfer’ is shown below

CFUNCTION 0
_alg_transfer
5 a=x+(b-c); /*requires2registers*/
CLINES
I a, dir_b
sub a, dir _c
add a, dir _x
st a, dir_a
"
CLINE 6
rt

Page 124

Optimizations

7.3.4 Optimizing Jumps

Blocks of code are rearranged to minimize use of jump ingtructions. Jump ingdructions that jump to jump
ingructions are modified to reduce the number of jumps executed.

Example 7.13

LABEL2:

goto LABEL1 /* LABEL lisreplaced by LABEL2*/
LABEL1:

goto LABEL2

7.4 PEEPHOLE OPTIMIZATIONS

Peephole optimizations are performed on the output assembly language ingtructions.
These optimizations include :

1. Removd of redundant transfer ingtructions

2. Optimizing rddive jumps

7.4.1 Removal Of Redundant Transfer Instructions

The generated assembly ingtructions are scanned for unnecessary transfers to and from registers.

Example7.14

I
st
I
st

#20h
_one
#20h ; thisinstruction is removed
_two

Lo

7.4.2 Optimizing Relative Jumps

Relative jump ingtructionswhose targets exceed the dl owed range are replaced by pairsof conditiona and
unconditiond jump ingtructions. Sequentia pairs of conditiona and unconditional jumps are replaced by a
sngle conditiond jump ingtruction.

Page 125

CC665S Ver.2.01 User Guide

Example 7.15

jz L10
j L20
$L10:
The above ingructions are replaced by

jnz L20
$L10:

7.5LOCAL OPTIMIZATIONS

These are optimizations that are performed within abasic block :

1. Constant propagation
2. Common sub-expression eimination
3. Useof dgebraic identities

These optimizations, within abasic block, are not dependent on any optimization option. These aredways
enabled.

7.5.1 Constant Propagation

Variables used in expressons are andlyzed and changed to congtants if they can be changed.

Example 7.16
intc,d;
local_constant_prop ()
{
c=30;
d=c; [* instead of ¢, 30isassignedtod*/

}
Assembly code generated by CC665S for the above function ‘loca_constant_prop’ is shown below

CFUNCTION 0
_local_constant_prop
i c=30;
CLINES
I a, #0leh
st a, dir ¢

Page 126

Optimizations

5 d=c; /*insteadof c,30isassignedtod*/
CLINE6
st a, dir _d
"
CLINE7
rt

7.5.2 Common Sub-Expression Elimination

Code containing repeated sub-expressions are modified, so that the sub-expressions are evauated only
once.

Example7.17
unsignedinta, b, c, d, X,y ;
local_cse()
{
a=b+c*d; /* c*disevaluated and assigned to atemporary */
x=c*dly; /* value of ¢ * stored in the temporary is used not evaluated again */
}
Assembly code generated by CC665S for the above function ‘loca_cse' is shown below:
CFUNCTIONO
_local_cse
5 a=b+c*d,; /* c*disevaluated and assigned to atemporary */
CLINES
| a, dir ¢
mul dir _d
I a, er0
add a, dir b
st a, dir_a
5 x=c*dly; /* value of ¢ * d stored */
CLINE6
clr a
divg dir _y
st a, dir _x
"
CLINES
rt

Page 127

CC665S Ver.2.01 User Guide

7.5.3 Use Of Algebraic I dentities

Expressions that conform to agebraic laws are modified, so that unnecessary operations are diminated.
Example 7.18
inta b, c,d;

alg_identities ()
{
a=b+0; /* additioniseliminated */
c=d*1; /* multiplicationiseliminated */
}

Assembly code generated by CC665S for the above function ‘ag identities' is shown below:

CFUNCTION O
_alg_identities
N a=b+0; [* addition iseliminated */
CLINE6

mov dir_a, dir_b
5 c=d*1; [* multiplication is eliminated */
CLINE7

mov dir _c, dir_d

Y
CLINES
rt

7.6 EFFECT OF ALIASING ON OPTIMIZATIONS

An‘dias isaname used to refer to amemory location aready referred to by a different name.

Asalocation can bereferred to by more than one variable, performing optimization on variables becomes
unsafe. By default CC665S does not check for aliases. The default optimizations performed by CC665S
may result in unsafe code, when the following assumptions are violated :

1. If avaiableisused directly, no pointers are used to reference that variable.

2. If apointer isused to refer to avariable, that variable is not referred to directly.

3. If apointer is used to modify a memory location, no other pointers are used to access the same
memory location.

Theterm ‘reference’ meansthe use of avariable on the right-hand side or left-hand sde of an assgnment
expresson or use of avariable as an argument to a function call.

Page 128

Optimizations

Specifying the command line option /Oa enables CC665S to check for diases while performing
optimizations. Though this results in correct code, it reduces the extent to which optimizations are
performed.

Example 7.19
inta b, c, Xx,y,*ptr;

alias _check ()
{
a=b+c;
if (x<a)
{
* ptr=56;
y=b+c; /* By default, alias areignored, so */
I* b + ¢, evaluated earlier isused */
/* if /Oaoption is specified b + cisevaluated again */

}

In the above code fragment, by default, common sub-expression dimination is performed. Hence the
sub-expression ‘b + ¢’, isevauated only once and atemporary containing the value is used instead of the
second evauation.

Assuming that ‘ptr’ doesnot point to‘b’ or ‘¢’, the optimization performed iscorrect. If * ptr’ waspointing
to‘b’ or‘c’, then performing common sub-expression eimination resultsin assgning an incorrect valueto

y.
When the above code fragment is compiled using /Oa option, evauation of the sub-expresson ‘b + ¢’ is
not optimized, thus resulting in correct assgnment to ‘y’.

Assembly code generated by CC665S for the above function ‘dias check’ in default command line
option (al optimizations are performed) is shown below (No /Oaoption)

CFUNCTION 0

_alias_check

N a=b+c;

CLINES
I a, dir _b
add a, dir_c
st a, er0
st a, dir_a

- if (x<4a)

CLINE7
I a, dir _x
anp a, er0
jges 81

Page 129

CC665S Ver.2.01 User Guide

n * ptr=56;
CLINE9

mov dp, dir _ptr
mov [dp], #038h

" y=b+c; [* By default, alias areignored, so */
CLINE 10
mov dir .y, e0

3 }
CLINE 13

_$L1:

i}

CLINE 14
it

Assembly code generated by CC665S for the above function “aias_check’, when*/Od option (perform
dias check), is gpecified in the command line, is shown below:

CFUNCTION O

_alias_check

0 a=b+c;

CLINES
I a, dir b
add a, dir _c
st a, er0
st a, dir_a

N if (x<a)

CLINE7
I a, dir _x
anp a, er0
jges _$L1

n * ptr=56;

CLINE9

mov dp, dir _ptr
mov [dp], #038h

" y=b+c; [* By default, alias areignored, so */
CLINE 10
mov dir .y, e0

3 }
CLINE 13

_$L1:

i}

CLINE 14
it

Page 130

Improving Compiler Output

8. IMPROVING COMPILER OUTPUT

8.1 CONTROLLING OPTIMIZATIONS

CC665S provides a number of optimization options that can improve program speed. In addition,
CC665S include pragmas to control loop optimizations on aloca basis within a source program.

Default Optimization

By default, CC665S performs dl optimizations. If no optimization must be performed, the user must
specify /Od option.

Relaxing Alias Checking

By default, CC665S performs unsafe optimizations. Optimizations may be made safe by specifying the
command line option /Oa. But /Oaoption may lead to outputs with increased sSize and which on execution
may be dower.

/Oaoption may be omitted safdly by the user, if multiple diasesto refer to the samelocation, ether directly
or indirectly, isnot used. /Oamay till be omitted safely even if diases are used in the program, provided
that no memory location is referenced by more than one name, within afunction.

Page 131

CC665S Ver.2.01 User Guide

Controlling Loop Optimization On A Local Bass

Loop optimizations may be controlled on locd basis by using the pragmas LOOPOPTON and
LOOPOPTOFF. Loop optimizations are turned off for any function following #pragma L OOPOPTOFF
and isturned on for any function following #pragma LOOPOPTON in a source program.

Maximum Optimization

The command line option /Om enables the compiler to perform maximum optimizations. By defaullt, dl the
optimizations are performed only once. But when /Om option is specified, a st of optimizations are
performed iteratively, unless CC665S is unable to perform more optimizations.

/Om option with /Oa option enablesthe user to obtain an output on which maximum and safe optimizations
are performed.

Speed Optimization

The command line option /Ot enables the compiler to perform speed optimization. This optimization is
same/Om option with the only difference that, in /Ot option, stack alocation and dedlocation ingtructions
are optimized.

/Ot option with /Oa option enables the user to obtain an output on which speed and safe optimizations are
performed.

8.2 USING REGISTER VARIABLES

By default, the compiler alocatesregistersto local variables. If register isnot available, stack locations are
used. The order of dlocation of these registersis based on the frequency of use of locd variables.

Therefore, thereisapossihility of not alocating register to avariable that is not used many times, but used
in a portion of code that will be executed many times repeatedly. Inorder to alocate registers for such
variables, the storage class register may be specified. Variables specified with register keyword has more
priority than other varigbles. In the process of dedlocation when register is not available, CC665S
desllocates registers assgned to ordinary variables first and then to the variables declared as register
variables.

Page 132

Improving Compiler Output

However, CC665S does not guarantee that a register specified variable will dways be dlocated in
registers. The register storage class may be specified to any variable, but register specifications are
ignored for variableswhosetypeisnotint or short or for pointer typesthat are not of the same sizeastype
int.

8.3 REMOVING STACK PROBES

Program execution may be speed up by removing cals to stack-checking-routines known as stack
probes. Stack probes verify that a program has enough space to alocate required local variables.

The potentia disadvantage in removing stack probesis that stack-overflows goes undetected. However,
this technique may be useful for programs that are known not to exceed the available stack space.

By default, stack probe routines are not called. The command line option /ST enables CC665S to call
stack probe routines at the beginning of each function.

Stack checking may be controlled on local basis dso by using ether #pragma CHECKSTACKON or
#pragma CHECKSTACKOFF. Stack checking is turned off for any function following #pragma
CHECKSTACKOFF and turned on for any function following #pragma CHECK STACKON.

8.4 CONTROLLING ALLOCATION OF VARIABLES

Pragmas of CC665S may be used in contralling the alocation of variables. This enables CC665S to use
variety of addressng modes in order to improve the assembly output.

#pragmal NPAGE ingructs CC665Sto dlocatethe variablesin theinpage area. And if afunction usesthe
sameinpage area, then CC665S uses current page addressing modes to access the variables specified in
INPAGE pragma, asfar as possible.

Using #pragmaABSOLUTE, avariable may bedlocated anywherein code or datamemory. Thisenables
the user to access SFR area dso.

Usng #pragma SFR, a variable may be dlocated anywhere in a data memory. This is amilar to
ABSOLUTE pragma, except that only data memory variables can be specified.

Other pragmas like EDATA, SBAINPAGE, SBAFIX, FIX, DUAL, ROMWINDOW etc., enablesthe
user to dlocate the given variable in any part of the memory.

Page 133

CC665S Ver.2.01 User Guide

8.5 MIXED LANGUAGE PROGRAMMING

This section explains how to use MSM66K “500” core or “500S" core assembly language routines with
C programs and functions compiled usng CC665S. In particular it explains how to call assembly language
routinesfrom *C’ programs and how to call ‘C’ language functions from an assembly language routine.

8.5.1 Combining Assembly And ‘C’ Programs

Some of the methods by which a programmer can combine an assembly language routine and a ‘C’
program are given below:

Page 134

Improving Compiler Output

Method 1

In this method, programmer writesa‘'C’ program and then compilesthe‘ C’ program using CC665S. The
output produced by CC665S is an assembly language file containing MSM66K “500” core or “500S’
core mnemonics. Programmer can edit this file usng any text editor and add the necessary assembly
language routines. The resulting file can then be assembled and linked using RAS66K and RL66K
respectively to produce the absolute file.

Text Editor

*.C’ Hle

CC665

ASM File

Text Editor

Modified ‘. ASM’
Fle

RASG66K

Page 135

CC665S Ver.2.01 User Guide

Method 2

In thismethod, programmer writesa C program and compilesit using CC665S. The compiler producesas
output an ‘. ASM’ file. The programmer creates an assambly language file, containing the assembly
routines to be mixed with the‘C’ program. The two assembly program files can be assembled separately
using RASG6K. The result will betwo *.OBJ files. Thesetwo *.OBJ files can be linked using the linker
RL66K.

Text Editor
*.C Hle
l
CC665 Text Editor
*ASM’ Fle “ ASM’ Fle
RAS66K RAS66K
*.OBJ File *.OBJ File

*—

RL66K

“ABS Fle

Page 136

Improving Compiler Output

Method 3
Using #asm and #endasm

In this method, programmer writes assembly indructions directly in the source file using preprocessor
directives#asm and#endasm. A procedure or apart of aprocedure may bewritten in assembly language
and enclosed within the two directives #asm and #endasm. CC665S outputs whatever is specified
between these two directives asit isin the output file. Since loca variables may be assgned to registers,
any accessto loca variablesinsde asm block, may not yield intended results. Therefore, any data passing
across asm blocks must be only through global varigbles.

Method 4
Using #pragma asm and #pragma endasm

In this method, programmer writes assembly ingructions directly in the source file using pragmadirectives
#pragma asm and #pragma endasm. Processing of the text insde these pragma directives are same as
the processing of #asm and #endasm.

Method 5
Usng __asm keyword
Syntax:

__asm(dgring)

In this method, programmer writes assembly ingructions directly in the sourcefileusing _ asmkeyword.
A procedure or apart of aprocedure may be specified asastring argument to__asm keyword. CC665S
outputs whatever is the argument to this keyword asit isin the output file.

Thereturn vdueof __asm keyword cannot be used.

CC665S issues error message in the following cases:
If the specified argument is not astring.
If more than one argument is pecified.
If returnvalueof ©__asm’ keyword is used.

Page 137

CC665S Ver.2.01 User Guide

Thefollowing examples show erroneous cases:
Example 8.1

INPUT
voidfn ()
{
}
CC665S outputs error message for the above program as more than one argument is specified for __asm

keyword.
Example 8.2

_asm(“DIi\n",“EN\n");

INPUT

voidfn ()
{

}

return __asm (“DI\n", “EN\n") ;

CC665S outputs error message for the above program asreturn value of __asm. keyword is used. The
following example shows how mixed mode language programming can be used efficiently:

By using mixed mode language programming, programmer can write very efficient and flexible code. For
example, if an error recovery library function which takes error number as argument is to be executed
without interruption from the maskable hardware interrupts, programmer can disable maskable interrupts
before caling that function as shown below:

Example 8.3

INPUT
#define BAD_STATUS 1
interr_no;

void error_check_fn ()
{
if (err_no==BAD_STATUS)
{
__asm(“\ttDI\n"); [* maskable hardware interrupts disabled * /
output_error_with_beep () ;

Page 138

Improving Compiler Output

pragmaasm
mov a, dir _err_no
pushs a
cal _error_recovery fn
pops a
pragma endasm
__asm(“M\tENn"); /* maskable hardware interrupts enabled */
}
else
output_error_with_beep () ;
}

The following code is generated for the above function definition:

OUTPUT

CFUNCTION O
_error_check_fn :

N if (err_no==BAD_STATUS)

CLINES
anp dir _err_no, #01h
jeq _$L4
i _$L1
_$L4:
5 __asm("\t\tDI\n") ; /* maskable hardware interrupts disabled */
CLINE7
DI
N output_error_with_beep () ;
CLINES8
ca _output_error_with_beep
;; # pragmaasm
CLINE9
mov a, dir _err_no
pushs a
cal _error_recovery_fn
pops a
5 __asm("\t\tEI\n") ; /* maskable hardware interrupts enabled */
CLINE 15
B
N else
CLINE 17
rt
BL1:

Page 139

CC665S Ver.2.01 User Guide

5 output_error_with_beep () ;
CLINE 18

j _output_error_with_beep
"
CLINE 19

8.5.2 Calling Conventions Of CC665S

CC665S follows certain conventions while passing valuesto ‘C’ functions or while receiving values from
‘C’ language function cdls. Hence assembly language routines must follow these conventions. CC665S
passes argumentsto any given function by pushing the vaue of each of the argumentsinto astack form right
toleft. Thefunction cal pushesthevaue of thelagt argument first and the first argument lagt. If an argument
is an expression, CC665S computes the expresson's vaue before pushing it onto the stack. The
expression evauation is carried out from Ieft to right, that isthe first argument is evaluated firgt and the last
argument is evaluated last, but the arguments are pushed into the stack in the reverse order.

Arguments, which have char or int as their type, occupy one word in the stack. Whereas, arguments
which are of type long or float occupy two words in the stack. The char type arguments are Sgn-
extended to int type before being pushed into stack. If the argument is pointer, the number of words
pushed depends on the memory modd. For large memory two words are pushed and for smal memory
one word is pushed into the stack. After a function returns control to a routine the caling routine is
respongble for removing the arguments from the stack. This is achieved by adding the number of bytes
pushed as arguments to SSP.

8.5.3 Return Values

Assembly language routines that wish to return vauesto a‘C’ program or recaive return valuesfrom ‘C’
functions must follow CC665S return vaue conventions. If the function has areturn value of szelessthan
or equa to 2 bytes, CC665S places return vaue of functions in dp register. If the function has a return
vaue of sizegreater than 2 bytes, CC665S placesthereturn valueintheregister pair dp and x1. The higher
word of the return value is placed in register x1. If the return vaue type is Structure or union or double,
CC665S passes the address of the variable to which the return value is assgned, as the first argument.
Therefore, the return vaue is updated in the cdled function.

Page 140

Improving Compiler Output

Example8.4
INPUT
intadd_int (int a, int b)
{
return (a+b);
}
long add_long (long a, long b)
{
return (a+b);
}
double add_double (double a, double b)
{
return (a+b);
}
OUTPUT
CFUNCTIONO
_add_int :
o{
CLINE 2
pushs usp
mov usp, ssp
5 return (a+b);
CLINE 3
I a, 6[usp]
add a, 8[usp]
st a, dp
"
CLINE4
pops usp
rt
CFUNCTION 1
_add long :
o{
CLINE7
pushs usp
mov usp, ssp
5 return (a+b);
CLINES8
I a, 10[usp]
add a, 6[usp]
st a, dp

Page 141

CC665S Ver.2.01 User Guide

adc
st
nt
CLINE9

pops
rt

CFUNCTION 2
_add_double
f

CLINE 13

pushs
mov

a, 12[usp]
a, 8[usp]
a, X1

usp

usp

usp, ssp

return (a+b);

CLINE 14
I
pushs
I
pushs
I
pushs
I
pushs
I
pushs
I
pushs
I
pushs
I
pushs
cal
mov
mov
mov
mov
mov
mov
add

"

CLINE 15
pops
rt

a, 22[usp]
a

a, 20[usp]
a

a, 18[usp]
a

a, 16[usp]
a

a, 14{usp]
a

a, 12[usp]
a

a, 10[usp]
a

a, 8[usp]
a

__dadds50s

dp, 6[usp]
x1, SspP
[dp+], Oah[x1]
[dp-], Och[x1]
4[dp], Oen[x1]
6[dp], 010h[x1]
SSP, #010h
usp

Page 142

Improving Compiler Output

8.5.4 Interrupt Handling Routines In Assembly

CC665S dlows interrupt handling routines to be writtenin *C’. Interrupt handling routines must resdein
physica ssgment 0 of the CODE memory. The gppropriate interrupt vector must be initidized by the
darting address of the routine. The last statement of an interrupt handling routine must be “rti” ingtruction.

8.5.5 Referring C Variables

Assembly routines can refer to globd variablesusedin* C’ source program. Initidized globa variables can
be referred by declaring them as“EXTRN” in assembly routines. Such variables should not be declared as
“PUBLIC” in assembly. Uninitidized globa variables can be referred by declaring them using “PUBLIC”
or “EXTRN” or “COMM?” pseudo ingructions. Globa variables which are declared as “extern” in ‘'C’
program can be referenced in assembly routines by declaring them as“PUBLIC” or “COMM”.

8.6 QUALIFYING FUNCTIONSWITH ‘__accpass AND ‘__noacc’

A function may be qudified with __accpass to inform the compiler to use Accumulator for it’s firg
argument and for the return vaue.

If afunctionisqudified with __accpass and the Sze of the first argument is less than or equd to 2 bytes,
then the value of the first argument is stored in the Accumulator. The function accesses the first argument
usng Accumulator. However, if the Sze of the first argument is greater than 2 bytes, first argument
processing will be done asfor other arguments. However, usage of Accumulator for first argument ismore
efficient than using stack.

Smilarly, when the function is qudified with __accpass, the compiler places the return vaue in the
Accumulator, therefore reducing the register movement for the return values. However, if the sze of return
vaueis greater than 2 bytes, Accumulator is not used to store the return vaue.

A function may dso bequdifiedwith __noacc. Thisqudifier ingructsthe compiler not to use Accumulator
for it’ sfirg argument and for the return value,

Page 143

CC665S Ver.2.01 User Guide

If /REG option is specified in the command line, dl functions except those qudified with __noacc, are
treated as___accpass qudified functions. Arguments for library functions must aways be passed through
dack asthey may be invoked from afunction which might or might not have been compiled usng /REG
option. Therefore, dl library routines must be qudified with __noacc.

Example85

INPUT

int__accpassacc_add (inta,inth);
intvarl, var2 ;

int__accpassacc_add (inta,intb)

{
int |_ret
| ret=a+b;
return (|_ret);
}
fn()
{
varl=acc add (varl, var2);
}
OUPUT
CFUNCTION O
_acc_add
f
CLINEG6
pushs usp
mov usp, ssp
: | ret=a+b;
CLINES
add a, 6[usp]
"
CLINE 10
pops usp
rt
CFUNCTION 2
_fn
varl=acc add (varl,var2);
CLINE 14
I a, dir _var2
pushs a
I a, dir _varl

Page 144

Improving Compiler Output

cal _acc_add

add SSP, #0zh

st a, dir_varl
"
CLINE 15

rt

If /REG option is not specified in the command line, the proto type of al functions qudified with
__accpass must be declared before the function call, to obtain intended results.

8.7 BUILT-IN FUNCTIONS

CC665S supports built-in functions for high-precison multiplication, high-precison divison and high-
precison remainder (mod) operations. When a built-in function is called, the body of that built-in function
isinlined in the assembly liging file

These function names are reserved keywords. CC665S issues error message if a built-in function is
defined in the source file.

CC665S issues warning message, if an incompatible parameter is passed to a built-in function. However,
the compiler converts the actua parameter to the forma parameter type.

CC665S issues error message, if number of actua parameters does not agree with the prototype.
The following sections explain the built-in functionsin detail:

8.7.1. Higher Precision Multiplication

Prototypes:

unsigned long __mulu(unsigned int, unsigned int) ;
unsigned int __mulbu(unsigned char, unsigned char) ;

Thefunction®__mulu” uses MUL ingtruction to multiply two 2-byte operands and returns a4-byte value.
Thefunction “__mulbu” uses MULB ingruction to multiply two 1-byte operands and returns a 2-byte
vaue.

Page 145

CC665S Ver.2.01 User Guide

Example 8.6

INPUT:
unsigned long long_var ;

unsigned int varl ;
unsigned int var2 ;

void fnl ()
{

long_var= __mulu(varl, var2);
}

Thefollowing isthe code generated for the function “fnl” defined in the above program:

OUTPUT
CFUNCTION O
_fnl
N long_var= _mulu(varl, var2);
CLINE6
I a, dir _varl
mul dir _var2
mov dir _long var, e
st a, dir _long_var+02h
"
CLINE7
rt
Example 8.7
INPUT
long long_var ;

unsigned int varl ;
unsigned char var2 ;

void fn2 ()
{

}

long_var = __mulbu (varl, var2);

Page 146

Improving Compiler Output

Thefollowing is the code generated for the function “fn2” defined in the above program:

OUTPUT
CFUNCTION O
_fn2
long_var = __mulbu (varl, var2);
CLINES
Ib a, dir_varl
mulb dir _var2
sdd
st a, dir _long_var
clr dir _long_var+02h
Y
CLINE9
rt
Example 8.8
INPUT

long__mulbu (char argl, char arg2) ;

In the above example, CC665S issues an error as the prototype of built-in function “__mulbu” is

redefined.

8.7.2. Higher Precision Division

Prototypes:

unsigned long __divu(unsigned long, unsigned int) ;
unggned int __divqu(unsigned long, unsigned int) ;
unsigned int __divbu(unsigned int, unsigned char) ;

Thefunction®__divu” usesDIV ingruction to divide a4-byte value by a2-byte value and returnsa4-byte
quotient. Thefunction “__divqu” uses DIVQ ingruction to divide a 4-byte vaue by a 2-byte value and
returns a 2-byte quotient. Thefunction “divbu” uses DIV B ingructionto divide a2-bytevaue by a1-byte
vaue and returns a 2-byte quotient.

Page 147

CC665S Ver.2.01 User Guide

Example 8.9

INPUT

unsigned long varl;
unsigned int var2 ;
unsigned long var3;

void fnl ()
{

var3= _ divu(varl,var2);
}

Thefollowing isthe code generated for the function “fnl” defined in the above program:

OUTPUT
CFUNCTION O
_fnl
5 va3= __divu(varl,var2);
CLINE7
mov er0, dir _varl
I a, dir _var1+02h
div dir _var2
mov dir _var3, er0
st a, dir _var3+02h
s}
CLINES
rt
Example 8.10
INPUT

unsigned long varl ;
unsigned int var3;

void fn2 ()
{

}

var3= __divqu(varl, (int) varl);

Page 148

Improving Compiler Output

Thefollowing is the code generated for the function “fn2” defined in the above program:

OUTPUT
CFUNCTION O
_fn2
5 var3= __divqu(varl, (int) varl) ;
CLINE6
mov er0, dir_varl
I a, dir _var1+02h
divg dir _varl
st a, dir_var3
"
CLINE7
rt
Example8.11
INPUT

unsigned char varl ;
unsigned long var2 ;

void fn3 ()
{
var2= __divbu (varl, Oxff);
}
The following is the code generated for the function “fn3” defined in the above program:
OUTPUT
CFUNCTION 0
_fn3
va2= _ divbu (varl, Oxff);
CLINEG6
Ib a, dir_varl
extnd
fillb rl
divb rl
st a, dir_var2
clr dir _var2+02h
Y
CLINE7

Page 149

CC665S Ver.2.01 User Guide

8.7.3. Higher Precision Remainder

Prototypes:
unsggned int __modu(unsigned long, unsigned int) ;
ungigned int __modqu(unsigned long, unsigned int) ;
unsigned char __modbu(unsigned int, unsigned char) ;

Thefunction “__modu” uses DIV ingtruction to divide a 4-byte value by a 2-byte value and returns a 2-
byte remainder. Thefunction“__modu” uses DIVQ ingruction to divide a4-byte vaue by a 2-byte vaue
and returns a 2-byte remainder. The function “__modbu” uses DIVB indruction to divide a 2-byte value
by a 1-byte value and returns a 1-byte remainder.

Example 8.12

INPUT

unsigned long varl;
unsigned int var2 ;
unsigned int var3;

void fnl ()
{

}

var3= _ modu (varl, var2);

Thefollowing isthe code generated for the function “fnl” defined in the above program:

OUTPUT
CFUNCTION 0
_fnl
var3= __modu (varl,var2);
CLINE7
mov er0, dir _varl
I a, dir _varl+02h
div dir _var2
mov dir _var3, erl
"
CLINE8
rt

Page 150

Improving Compiler Output

Example 8.13

INPUT
unsignedint var ;
void fn2 ()
{

}

var = __modqu (0x100000I , var) ;

Thefollowing is the code generated for the function “fn2” defined in the above program:

OUTPUT
CFUNCTION 0
_fn2
5 var = __modqu (0x100000! , var) ;
CLINES
clr e
I a, #010h
divg dir _var
mov dir _var, erl
"
CLINE6
rt
Example 8.14
INPUT
unsigned char varl ;
unsignedint var2 ;
voidfn3 ()
{
varl= _ modbu (_mulu(var2, varl) ,varl) ;
}

The following is the code generated for the function “fn3” defined in the above program:

OUTPUT
CFUNCTION O
_fn3
varl= _ modbu (__mulu(var2, varl) ,varl);
CLINE6
Ib a, dir _varl
extnd

Page 151

CC665S Ver.2.01 User Guide

mul dir _var2

I a, e0

divb dir_varl

Ib a, rl

sth a, dir _varl
"
CLINE7

rt

8.8 RUNTIME STACK PREPARATION

The runtime stack preparation is carried out at the beginning of each function. CC665S uses the register
usp or x2 as the base pointer. Since usp can be accessed only within 64 bytes range, usp will be used for
accessing local/arguments, if the size of locas and Sze of arguments do not exceed 64 bytes each,
otherwise x2 is used for the same purpose.

Memory required for local variablesused in afunctionisalocated in stack in the entry code of thefunction.
The alocated memory is freed in the exit code of the function since the scope of the loca variables are
limited to this function.

Example 8.15
INPUT
int fn (int arg)
{
inta[10];
return glarg] ;

}

The following is the code generated for the above defined function:
OUTPUT

CFUNCTION 0

_fn

f

CLINE2
pushs usp
mov usp, ssp
sub ssp, #014H

Page 152

Improving Compiler Output

; return aarg] ;
CLINE4
I a, 6[usp]
sl a, 01h
add a, usp
st a, x1
mov dp, Offeeh[x1]
"
CLINES5
mov ssp, usp
pops usp
rt

In the above example, base pointer usp is pushed into the stack a the beginning of the function. Stack
pointer ismoved into the base pointer (usp). The memory space required for thelocd varigblesused inthe
function is allocated by subtracting stack pointer (s3p) by constant Ox14. The alocated memory space is
freed in the exit code by restoring the old value of stack pointer (ssp) from the base pointer (usp).

8.9 REGISTER USAGE

In MSM66K “500” core and “500S” core architectures, the local registers and pointing registers must be
alocated in the sartup code.

The PRBANK pseudo ingruction ads in alocating the pointing register set used by CC665S. This
enables the linker RL66K to alocate the specified pointing register set.

The LRBANK pseudo ingtruction aids in alocating the local register set used by CC665S.
For example,
prbank O
Irbank 8
The above pseudo ingtructions in the startup code enables the linker RL66K to alocate pointing register
set PRO and local register set LRS.

Emulation library routines usethe same set of pointing registersand locd registersas used by other routines
compiled using CC665S.

Register usp or x2, depending on locasarguments size, is reserved by CC665S for use as base pointer,
henceit is not used for other purposes, however, the other register is used fredly for sorage and indexing
pUrposes.

Page 153

CC665S Ver.2.01 User Guide

Accumulator, the pointing registers x2/usp, x1 and dp and the local registers er0, erl, er2 and er3 are
fredly used by CC665S in code generation.

Registersdp and x1 are used to carry thereturn values of * C’ functions. If afunction returnsavaue of Sze
lessthan or equd to 2 bytes, then it isreturned in the register dp. In case, afunction returnsavalue of Sze
greater than 2 bytes, then the return vaue isin the register pair dp and x1. The lower word of the vaueis
intheregigter dp and the higher word in x1. If the value returned isthat of astructure/union, then dp and x1
are not usad for returning from the function.

Accumulator isused for passing thefirs argumentto__accpass qudified functions. Similarly, accumulator
isused to store thereturn vaue of __accpass qudified function.

8.10 STARTUP ROUTINE
The start up routine “$$start_up” isan assembly language routine containing sack and SFR initidizations.
Contral is passed to the main function from the start up routine by means of ajump ingtruction
] _man
Theroutine s present in a separate start up assembly sourcefile. Thisfile may be modified by the user to

include additiond initidizations. The start up object file may be added to long66.lib or float66.lib, or
directly specified while invoking RL66K.

Page 154

Emulation Libraries

9. EMULATION LIBRARIES

CC665S supports the data type long, float and double athough the MSM66K “500” core and “500S”
core architectures do not support these data types. These data types are supported by using the floating
point and long emulation routines. These routines are provided in two library files float66.lib and
long66.lib. All arithmetic operationsinvolving long, float and double data types are carried out with the
help of these routines. CC665S outputs a cal ingruction to the gppropriate routine to perform the
arithmetic operation. Separate routines are provided for nX-8/500 and nX-8/500S. CC665S invokesthe
appropriate NX-8/500 or nX-8/500S routine based on the core option specified in the command line.
These routines are provided for al the memory modes, namdy - Smdl, Effective medium, Medium,
Compact, Effective large and Large. Separate emulation routines are provided to be called from neer, far
and large functions.

Following routines are sored in the emulation library:
Long multiplication
Sgned long divison
Unggned long divison
Sgned long modulus
Unsgned long modulus
Signed integer divison
Sgned integer modulus
Float addition

Float subtraction

10. Hoat multiplication

© o N o o & w DN PE

Page 155

CC665S Ver.2.01 User Guide

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.

Float divison

Float comparison

Float negation

Double addition

Double subtraction

Double multiplication

Double divison

Double comparison

Double negation

Long to float conversion
Unsigned long to float converson
Long to double conversion
Unsigned long to double conversion
Float to long conversion

Double to long conversion

Float to double conversion

Double to float converson
Indirect far cdll

Checkstack

Page 156

Assembling And Linking The Compiler Output

10. ASSEMBLING AND LINKING
THE COMPILER OUTPUT

CC665S creates as output an assembly file. In order to create an object file, the output from the compiler
should be assembled using the Re-locatable Assembler RASE6K. To invoke the assembler the following
command line should be used.

C:> RAS66K FILE <CR>

Where'FILE' specifiesthe name of the output file created by the Compiler, CC665S. If morethan onefile
is compiled, then each of the output file should be assembled separately.

In*C’ language upper and lower case characters are different, so CC665S generates code that is case
senditive. By default RASG6K does not differentiate upper and lower case characters, so in order to
differentiate uppercase and lowercase characters'/CD’ option should be specified in the command line of
RAS66K as shown below:

C:> RAS66K FILE /CD <CR>

The assembler produces as output an object file. In order to debug the C programs using CDB665S, the
compiler output should be assembled using the */CC’ option asfollows:

C:> RAS66K FILE /CC <CR>

This option informs the assembler to create the object file with necessary debugging information. This
option must be specified to RAS66K, only when the files are compiled with /SD option in CC665S.

Page 157

CC665S Ver.2.01 User Guide

The object files created by RAS66K can be linked using the Object Linker RL66K. The linker produces
as output an absolute object file.

To link the object programs, the following command line should be used :
C:>RL66K FILE1FILEZ2,....,/CC <CR>

where ‘FILEL FILE2,... are the names of the input object files to RL66K. The /CC option informs
RL66K, that the inputs are files compiled by CC665S and assembled using RAS66K. Thus RL66K
would take appropriate steps to reserve space for the stack and to initidize the stack pointer.

The output assembly file created by CC665S makes use of routines, which are available in the libraries
‘float66.lib’ and ‘long66.lib’. RL66K searchesthesetwo library filesto resolve the externals. The RL66K
searches these library files in sandard directories specified by the environment varigble LIB66K when
/CC option is specified. The environment variable can be set by the following command at the DOS
prompt.

C:> SET LIB66K=directory <CR>

Where ‘directory’ gives the name of the standard directory which will be used by RL66K to search the
library files.

In order to create absolute fileswith debugging information for CDB665S, the object files should belinked
using the /SD option asfollows:

C:>RL66K FILE1FILEZ2,....,/CC/SD <CR>

This option informs the linker to creste the absolute file with necessary debugging informetion.

Page 158

Exit Codes

11. EXIT CODES

CC665S, on termination passes the control to the operating system, while passing the control to the
operating system, CC665S returnsanumeric value called exit code. Theexit codes and the corresponding
exit datus are listed below.

Exit codes Satus

Normd end

Warnings Issued During Compilation
Errors Occurred During Compilation
Fata Error Caused Termination

wilN |]O

Exit code O (norma end) indicates that the compilation process was carried out till the end of the file
without generating any warnings or errors,

Exit code 1 (warnings) indicates that the compilation process was carried out till the end of the file and
warning messages were issued during compilation. There were no errors detected. The output file is
created.

Exit code 2 (Errors) indicates that the compilation process was carried out possibly till the end of thefile
and error messages were generated during compilation. Warnings may or may not have occurred. The
output fileis not creeted in this case.

Exit code 3 (Fatd) indicates thet a fatd error has led to an abnormal termination of compilation. In this
case, output file is not created.

Page 159

Error Messages

12. ERROR MESSAGES

The error messages given by the compiler fdl into three categories :

1. Fatal error messages
2. Error messages
3. Warnings.

The messagesfor each category arelisted below in numerica order, with abrief explanation of each error.
All messages give the filename and the line number where the error occurred.

12.1 FATAL ERROR MESSAGES

A Faad error message indicate a severe problem, one that prevents the compiler from processing the
program any further. After displaying the fatadl error message, execution is terminated immediately. The
following fata error messages are generated by CC665S :

12.1.1 Command Line

FO000 Source file not given

The source file for compilation was not given in the command line.

FO001 Invdid filename, *.C’ or *.H' extension expected

The filename of the source file had extenson other than *.C’ or *.H or *.c’ or ‘.h'.

F0002 Invaid command line option ‘ option’
Aninvdid ‘option’ was specified in the command line.

Page 161

CC665S Ver.2.01 User Guide

FO003

FO004

FO005

FOO006

FO007

FO008

FO009

F0010

FOO011

F0012

FO013

F0014

Directory not specified with /1 option
The include directory name was not specified with /I option.

Filename not specified with /CT option

The cdltree filename was not specified with /CT option.
Typeis not specified with /T option

DCL filename was not specified with /T option.

Constant not specified with /SS option
Stack size congtant was not specified with /SS option.

Constant not specified with /SL option
Maximum identifier length was not specified with /SL option.
Macro is not specified with /D option.

Macro name was not specified with /D option.

Invalid constant for /SS option
Aninvdid congtant or a nonconstant was specified with /SS option.

Invdid stack sze.

The congtant specified with /SS option must be an even number, in the range 2 - 65534,
indusive of both.

Stack size should be even
Stack size specified with /SS option should be an even number.

Invalid congtant for /SL option

Aninvdid constant or non-constant was specified with /SL option.

Invaid identifier length

The congtant specified with /SL option was not in the range 31 - 254 inclusive of both.
Duplicate command line option * option’

The ‘option’ was specified more than once in the command line.

Page 162

Error Messages

FO015

FO0016

FO017

F0018

F0019

F0020

F0021

F0022

F0023

F0024

F0025

F0026

Duplicate preprocessor option

Both the preprocessor options /LP and /PC were given in the command line.

Duplicate memory modd option

More than one C memory mode option was specified in the command line or more than one

mixed memory model option was specified.

Duplicate core option
Both the core options /nX500 and /nX500S were specified together.

Duplicate debugger option.
Both the debugger options/SD and /OSD were specified in the command line.

/CT and preprocessor options are mutudly exclusive

The option /CT option was specified dong with /LP or /PC options.

/LE and preprocessor options are mutudly exclusive

The option /L E was specified along with /LP or /PC options.

/Faand preprocessor options are mutudly exclusive.

/Fa option was specified aong with either /LP or /PC options.

/WIN and /AWIN options are mutualy exclusive.

Both /WIN and /AWIN options were specified in the command line.
[llegd combination of optimization options.

The optimization options were used incorrectly.

[llegd combination of C and mixed memory mode options.
Invaid combination of C and mixed memory mode options was specified.

Typeis not specified
One of the compulsory options /T was not specified.

Mixed memory modd should be specified with C memory moded.
A mixed memory model option was specified without specifying a C memory mode option.

Page 163

CC665S Ver.2.01 User Guide

F0027

F0028

F0029

FO030

FOO31

F0032

Insufficient memory
The compiler ran out of memory.

Unable to open input file ‘filename
Thegiven ‘filename either did not exist or could not be opened or was not found.

Unable to open outpuit file

The compiler could not open the output file. Thismay be dueto one of thefollowing reasons:
* Thefile cannot be opened for lack of space.

* A read-only file with the same name as ‘filename’ aready exigts.

* The output file path or directory specified with /Fa option does not exist.

Unableto open li file

The compiler could not open the lig file. This may be due to one of the following reasons:

* Thefile cannot be opened for lack of space.
* A read-only file with the same name as ‘filename’ aready exidts.

Unable to open cdltreefile

The compiler could not open the caltree file, due to Smilar reasons mentioned in error
F0030.

Error in accessng the input file

The compiler was unable to access the input file while compiling.

12.1.2 General

F1000

F1001

File close error

The compiler was unable to close input/output file. This error results due to insufficient disk
space.

Internal stack overflow

The processing of the source program has resulted in a overflow of the interna stack in the
compiler.

Page 164

Error Messages

F1002

F1003

F1004

F1005

F1006

F1007

Internal compiler error
A fault ininternd functioning of CC665S.

Insufficient memory
The compiler ran out of memory.

Too many errors
The number of errorsin the source program have exceeded the compiler maximum limit.

Foating point overflow
Possible overflow in floating point arithmetic.

Unable to read input file
The compiler was unable to read/access the input file during the compilation process.

Error in cresting debug information file

The compiler could not creete the debug informetion file, due to Smilar reasons mentioned in
error FOO30.

12.1.3 Prepr ocessor

F2000

F2001

F2002

F2003

Bad preprocessor directive ‘ string’
‘string’ specified after a‘# isnot avalid preprocessor directive.

Incomplete assembly block

Either the #asm directive was not terminated with a matching #endasm or the #pragma asm
directive was not terminated with a matching #pragma endasm.

Unexpected end of file
The end of the file was encountered unexpectedly.

Line number exceads maximum vaue

Given sourcefileistoo big.

Page 165

CC665S Ver.2.01 User Guide

F2004

F2005

F2006

F2007

F2008

F2009

F2010

F2011

F2012

F2013

Too many nested ‘#fxxx's
Maximum nesting levels for the directive #ifxxxx exceeded.

Unable to open indude file *filename’
The given #indude *filename’ either did not exist or could not be opened or was not found.

Integer constant expression expected

A congtant expression must be specified with both ‘#f and ‘#dif’ directives.

Path exceads maximum limit

File path specified in preprocessor directive ‘#indude could have exceeded the maximum
limnit.

‘#if[n]def expected an identifier

An identifier must be specified with the ‘#ifdef' or ‘#fndef’ directive.

‘#endif’ expected

Before terminating an ‘#f', *#ifdef” or ‘#ifndef’ directive with a‘ #endif’ directive, end of file
was found.

Parameter buffer overflow

Number of charactersin the parameter in a macro could have exceeded the maximum limit.
Macro buffer overflow

Replacement token string in ameacro definition could have exceeded the maximum limit.
Too many nested includefiles

Nested #include files exceeded the limit, possible recursion.

Internd buffer overflow

Macro expangon for asingle identifier exceeded the compiler maximum limit.

Page 166

Error Messages

12.1.4 Lexical

F3000

String too long
Memory not sufficient to hold the complete gtring literd.

12.1.5 Syntax And Semantic

F4000

F4001

F4002

F4003

F4004

F4005

Struct/Union nesting too deep
The number of negting levels of truct/union exceeded the compiler maximum limit.

Parser stack overflow

The processing of the source program has resulted in a overflow of the parser stack in the
compiler.

Too many negting levels

The number of nesting levels of control statements (loops/switches/if) exceeded the compiler
maximum limit.

Automatic alocation exceeds 32k

Size of loca (stack) variable hegp exceeded the maximum limit.

Unexpected ‘token’

Encountered ‘token” was used incorrectly.

Operand stack overflow

The processing of the source program has resulted in a overflow of the operand stack in the
compiler.

12.2 ERROR MESSAGES

12.2.1 Preprocessor

E2000

#error @ ‘string’
The compiler has encountered #error directive and has displayed the given message' string'.

Page 167

CC665S Ver.2.01 User Guide

E2001 ‘## cannot occur & the beginning of amacro definition

A macro definition cannot begin with a token pasting operator (##), since a token pasting
operator requires two tokens, one before it and one after it.

E2002 Parameter expected after ‘#
The token following a stringizing operator (#) must be aforma parameter.

E2003 Forma parameter missing after ‘#
The token following a stringizing operator (#) must be aforma parameter.

E2004 Reuse of formd parameter ‘identifier’
The given identifier was used twice in the forma parameter list of amacro definition.

E2005 Invdid line number in ‘Aine’ directive

The #line directive encountered ainvdid line-number.

E2006 Unexpected in formd ligt *token
Thegiven ‘token’” was used incorrectly in the forma-parameter list of amacro definition.

E2007 Missing terminator ‘ character’
Flenamein ‘#include directive should be terminated by ‘>*or “*.

E2008 Unexpected end of line

The end of line was encountered unexpectedly, in a macro definition.

E2009 ‘## cannot occur at the end of a macro definition

A macro definition cannot end with a token pasting operator (##), since a token pasting
operator requires two tokens, one before it and one after it.

E2010 ‘#define’ syntax
The syntax of the ‘#define’ directive was not correct.

E2011 ‘defined (identifier)’ expected

Incorrect use of ‘defined’ operator.

Page 168

Error Messages

E2012 ‘#include expected afile name, found ‘no token
An #include directive did not specify the required filename specification.
E2013 Double quotes or angle brackets expected after *#include
The #include directive expects a filename enclosed either in angle brackets (<>) or double
quotation marks ().
E2014 ‘Hine' syntax
The syntax of the #line directive was not correct.
E2015 ‘Hline’ expected adring as afile name
The#line directive did not specify the required filename specification.
E2016 Expected preprocessor command, found ‘ character’
The given ‘character’ followed a number sign (#), but it was not the first letter of a
preprocessor directive.
E2017 ‘#undef expects an identifier
Macro name was not specified in the #undef directive.
12.2.2 Lexical
E3000 Empty Character constant
Theillegd character congtant *’ was used.
E3001 Too many charactersin constant
A character constant containing more than one character or escape sequence was used.
E3002 Congtant too big
Integral constant exceeded range.
E3003 Hex congtant mugt have &tleast one hex digit

An hexadecima vaue &fter the characters‘Ox' was misang.

Page 169

CC665S Ver.2.01 User Guide

E3004

E3005

E3006

E3007

E3008

E3009

E3010

Unmatched close comment “*/°

The compiler might have encountered the closng comment characters ‘*/° before

encountering the opening comment characters‘/*’.

[llegal escape sequence
The character(s) after ‘\' did not form avalid escape sequence.

Bad octd number ‘token’
While enumerating an octal congtant *8'/*9" could have been encountered.

Invaid character ‘ character’
Encountered invalid character ‘ character’.

Exponent va ue expected
Exponent was missing after specifying ‘€'/'E’ in afloating-point number.
Newlinein gring

Unexpected end of linein gring literd.

Newline in character litera

A newline character in a character literd.

12.2.3 Syntactic And Semantic

E4000

E4001

E4002

E4003

More than one storage class specifier

More than one storage class specifier was used in asingle declaration statement.

Unknown Sze struct/union

An attempt was made to get the Sze of undefined structure or union.

[llegd combination of type specifiers

Anillega combination of type specifiers was used in a Sngle declaration statemen.

Function cannot return array

Return vaue of afunction evaluatesto an array.

Page 170

Error Messages

E4004

E4005

E4006

E4007

E4008

E4009

E4010

E4011

E4012

E4013

E4014

‘void’ on vaiable

Void can be used only to declare pointer variables and functions. It can dso comeasaforma
parameter to afunction.

Redefinition of formd parameter ‘identifier’

Thegiven identifier was used twice in the forma parameter list of afunction.

Nonaddress expression

Expresson usad in initidizing an item naither reduce to an lvalue nor a congant.
Redefinition of variable ‘identifier’

Thegiven identifier was defined more than once.

‘identifier’ not in parameter list

A declaration was made for aformal parameter which was not in the formal parameter list.

Syntax error : ‘token’

Thegiven ‘token’ caused a syntax error.

Unexpected ‘token’
Encountered ‘token’ unexpectedly.

Function cannat return function

Return vdue of afunction evduates to afunction.

Array element type cannot be function
Array of functions are not alowed, but array of pointers to functions are alowed.

Redefinition of struct/union/enum tag ‘identifier’
Thegiven ‘identifier’ has aready been used for some other structure or union or enum tag.

Missing subscript

In the definition of an array with multiple subscripts, a subscript value for a dimension other
than the firg dimension was missng.

Page 171

CC665S Ver.2.01 User Guide

E4015

E4016

E4017

E4018

E4019

E4020

E4021

E4022

E4023

E4024

Bit-field must be of typeint or char
Bit-fields cannot have atype other than ‘int’ or ‘char’.

Bit-field cannot have a modified type

Bit fields indde a structure cannot be declared as a pointer or an array or afunction.

Named hit-fidd cannot have size ‘0’

A named hit-field ingde a structure has sze 0. Only unnamed bit-fields can have asize 0.

Bit-fidd 9ze out of range

The number of bits specified in the bit field declaration is not in the range of 0-16 inclusive of
both for integer bit fidds or in the range 0-8 inclusive of both for character bit fields.
Struct/Union member redefinition ‘identifier’

The ‘identifier’ was used for more than one member of the same structure or of the same
union.

Unexpected constant

The given congtant was used incorrectly.

Expected forma parameter list, not atypelist

The function body has sarted after afunction declaration statement. The function declaration
gatement has only type list not forma parameter list.

Struct/Union too large

The gze of structure/union variable exceeded 64k, the compiler limit.

Vaue out of range for enum congant
An enumeration constant had a value outside the range of values alowed for type int.

Cannot use address of automatic variables as gatic initiaizer

An attempt was made to initidize a Satic variable with the address of an automatic variable.
Only the address of globa or static loca or extern variables can be used to initidize gatic
loca and globa variables.

Page 172

Error Messages

E4025

E4026

E4027

E4028

E4029

E4030

E4031

E4032

E4033

E4034

E4035

Function cannot be a struct/union member

A structure or union member cannot be declared as a function.

‘identifier’ uses unknown struct/union/enum

Theidentifier was declared as structure/union variable using an undefined structure/union.

Static function ‘identifier’ has no body

A function was declared asagtatic or inline function and aso acal was made but the function
was not defined.

Negative subscript

A vaue defining an array Sze was negdive.

Integral constant expression expected
An integrd congtant expression is expected.

‘identifier’ aready has a body

An atempt was made to define afunction body for the function *identifier’, whose body has
been aready defined.

Noncongant initidizer
An Initidizer used a non-constant offset.

Undefined struct/union tag
Theidentifier was declared as structure/union variable using an undefined structure/union tag.

Left of ‘identifier’ has undefined struct/union

Left operand of ‘identifier’ or ‘->identifier’ isastruct/union name or a struct/union pointer
whose body is not defined.

lllegd initidization

Theinitilization expresson wasillegd.

Function cannot be initidized

An atempt was made to initidize afunction.

Page 173

CC665S Ver.2.01 User Guide

E4036

E4037

E4038

E4039

E4040

E4041

E4042

E4043

E4044

E4045

E4046

Too many initidizers

The number of initidizers exceeded the number of objects to beinitidized.
Array initidization needs curly braces

Toinitidize an array aggregate type, curly braces ({}) are necessary.

Struct/Union initidization needs curly braces

To initidize an aggregate type, such as druct/union, the initidizers must be enclosed within
curly braces ({}).

Same type qudifier is used more than once

Sametype qudifier could have appeared more than once in the same specifier list or qudifier
list in adeclaration, either directly or via one or more typedefs.

‘identifier’ typedef cannot be used for function definition

Typedef could have occurred in a function definition.

Invaid subscript

A vaue defining an array Size was zero.

‘qualifier’ can qudify functions only

An object that is not of type function, was qualified with either __nfar, _accpass, _noacc

or __interrupt.

Segment logt during conversion
An attempt was made to convert afar pointer to near pointer.

A far function cannot call near function

An atempt was made to call anear function from afar function.

Function specified in Ca pragma cannot be cdled from near/nfar functions
An attempt was made to call afunction specified in Ca pragma, from anear or nfar function.

More than one ‘qualifier’ qudifier specified

On of the function qudifiers __accpass, __noacc or __interrupt was specified more that
once.

Page 174

Error Messages

E4047 [llegal combination of __accpassand __noacc
A function was qudified with both __accpassand __noacc.

E4048 Illegd combinationof _ farand __ nfar
A function was qudified with both __far and __ nfar.

E4049 [llegd combination of _ far/ nfar and __interrupt
A functionwas qudified with _far or __ nfar isaso qudified with __interrupt.

12.2.4 Expression

E5000 Expression does not evduate to a function
Operand could have been used like a function but is not a function.

E5001 ‘identifier’ isnot afunction
An atempt was made to define afunction body for an ‘identifier’ which was not declared as
afunction.

E5002 ‘identifier’ undefined

Thegiven identifier was not defined before being used.

E5003 Subscript on non array

A subscript was used on a variable that was not an array.

E5004 ‘operator’ : illegd for struct/union

Structure and union type values are not alowed with the given ‘operator’.

E5005 Left of 'identifier’ must have struct/union type
Left operand of *." operator should be a struct/union type.

E5006 ‘identifier’ is not struct/union member
Identifier toright of *.” or *->" operator is not a member of specified struct/union.

E5007 ‘operator’ needslvaue
Thegiven operator did not have Ivaue operand.

Page 175

CC665S Ver.2.01 User Guide

ES008

ES009

ES010

ES011

ES012

ES013

E5014

ES015

ES016

ES017

ES018

ES019

Lva specifies‘const’ object

Identifiers qudified by ‘congt’ are non-modifiable as they reside in code memory (ROM).
Hence atempt to assgn or modify a const specified operand isillegd.

‘&’ onregider variable

The'&’ onaregider variablewasillegd.

Left of ->'identifier’ must have struct/union pointer

Left operand of *->" operator should be a struct/union pointer.
[llegd indirection

The indirection operator (*) was gpplied to a non-pointer vaue.
‘~" . bad operand

The operand for the operator ‘~' wasillegd.

‘I’ . bad operand

The operand for the operator ‘!’ wasillegd.

‘unary plus’ : bad operand

The operand for the unary pluswasillegd.

“unary minus’ : bad operand

The operand for the unary minus was illegd.

‘operator’ : bad |eft operand

The |eft operand for the specified operator wasillegdl.
‘operator’ : bad right operand

The right operand for the specified operator wasillegd.
Pointer ‘+’ non integrd vadue

An attempt was made to add a non-integra value to a pointer.

‘+' : 2 pointers
An attempt was made to add two pointers.

Page 176

Error Messages

ES020

E5021

E5022

E5023

ES024

E5025

E5026

ES027

E5028

E5029

ES030

E5031

Pointer *-" non integra value
An attempt was made to subtract a non-integra vaue from a pointer.

‘=" |eft operand mugt be lvaue

Left operand of ‘=" should have lvdue

‘&’ on hit-fidd

An attempt was made to take the address of a bit-field.

‘identifier’ unknown sze

Szeof ‘identifier’ object was unknown.

Struct/Union comparison isillega

Comparison of any two structure or union is not alowed. Individua members of structure or
union can be compared.

Non-integral index

A non-integral expression was used in an array subscript.

‘operator’: incompatible types

An expression with operandsthat are not compatible for the operation was encountered, For
€g., expression with a pointer and a non-integra operand.

[llegd index, indirection not allowed

A subscript was applied to an expression that did not evauate to a pointer.

Cadt to function typeisillegd
An object was cast to afunction type.

Cast to array typeisillegd
An object was cast to an array type.

lllegd cast
A type used in a cast operation was not alegd type.

Unknown dze

Size of object was unknown.

Page 177

CC665S Ver.2.01 User Guide

ES032

ES033

ES034

ES035

ES036

ES037

ES038

ES039

ES040

ES041

ES042

Subscript too large
Subscript value exceeded 65535.

Size exceads limit

The size of a object defined exceeds 65535.
‘identifier’ sze exceedslimit

Sizeof ‘identifier’ object exceeds 65535.

Cadt to different memory

A code memory object was cast to a data memory object or vice-versa.

Indirection to different memory

Indirection was used in an expresson to access vaues from different memory address
spaces.

Too few actual parameters

Actud parameters passed to a function could be less than number of parameters formaly
specified.

Too many actud parameters

Actud parameters passed to afunction could have exceeded number of parametersformaly
Specified.

Void function returning vaue

The function was defined to return no value with the ‘void’ keyword but the function returns
avdue.

[llegal Szeof operand
A bit field could have been specified as an operand for sizeof operator.

‘identifier’ : has bad storage class

The specified storage class cannot be used in the context. For example, the auto storage class
Specifier cannot be used for variables declared at the externd level.

Parameter has bad storage class

The specified storage class cannot be used in the context.

Page 178

Error Messages

12.2.5 Control Statements

E6000 [llegd bresk
A bresk statement is lega only when it gopears within a ‘do’, ‘for’, ‘while’ or ‘switch
Satement.

E6001 lllegd continue

A continue gatement islegd only when it gopearswithina“do’, ‘for’, or ‘while’ statement.

E6002 Labd ‘identifier’ defined more than once

A labd ‘identifier’ was defined more than once in afunction.

E6003 Case ‘constant’ dready given
The given case vaue was aready used ingde the switch statement.

E6004 More than one ‘ defaullt’
A switch statement contained more than one ‘default’ keyword.

E6005 Labd not defined ‘identifier’
A labd ‘identifier’ used with a‘goto’ statement was not defined within a function.

E6006 ‘case’ without switch
The‘case’ keyword can appear only within a switch statement.

E6007 ‘default’ without switch
The ‘default’” keyword can gppear only with a switch statement.

E6008 Switch expresson isnot integrd

A switch expression was non-integral

E6009 Controlling expresson has type ‘void’

Conditiond expression of a control statement evaluatesto a‘void’.

Page 179

CC665S Ver.2.01 User Guide

12.3 WARNING MESSAGES

12.3.1 Preprocessor

W2000

w2001

w2002

W2003

w2004

W2005

W2006

w2007

W2008

W2009

‘“#undef' ignored for predefined macro ‘identifier’
An attempt might have been made to undef the predefined macro ‘ identifier .

Not enough arguments for macro ‘identifier’

Thenumber of actua arguments specified with the given identifier was|ess than the number of
forma parameters given in macro definition of the identifier.

‘#define’ ignored for predefined macro * macroname’

An atempt might have been made to ingta| predefined * macroname’ as a macro.
Close bracket expected

Missng ‘)’ in amacro definition or in meacro cdl.

Unexpected characters following directive * directive’

Extra characters found after processing a preprocessor directive.

Redefinition of macro ‘identifier’

The given identifier was redefined.

Comma separator missing
The formd parameterslist in amacro definition must be separated by commeas.

Argument expected before ‘ character’
An argument was expected in macro call

Extra argumentsignored for macro ‘ macroname

The number of actua arguments specified with the given macroname was grester than the
number of forma parameters given in macro definition of the identifier.

Expected an identifier, found no token
Expecting avdid identifier.

Page 180

Error Messages

12.3.2 Lexical

W3000

W3001

|dentifier truncated to ‘identifier’

The maximum length of an identifier depends upon the value peciefied in /SL option. If /SL
option isnot specified, maximum of 31 characters are dlowed for an identifier. The identifier
is truncated to maximum length alowed and extra characters are ignored.

String too long, truncated
The length of the string exceeded 1023 characters.

12.3.3 Syntactic And Semantic

W4000

w4001

W4002

W4003

w4004

W4005

Auto/Regigter ignored for globa variables
An attempt was made to declare globa variable with auto/register storage class.

Forma parametersignored

The function was declared to take no arguments. But the function definition contains forma
parameter declarations, or arguments were given in acal to the function.

‘congt’” ignored on argument

Since function forma parameters are dlocated in stack, ‘const’ is ignored on forma
parameter.

Second parameter list islonger than first

A function was declared more than once with the argument typelist in the second declaration
longer than the argument type list in the first declaration.

Firg parameter list islonger than second

A function was declared more than once with the argument type list in the first declaration
longer than the argument type list in the second declaration.

‘const’ ignored for struct/union member ‘identifier’

‘congt’ qudified variables are not dlowed in struct/union.

Page 181

CC665S Ver.2.01 User Guide

W4006 Function was declared with forma parameter list

The function was declared to take arguments. But the function definition contains no formal
parameter declarations, or no arguments were given in acdl to the function,

w4007 ‘identifier’ : array bound overflows

Too many initidizer were present for the array. The excessinitidizers are ignored.

W4008 Parameter number declaration different
Type of parameter declaration in prototype could be different from forma declaration.

W4009 Declared subscripts for arrays different
Two operands to an operation are arrays whose declared subscripts could be different.

w4010 Function was declared with variable arguments
There was a parameter(s) mismatch between prototype and actua definition of afunction.

w4011 Function was not declared with variable arguments
There was a parameter(s) mismatch between prototype and actua definition of afunction.

w4012 ‘congt’ ignored on loca variable ‘identifier’
All “‘congt’ qudlified variables are dlocated in the code memory. But locd variables are
alocated in stack, hence, ‘congt’ isignored on local variables.

w4013 No declaration specifiers; ‘int’ assumed
The variable was declared without any declaration specifiers. Type specifier ‘int’ isassumed
for the varigble.

w4014 Sgn information ignored for hit field
A bit field member was decdlared as signed.

W4015 memory attribute on cast ignored
The memory qudifier in the cast expression is qualiying a non-pointer object.

Page 182

Error Messages

W4016

w4017

w4018

W4019

W4020

w4021

W4022

W4023

w4024

W4025

W4026

const object modified
An object qudified with congt has been modified under /WIN option.

__far ignored on struct/union member ‘identifier’

‘ _far qudified variables are not dlowed in struct/union.

__farignored on locd variable ‘identifier’
Since locd variables are dlocated in stack, they cannot be quaified with __ far.

__far ignored on argument variable ‘identifier’
Since arguments are alocated in stack, they cannot be qudified with __ far.

__far not dlowed for memory type memory

The mixed memory mode option specified in the command line or assumed by the compiler
does not support far code memory or far data memory.

__fal _nfar functions not alowed

The mixed memory model option specified or assumed does not support _ far/_ nfar
functions.

Indirection to different types

Pointers used in the expresson were pointing to different memory (Pointer Size mismatch).

__far/__nfar ignored for *main’

Function ‘main’ was quaified with __ far/ _nfar.
__accpasy__noacc ignored for ‘man’

Function ‘main’ was quaified with __accpass _noacc.

__interrupt ignored for ‘man’

Function ‘main’ was quaified with _interrupt.

Missng return value for function ‘function name

The function was declared to return avaue, but returns without one.

Page 183

CC665S Ver.2.01 User Guide

w4027 ‘function name : no return vaue
Thefunction ‘ name’ was declared to return avalue, but in one of the path, no return statement
was found.

12.3.4 Expression

W5000 ‘identifier’ function used as an argument
An attempt was made to pass function as an argument.

W5001 Function used as an argument
A formd parameter to a function was declared to be a function, which is not alowed. The
formal parameter is converted to a function pointer.

W5002 ‘operator’ : different levels of indirection
An expresson had inconsstent levels of indirection.

W5003 Atleast one void operand
An expression with type ‘void’ was used as an operand.

W5004 ‘&’ on aray ignored
An attempt was made to apply the address of operator (&) to an array.

W5005 Congtant too large, converted to ‘int’
The congtant specified in the case satement, exceeded the maximum integer vaue.

W5006 Divison by zero
The second operand in adivision operation (/) evauated to zero. Hence it was converted to
one.

W5007 Mod by zero
The second operand in aremainder operation (%) evaluated to zero. Hence it was converted
to one.

W5008 ‘operator’ : indirection to different types

The indirection operator (*) was used in an expression to access vaues of different types.

Page 184

Error Messages

W5009

W5010

W5011

W5012

Function Parameter ligs differed

The type of the forma parameter did not agree with corresponding type in the function
declaration (prototype).

Far pointer truncated to ‘int’

A pointer was assigned to an integer varigblein large data or large code memory mode. The
segment addressis|ogt.

Near pointer converted to ‘long

A pointer was assigned to along varigble in smal code or smdl data memory modd. The
segment address is made zero.

Parameter mismatch, actual parameter converted

Type in actud parameter declaration was different from forma parameter declaration.
Appropriate conversons are performed.

12.3.5 Pragmas

W8000

w8001

w8002

W8003

Expected a pragma keyword, found no token

A vaid pragmakeyword was expected after the preprocessor directive' #pragma’, found no
token.

Unknown pragma ‘ token’

Aninvaid keyword was specified with the preprocessor directive ‘#pragma’ .

‘man’ cannot be specified in ‘ pragma keyword’ pragma.

Function ‘main’ was specified in pragma ‘pragma keyword'. It may be specified only in
pragma Usinginpage.

‘pragma keyword' pragma variables should be globa or static local
The specified variable was neither agloba variable nor adtatic locad variable,

Page 185

CC665S Ver.2.01 User Guide

w8004

W8005

W8006

w8007

w8008

W8009

w8010

Vector address out of range for pragma‘ pragma keywor d’
The vector address specified in either Interrupt, Intvect or Vca pragmawas out of range.

The vaid range of vector addresses are asfollows:

Interrupt - Ox8 to Oxfffe
Intvect - Ox8 to Oxfffe
Vca - Ox4a to Ox68

Expected even vector address, for pragma‘ pragma keywor d’
An odd vector address was specified in either Interrupt, Intvect or Vca pragma.

More than one function for the same vector address

Two different functions were specified with same vector addressin pragma Interrupt, Intvect
orVcal.

Pragmaargument delimiter *," expected

The pragmaargument delimiter ;" (comma) was expected, as/PF option was specified in the
command line.

Pragma must appear before function definition

Functions specified in apragmashould not have its body defined before the occurrence of the
pragma. This warning message was issued for Interrupt, Intvect, Vca or Usinginpage when
the specified function was aready defined prior to the pragma directive.

Interrupt function has parameter/return value

Functions specified in pragma Interrupt/Intvect either has parameters or returns a value or
both.

‘pragma keyword' address exceeds range
The address specified ether in absolute or Sfr pragma was out of range. The valid range of
addresses are as follows

The vaid range of vector addresses are asfollows:

Absolute(code) - OxO to Oxffff
Absolute(data) - OxO to Oxffff
Sr - OxO to Oxiff

Page 186

Error Messages

w8011

w8012

w8013

w8014

w8015

w8016

w8017

w8018

w8019

w8020

wg021

Pragma must gppear before varigble initidization.
The variable specified in pragmawas initidized prior to the pragma directive.

Duplicate pragma ‘ pragma keywor d’

Pragma‘ pragma keyword’ was specified more than once. This warning message is issued
for Stacksize pragma when it is specified more than once in a sourcefile.

Specified stack size out of range

The congtant specified in pragma stacksze was out of range. The vaid range of stack Szeis
an even number between Ox2and Oxfffe inclusive of both.

Expected even number as stack size

Size specified with pragma Stacksize was not an even number.

More than one pragma specified for variable ‘variable

‘variable’ was specified in more than one pragma.

Different page numbers for the same segment * segment name

Two different page numbers were specified for a segment ‘ segment name in two different
ingtances of pragma Inpage or Sbainpage.

‘pragma keyword’ pragma expects function name

The specified symbol was not afunction. Interrupt, Intvect, Vcd, Acd, Cd, and Usinginpage
pragma expects a function name to be specified.

Page number out of range

Page number specified in pragma Inpage or Sbhainpage was out of range. The valid range of
the page number isfrom 0 to 255 inclusive of both.

‘Window' pragmaignored

The window pragma which is not supported was ignored.

Pragma keyword expected, found no token

No token was found after *# pragma’ .

Unexpected characters following pragma ‘ pragma keywor d’
Unexpected characters was found after avaid pragma‘ pragma keyword’

Page 187

CC665S Ver.2.01 User Guide

w8022

w8023

w8024

W8025

W8026

w8027

w8028

w8029

w8030

w8031

Function cannot be specified in pragma ‘ pragma keyword’
Variable declared as a function was specified in pragma‘ pragma keyword’.

Enum congtants are not dlowed in pragma.

An enum congtant was specified in pragma directive.

‘ Absolute/Sfr’ address leads to odd boundary access

Thiswarning message isissued due to one of the following reasons:

* An odd address was specified for an initidized variable

* Anodd address outsde SFR region was pecified for uninitialized variables of type other
than char and array of char

Invaid ‘ Absolute’ address for the variable ‘ token

The Absolute address specified in the pragma Absolute for the varidble ‘token’ excceded

OXffff.

‘_interrupt’ qudified function cannot be specified in pragma‘ pragma keywor d’

An‘__interrupt’ qudified function was pecified in pragma ‘ pragma keyword’. A function

qudified by ‘__interrupt’ may be specified only in Interrupt, Intvect and Usinginpage

pragmas.

Interrupt function *function name used in expression

Function ‘function name specified in Interrupt/Intvect pragma was used in an expression.
Functions specified in these pragmas should not be cdled directly or indirectly ina ‘C’

program.

Congtant expected, found no token
A congtant was expected in the #pragma directive, but found no token

Congtant expected, found ‘token’
A congtant was expected in the #pragma directive, but found ‘token’.

‘Common pragmaignored

The common pragma which is not supported, was ignored.

Pragma syntax error

The specified ‘#pragma’ syntax was not recognized by CC665S.

Page 183

Error Messages

w8032

W8033

w8034

W8035

W8036

w8037

w8038

w8039

w8040

w8041

w8042

‘segment name cannot be specified along with far ssgmentsin * Group’ pragma
An attempt was made to mix near ssgments and far segmentsin pragma Group.

Variable ‘token’ specified in pragmanot declared

Variable specified in a pragma was not declared in the file. All the variables specified in
pragma should be declared in thefile.

Identifier or constant expected for pragma, found no token
An identifier or constant was expected in the #pragma directive, but found no token.

Identifier or constant expected for pragma, found *token’
An identifier or constant was expected in the #pragma directive, but found ‘token’.

Group segment ‘ segment name not in pragma ' Inpage/sbai npage’

The segment ‘segment name specified in pragma group was not specified in pragma
| npage/Sbainpage prior to this Group directive.

Close bracket expected, found no token

A close bracket was expected in the ‘# pragma’ directive, but found no token.

Close bracket expected, found ‘token’
A close bracket was expected in the ‘# pragma’ directive, but found ‘token’.

Identifier expected for pragma, found no token
An identifier was expected in the ‘# pragma’ directive, but found no token.

Identifier expected for pragma, found *token’
An identifier was expected in the ‘# pragma’ directive, but found ‘token’.

‘congt’ variables cannot be specified in ‘pragma keyword’ pragma

A ‘congt’ qudified varigble was specified in pragma ‘ pragma keyword'. ‘const’ qudified
variables may be specified only in pragma Romwindow and Absolute.

Unexpected ‘ Endasm’ pragma ignored
‘Endasm’ pragma was specified without its correponding Asm pragma.

Page 189

CC665S Ver.2.01 User Guide

w8043

w8044

w8045

W8046

w8047

w8048

w8049

W8050

w8051

w8052

Expected an identifier or “-Irb’ option, found no token

Anidentifier or ‘-Irb’ option was expected after pragmakeyword Usinginpage, but found no
token.

Expected an identifier or ‘-Irb’ option, found ‘token’

An identifier or *-Irb’ option was expected after pragma keyword Usinginpage, but found
‘token’.

Identifier or constant expected for pragma, found *;’
An Identifier or congtant was expected in the ‘# pragma’ directive, but found *,’.

Segment number exceeds range
The specified segment number was not in the range 0 to 255 inclusive of both.

‘Romwindow variables should be qudified with ‘ const’

Variable specified in pragma Romwindow was not qudified with ‘const’.
‘Commonvar’ pragma can be specified only for large data memory models

The source file was not compiled in memory mode options that support large data.
Expected *__interrupt’ qudified function for ‘Intvect’ pragma

The function specified in Intvect pragmawas not qudified with *__interrupt’.
Invalid ‘ Sfr’ address for the variable ‘token’

The address specified in Sfr pragmawas not in sfr area. The address should be in the range
0xO0 to Ox1ff.

Segment ‘ segment name specified in * Group’ pragmais not defined

The variables specified in the ssgment * segment name was not declared in the sourcefile. A
segment is defined only when avariable specified in that ssgment isdeclared in the sourcefile,

Segment should be O for ‘near’ variables

A non-zero segment was specified for near variables.

Page 190

Error Messages

W8053

w8054

W8055

W8056

w8057

w8058

W8059

W8060

w8061

w8062

Segment ‘ segment name not defined in * Inpage/sbainpage’ pragma

The segment ‘sement name specified in Usinginpage pragma was not defined in Inpage or
Shainpage pragma prior to this directive.

Page ‘ pageno’ not specified in ‘ Inpage/shainpage’ pragma

The page number ‘pageno’ specified in Usinginpage pragma was not defined in Inpage or
Shainpage pragma prior to this directive.

Segment ‘segment name aready specified in ‘ Inpage/sbainpage’ pragma

The segment ‘segment name specified in Inpage pragma was dready pecified in
Shainpage pragma or the segment ‘segment_name’ specified in Sbainpage pragma was
dready specified in Inpage pragma

‘Absolute’ pragma expects segment address for ef-near/ef-xnear variables

Segment was not specified for effective-near/effective-xnear variable in absolute pragma.

Far/nfar functions cannot be specified in pragma * pragma keywor d’

A far/nfar function was specified in pragma ‘pragma keyword’. Functions qudified with
_ far/__nfar cannot be specified in Interrupt, Intvect and Vca pragmas.

Far variable cannot be specified in pragma‘ pragma keywords’

A far variable was specified in pragma ‘ pragma keyword'. Variables quaified with __ far
cannot be specified in Fix, Sbafix, Dud, Edata and Commonvar pragmas.

‘function name specifiedin *Acal’ pragmais not near, satic far or datic large function
The function specified in Aca pragmawas not near, datic far or gatic large function.

‘function name specifiedin ‘Cal’ pragmais not datic far or Satic large function
The function specified in Cd pragma should be dtetic far or static large function.

[llegal combination of near and Static far functionsin *Acal’ pragma
Near and gatic far functions cannot be specified in the same Acal pragma.

[llegd combination of near and far variablesin pragma‘ pragma keywor d’
Near and far variables cannot be specified in same Inpage or Shainpage pragma.

Page 191

CC665S Ver.2.01 User Guide

w8063

w8064

W8065

Identifier expected for pragma, but found *;’
An identifier was expected in the ‘# pragma’ directive, but found ‘,’.

Constant expected for pragma, found ‘,’
A congtant was expected in the ' # pragma’ directive, but found *,’.

‘function name specifiedin ‘Inline’ pragmais not expanded.

Thefunction ‘function name specified in inline pragma was not expanded, may be due to
one of the following reasons.

Theinline function was recursve.

Jumps, labels or loops may be present

Function was too big to expand.

Function contained variable number of arguments
Function body contained ASM block

Function definition preceeded pragma declaration

L S T T

Page 192

Part2.
CC665S Ver.2.01
Language Reference

Table Of Contents

Table Of Contents

1. PREPROCESSOR........cctitiiititiiieieiesie et ste e sae e ssesbesseasesseesaesaensessessessesseeseesensennes 1
L1 INTRODUGCTIONciitiitisiestisiesieee ettt a et bbb se s et e nsesbesbesbesseeseeneens 1
12 TRANSLATION PHASESo oottt sttt st sne e 1

1.2.1 Trigraph SEQUENCES.......ccueiieitieieseeseestesee st et e e et esbe e teeseesreeseeneesseensesneesneenseans 2
12,2 LiNE SOlICING. c- ettt e et bbbt e e b n e n e b ne e 3
L3 MAGCROS. ...ttt bbbttt b et e bbbt bt et e et et e bbb r e ae e 3
0G0 I 1 0o 11 o RSP R 3
(IRCHZ\V = "o (o 1 B {1111 o HO SRR 3
1.4 MACRO EXPANSION....cctiiiieieieieste st ste e see e sae e ssessesseaseeseesaessessessessessessessessenns 6
1.4.1 Expansion Of Macros Without Parameters..........ccoeeeeeeeneeie s 6
1.4.2 Expansion Of Macros With ParameEters...........cceoeeieiereninineseeeeee e 7
L5 MACRO REMOVAL ..ottt sttt st sbe e 9
1.6 REDEFINITION OF MAGCROS.........cooiiiiiitieieeieteee e se et sae st sse e snesneenes 10
L7 FILE INCLUSION ..ottt sttt st sttt nee e enes 11
400 0o 11 o o SRR 11
1.7.2 Include File Specification Using Double Quotation Marks...........ccccceveeveeceeseesieseene. 11
1.7.3 Include File Specification UsSing ANgle Brackets..........cooooivenereeieenesese e 12
1.7.4 MaCros IN INCIUAE DITECLIVE.........oveieieriesieeieeie et 12
1.8 CONDITIONAL COMPILATION ...ooitiiieeiieieetieeeeesiesie e stessesseseesaessessessessessessessesseenes 13
IS8 I g 0o [0t o o SRR 13
1.8.2 Conditiona Compilation DIFECHVES..........ccuiirerieierieriesie e 13
1.8.3 Restricted Constant EXPrESSION.......ccveieeieeeeiieieseeseese e se e e see e e eesreessesneesns 15
1.8.4 defiNE0 OPEIEIONottt e b sn b e 16
GRSl N\ == 11 o ST 17
1.8.6 Tegting Symbol Definition With #fdef and #AfNdef ... 17
I B 1 ST 18
I O (0 S 19
1.11 MIXED LANGUAGE PROGRAMMING.......ccciiiiieiinie st 20

1.12 PREDEFINED MAGCROS..........ooiiiiiiiiieene et nne s 20

CC665S Ver.2.01 Language Reference

2. LEXICAL CONVENTIONS. ..ottt e e e ettt e e e e e e e e e et reeeeeeeeeeesaetenneeees 25
2L CHARA CTER SET ettt e e e e e e e et e e e e e e e e e e e e e e e e e s aananeeens 25
2.2 TOKENS. ...ttt e e e e e e e ettt eeeeee e e e e e eeeeeeeeesaeeeeeeeeeeeseeaaaeraaeees 26

N R o [< o 1] 1= £SO R RO 26
2.2.2 KEYWOITS ...ttt sttt b e b e b b e s e e s 26
pZ R T O 1 0101= 1T 27
2. 2.8 CONSEANES ..cceeeeeeee oot e e e e e e e e e et e e e e e eeeeeeeen———aeeeeeeeeenn—————aaeaaereennn——— 27
AN O o= = (0] £ TSRS 32

3. PROGRAM STRUGCTUREccooi ittt ettt e e e e e e ettt e e e e e e e e e aaereeeeeeeeesasaeeeeaeeeees 33
3.1 SOURCE PROGRAM ..ottt e e e ettt e aeeeaens 33
B2 S0URCE FILES. ... oottt ettt e e e e e e e e e et e et e e e e e e e e e e eeeaeeeeeesaaeaeaeees 34
3.3 FUNCTIONS AND PROGRAM EXECUTION......ccoieeeeeeeeeeeeeeeeeeeeeeeeeee e 35
SALIFETIME AND VISIBILITY oottt ettt e ettt e e e e e e ae e e e e e e e e e e eeeaeeeaneees 35

B L BIOCKS. ...t e e e e e e e e e e —————aeeeeaeaae————————aaaaaaaa——— 35
NN W (= (1 0 0 /ST T TR TR TR TR TR 36
G AV 1= 1 o1 Y/ SRR 36
SO NAMING CLASSES ..ottt ettt e e e e e e e e et et e e e e e e e e e e eeeeeeeeeesaaeeaaneees 36

4. DECLARATIONS. . ..ottt e et e e e e e e e e e e e et e e e e e e e e e eeeeeeeeeasaenneneeens 39
A1 INTRODUGCTION. ..ottt ettt e e e e e e e et eeeeeeeesaaaeeereeeeessessasraraeeeesessaaaaeaes 39
A2 TYPE SPECIFIERS. ... oot e 40
A3 TYPE QUALIFIERSooo ottt sttt et et r e e s ae et e anis 41
LA DECLARATORS ..ot e ettt eeeaeeeesaaannnnes 43

4.4.1 Memory Model QUEITIENS........ooiiiiieeeeee e 44
4.4.2 FUNCEION QUAITIES.veeciee ettt sttt e be e e sre e s are e ebeeeanas 46
4.4.3 INterpreting DECIAIGioNSooiiiiriiire e 47
A5 VARIABLE DECLARATIONS ... et e e e e e e e e e e e e e e e e 49
451 Smple Variable DECIAaioNS...........cccovieririinieseee et 49
4.5.2 SHTUCIUIE DECIAIGiONS. ...ttt e e e e e et e e e e e e e e e e eeeaeeeeaans 50
A5.3UNION DECIAIAIONS. ... e ennnnnnnnnnnennnnnnnnn 53
454 ENUMEEtiON DECIAIGHIONS.eeeeeee et e e e e e e e e e e e e e e e e s eeeeeeaaeeeeaans 54
4.5.5 Array DECIAIAIONS.coeeieiesietesie sttt 56

4.5.6 POINLEY DECIAIAIONS. ...ttt e e e e e e e e e e e e e eeeeeeeseeeeeeeeeneeeaans 57

Table Of Contents

4.6 FUNCTION DECLARATIONS AND PROTOTYPES.......oo oo 59
4.6.1 FOrMA PalraMELEIS....cciiiveiee ettt e ettt s e et e e s s et e s s sesteeesssbeeeessesreeessassreeeseabeeeessannes 59
4.6.2 REIUMN TY Pttt sn e b n e s e e sneenne e e nneenne s 60
4.6.3 List Of FOrMal PalraMELErS........vvveiieeeeieeeeceeee e secteee e s eereeessseseeessssssessssssrseesssreeesssenees 60
4.6.4 Memory Modd Qualifiers FOr FUNCHONS...........ccooiiirinineceeeesee e 61
4.6.5 Function QualifierS FOr FUNCHIONS..........c.eeiiieiie et 62

4.7 STORAGE CLASS SPECIFIERS........ooeeieie ettt st 62
4.7.1 Vaiable Declarations At The EXIErNal LEVEoooieeeeieiieceee e 63
4.7.2 Vaiable Declarations At The Internal LeVEoooocveieiicciee e 65
4.7.3 Function Declarations At The Internd And Externa LEVES.........ccovvvevvcveeeeeeceeee e 67

A8 INITIALIZATION ..ottt ettt e ettt st e e st e s st e e s ssaessebeeesbeessbeessabeeesabessssenas 67
4.8.1 Fundamental ANd POINTEr TYPES.......cciueiieiieieeiecteeste e see e ee e ste e s sneeaesneenneas 68
4.8.2 AQONETAE TYPES....ceveereiieesteeit ettt b s e e sn e e e abe e n e s e sneenneenenneenne s 69
483 NG INILBIZEIS ..ottt e ae e aesneenne s 70

A9 TYPE DECLARATION ... oottt ettt ettt e st e s s s s eaae e sbe e e sbe e s sabenssabeessareas 71
4.9.1 Structure ANA UNION TYPES ...uveeeeeciecie ettt ee sttt eee e sre e sseesteeaesneesneenesneennens 71
4.9.2 Typedef DECIAIELIONS........ccoiiiieriiiiieieeeeee et 72

AIOTYPE NAMES. ... oottt ettt e e ettt e s e s e e e s st a et e s e saaeeesssrreeessaseeeesaareees 73

o O N O I L\ T 73
g I 0o (T L T T 74
4.11.2 FUNCLION PrOLOLYPESc.eeueiie ittt sttt 77
R = U g o (o g 1 0= | =T 77

4,12 ASM DECLARATION ... oottt ettt s e st ee s s ae e s e aeeesbeessbeessabeessabeessareas 79

. EXPRESSIONS AND OPERATORS.......otttiiietiie i eeeie e e seeee s ssiateeesasaeesssssseeesssnssesesssseees 81

5.1 OPERATORSottt ettt e et e st e e s te e s e ateeseaaeesebeeesabeessbeessabesssabesssabesssareeeas 81

B2 LVALUESAND RVALUES.oo ittt e st te s e sttt e s ssrae s s ssssaeeesesananeesssnnenssans 83

5.3 CONVERSIONS...... oottt e st e st e st e s eae e s sabeessbeessabenssabeessabesssnreeeas 84
SRS N [01 (e = I (07010101 To o 1SS 84
5.3.2 ATTTNMELIC CONMVEISIONS. ...t ee et e et e e e e e e e e e e et e eeeeesaee e eeeeeeeeeseaaannnneeeeeseenans 84
5. 3.3 POINIET CONVEITIONSveieeeeeeeee e eeete e e e eete e e e sttt e e s s abe e e e ssesseeesssbaeeesssrseeessessseeessasreees 85

5.4 PRIMARY EXPRESSIONS AND OPERATORS.......co ottt see s 85
LY R [0 < 01 1] = £ 85
Y N e 1S = | (T 85
LG B (] 0 S 86

5.4.4 ParentheSiZed EXPrESSION......ccueiviiiirierieriieeeieie sttt s 86

CC665S Ver.2.01 Language Reference

55. ARRAY REFERENCES.........coo ot 86
9.6 FUNCTION CALLS ... 87
5.7 STRUCTURE AND UNION REFERENCESccccoiiiiierieeieeeeee e 88
5.8 POST INCREMENT ...ttt 90
5.9 POST DECREMENT ..ot e 90
S.J0PRE INCREMENT ..ot 91
S5.11 PRE DECREMENT ... oot e 91
5.12 ADDRESS OPERATORottt 92
5.13 INDIRECTION OPERATOR.......cooiiiiitieiereesieeie et 92
5.14 UNARY PLUS OPERATOR.......coiiiiiiiticr e 93
5.15 UNARY MINUS OPERATORottt 93
5.16 ONE S COMPLEMENT OPERATOR.......ccciiiriiiiciisi e 94
5.17 LOGICAL NOT OPERATOR......ccctiieitieieriesieeie s sne e nnens 94
5.18 SIZEOF OPERATOR......c.oiiiiiieiiittse et 95
5.19 CAST OPERATOR..... .ottt r e nae e nn e e nne s 96
5. 20 MULTIPLICATIVE OPERATORS........cooooii e 97
5.21 ADDITIVE OPERATORS...... oottt nne s 97
5.22 SHIFT OPERATORS ..o 98
5.23 RELATIONAL OPERATORS ...ttt nnens 99
5.24 EQUALITY OPERATORS ...t 100
5.25 BITWISE AND OPERATOR.......coiiiiiitieitieie et 101
5.26 BITWISE EXCLUSIVE OR OPERATOR.......cociiiiiiiicirecr e 102
5.27 BITWISE OR OPERATOR......coiieitiiieitiesie ettt 102
5.28 LOGICAL AND OPERATOR.......ccctiiiierinr e 102
5.29 LOGICAL OR OPERATOR......cceeitieieeieenieete sttt 103

5.30 CONDITIONAL EXPRESSION AND OPERATORS.........cccooiiiiiccece 103

Table Of Contents

5.31 ASSIGNMENT EXPRESSIONS AND OPERATORScoooe e, 105
5.32 COMMA EXPRESSION AND OPERATOR.......coo e, 106
5.33 CONSTANT EXPRESSIONS.o, 106
. ST AT EM N T S ... 109
O.LINTRODUCTION ..., 109
0.2 LABELED STATEMENT ... 109
0.3 EXPRESSION STATEMENT ..o, 110
6.4 COMPOUND STATEMENT ... 111
0.5 SELECTION STATEMENT S ... oo, 112
B0 L i B EIMNIENT ..ot e e e e e e e e et e e e e e e e e e e e e eee e e e e e —————aaas 112
B.5.2 SVITCN A OB ..o e 113
6.6 ITERATION STATEMENTS ... 115
0.0, L FOr A I MBI ..o 115
B.0. 2 Wl S EIMIENE ...t e e e e e ettt e e e e e e e e e e e eeeeeee e e e e e e aneeaeens 116
0.8.3 10 S O MIEN ..o 116
0.7 JUMP ST AT EMEN TS ... 117
6.7.1 JOLO SEAEIMENL ...t sn e sneenne s 117
B.7.2 DIrEK SEBLEIMENT ...ttt e e e e e e e e et e e e e e e e e e e e eeeeeeeeeseaaenanneeeens 118
B.7.3 CONMLINUE SEAEIMIENT ..o 118
AN = (U S = (=1 | 119
B.8 ASM STATEMENTS ..., 120

7. VARIATIONS FROM ANSI STANDARD.......ccciiiiitiiiiitire e 121

Preprocessor

1. PREPROCESSOR

1.1INTRODUCTION

CC665S may be invoked with /LP or /PC option so as to process text without compiling. CC665S
behaves like a text processor that manipulates the text of a source file, when invoked with /LP or /PC

option.
Preprocessor performs the following functions

1. Macro substitution

2. Conditional compilation

3. Fleincluson

4. Line control

5. Error generation

6. Mixed Language programming

7. Other implementation dependent actions(Using pragmas).
8. Trigraph Sequences replacement.

Lines beginning with a #, perhaps preceded by white space, communicate with the preprocessor. The
gyntax of these lines is independent of the rest of the language. Line boundaries are Sgnificant. End of file
must not occur in a preprocessor directive line. Preprocessor directives may gppear anywhere in afile.
However, they apply only to the remaining part of the source file in which they appesar.

1.2 TRANSLATION PHASES

Preprocessing will be performed by the following four trandation phases in the given order:
1. Trigraph sequences are replaced by the corresponding single-character interna representations.

Page 1

CC665S Ver.2.01 Language Reference

2. Each ingance of a new-line character and an immediately preceding backdash character is
deleted, splicing physical source linesto form logica source lines.

3. The source file is decomposed into preprocessing tokens and sequences of white-gpace
characters (including comments).

4. Preprocessing directives are executed and macro invocations are expanded. A #include
preprocessing directive causes the named headers or source file to be processed from phase 1 to
phase 4, recursively.

1.2.1 Trigraph sequences

All occurrencesin a source file of the following sequences of three characters (called trigraph sequences)
are replaced with the corresponding single character.

Trigraph Sequence Replacement character

7=
7
7
7

| S~ — > — ——

Each ‘7 that does not begin one of the trigraphs listed above is not changed.
Example1.1

INPUT:

main ()
<
7>

OUTPUT:

main ()
{
}

Page 2

Preprocessor

1.2.2 Line Splicing

A new line character and an immediatdly preceding backdash character are deleted, and line following the
new-line character is considered as continuation of the previous line.

1.3 MACROS

1.3.1 Introduction

Macroisafacility that enables user to assign asymbolic nameto asequence of tokens. The symbolic name
can then be used in the source file to represent the sequence of tokens.

The following two preprocessor directives facilitate in macro definition and deletion.

a) #define

b) #undef
Macro expangon isatext processing function that replaces the macro name with the corresponding token
sequences.

Parameters may also be defined to represent arguments passed to the macro. The replacement text of a
macro with arguments may vary for different cdls. The following two specid operators influence the
replacement process.

a) dringizing (%)
b) token pasting (##).

1.3.2 Macro Definition

1.3.2.1 Defining Macros Without Parameters

Syntax :

define identifier token_sequence

The#define directive causes the preprocessor to replace subsequent occurrences of the identifier with the
given sequence of tokens.

Leading and trailing white spaces around the token sequence are discarded.

Page 3

CC665S Ver.2.01 Language Reference

The macro name must beavdid ‘' C’ identifier. The token sequence represents the replacement text.

Example 1.2
define ABC 1+2
MACRO CALL REPLACEMENT TEXT
ABC+3 1+2+3
fn(ABC) fn(1+2)

1.3.2.2 Defining Macros With Parameters

Syntax :

define identifier([parameter_list]) token_sequence

A macro definition is assumed to have parameters when there is no space between the identifier and the
open parenthesis ‘(.
The parameter list isoptiond. If present, it condgsts of one or more parameters. The parameter list must be

enclosed within parentheses. Each parameter must be an unique identifier in the parameter list. Adjacent
parameters are separated by a comma.

Parameters appear in the token sequence to mark the places where arguments must be substituted.
However, the same parameter may occur more than once in the token sequence.

Leading and trailing white spaces around the token sequence are discarded.

Example 1.3
define ABC(x,y) X+y
MACRO CALL REPLACEMENT TEXT
ABC (1,2 1+2
ABC (2X) 2+X

1.3.2.3 Operators In Macro Processing

1.3.2.3.1 Stringizer
Operator symbol : #
Syntax :

parameter

Page 4

Preprocessor

The gtringizer is used only in macros defined with parameters. It may occur in the token sequence. A
parameter must follow the stringizer.
During expangion, the argument is enclosed within quotation marks and treeted as a siring literd.

A \ character isinserted before each “ and\ character of acharacter congtant or string litera (including the
odimiting“ characters).

Example 1.4
define A(b) #b
define X(y) (#y “\n")
MACRO CALL REPLACEMENT TEXT
A(l) " 1’7
X (abC) (“ abCH " \nH)
A (“ a\cﬂ) " \11 a\\c\!l ”
A(“abcde\n”) “\"abcde\\n\"”

1.3.2.3.2 Token Paster

Operator symbol : ##
Syntax :
token ## token

Token paster is used in macros defined with or without parameters.

Token paster operator concatenates adjacent tokens, deleting white space between them, to form anew
token.

Token paster cannot occur at the beginning and end of the token sequence.

Example 1.5
define A(b,c) b##c
define X(a) a1l
#define Y (a) 1##a
define ONE 12 ##4
MACRO CALL REPLACEMENT TEXT
A(12) 12
X(34) Al
Y (43) 143
ONE 124

Page 5

CC665S Ver.2.01 Language Reference

1.4 MACRO EXPANSION

1.4.1 Expansion Of Macros Without Parameters

The subsequent insgtances of the identifier, defined as a macro without parameters, causes the
preprocessor to replace the instances of the identifier with the given sequence of tokens.

Example 1.6
define ONE 1
define TWO 2
MACRO CALL REPLACEMENT TEXT
X =ONE + TWO + ONE x=1+2+1

The replaced token sequence is repeatedly rescanned for more defined identifiers.

Example 1.7
define ONE THREE
define TWO 2
define THREE 3
MACRO CALL REPLACEMENT TEXT
X =ONE + TWO + THREE X=3+2+3

A replaced identifier is not replaced if it turns up again during rescanning. Instead it is left unchanged to
avoid recursion.

Example 1.8
define ONE TWO
define TWO THREE
define THREE TWO
MACRO CALL REPLACEMENT TEXT
x = ONE + TWO + THREE x = TWO + TWO + THREE

During expangion, each collection of white spacesis replaced by asingle blank.

Page 6

Preprocessor

Example 1.9
define ABCD a+b+c+d
#defineXYZ a/* abcde*/+ 2
MACRO CALL REPLACEMENT TEXT
ABCD a+b+c+d
XYZ a+2

The macro identifiers within quotation marks are not consdered as a macro cal.

Example 1.10
define ONE 1
MACRO CALL REPLACEMENT TEXT
“ONE’ “ONE’

1.4.2 Expansion Of Macros With Parameters
Identifiers defined as amacro with parameters may be caled by writing
identifierfwhite space] ([actud_argument_list])

Example1.11
define ADD(a,b) atb
define MUL (a,b) (a* b)
MACRO CALL REPLACEMENT TEXT
X=MUL (2343) - ADD(12,400) X=(23* 43) - 12 + 400

ARGUMENTS OF MACRO CALL

Thearguments of acall are comma separated token sequence. Commeasthat are enclosed within quotes or
parentheses do not separate arguments.

The number of arguments in the call must match the number of parametersin the definition.
Leading and trailing spaces in each argument are discarded.

Collection of white spaces within an argument is replaced by a blank.

The arguments may run through more than one line.

Page 7

CC665S Ver.2.01 Language Reference

Example 1.12
define ADD(a,b) a+b
define MUL (a,b) (a* b)
MACRO CALL REPLACEMENT TEXT
ADD(1,2) 1+2
MUL(12,2) (12* 2
ADD(xxx(1,2),3) XX(1,2) +3
ADD(1 +23) 1+2+3
ADD(11.3) 11+3
ADD (12345 +
678,9) 12345+ 678+ 9

Thetokensin the arguments are examined for macro cals, and expanded as necessary, before expanding

the call. However, if the argument is preceded by #, or preceded or followed by ##, the outer cal is
expanded firg.

Example1.13
define ADD(a,b) a+b
define MUL (a,b) (a* b)
MACROCALL REPLACEMENT TEXT
ADD(MUL(1,2),3) 1*2)+3
MUL(MUL(ADD(1,2),3),4) (@+2*3)* 4

If the parameter in the replacement sequence is preceded by #, the argument tokens are not examined for
meacro calls.

Example 1.14
define ONE(a) #a
define TWO(a,b) (a* b)
MACRO CALL REPLACEMENT TEXT
ONE (TWO (1,2)) “TWO (1,2)"

If the parameter in the replacement sequenceis preceded or followed by a##, the tokensin the argument
tokens are not examined for macro calls.

Example 1.15
define CAT(a,b) at#b
MACRO CALL REPLACEMENT TEXT
CAT (CAT(1,2),3) CAT(1,2)3

Page 8

Preprocessor

In the above example, the presence of ## prevents the arguments of the outer cal from being expanded
fird. Hence the expansion of outer call resultsin CAT(1,2)3. Theidentifier CAT in the replacement text is
not expanded, Since it turns up again.

Example 1.16
define CAT(a,b) a#thb
define TWO(a,b) (a+b)
MACRO CALL REPLACEMENT TEXT
CAT (TWO(1,2),3) (1+2)3

In the above example, theidentifier CAT is expanded first, before the expansion of the arguments and the
result is (1+2)3. The identifier TWO in the replacement text is expanded as it has not been expanded

dready.

Example1.17
define CAT(a,b) a#thb
define XCAT(a,b) CAT(ab)
MACRO CALL REPLACEMENT TEXT

XCAT(XCAT(12),3) 123

In the above example, the token sequence of XCAT does not contain ##, the argumentsis expanded firgt.
Therefore, theinner cal XCAT(1,2) is expanded as 12 and then the outer call XCAT (12,3) is expanded
as123.

1.5 MACRO REMOVAL

Syntax :

undef identifier
The #undef directive causes the preprocessor to remove the definition of the identifier. Subsequent
occurrences of the identifier are ignored by the preprocessor till it is defined again.

To remove an identifier specified as amacro with parameters, only the identifier has to be specified in the
#undef directive,

If the identifier specified has not been previoudy defined using the #define directive, no error message is
displayed. This ensures that the identifier is undefined.

Page 9

CC665S Ver.2.01 Language Reference

Example 1.18
define ONE 1
X=0ONE;
undef ONE
y =ONE
define A(b,c) b+c
undef A

In the above example, the variable x is assigned a condtant 1, whereas the variable y is not assgned the
congtant vaue 1.

1.6 REDEFINITION OF MACROS

Redefinition of the macro is erroneous, unless the redefinition satisfies the following.

a) The token sequence must be identical
b) If theidentifier is defined as amacro with parameters, the number of parameters must be equd.

The following redefinitions are erroneous.

Example 1.19
#define A 1+2
#define A 12
Example 1.20
#define A 1+2
#define A 1+2
Example1.21
#define A 12
#define A(b) 12
Example 1.22
#define A(b) b
#define A b
Example 1.23
define A(one,two) one + two
define A(one) one + two

Page 10

Preprocessor

The following redefinitions are nonerroneous.

Example1.24

define A 1+2

define A 1+2
Example 1.25

define A (one,two) one + two

define A (one,two) one + two
Example 1.26

define A(one, two) one + two

define A(x,y) xX+y

1.7 FILE INCLUSION

1.7.1 Introduction

The #includedirective causesthe preprocessor to replace the line where the directive has occurred by the
entire contents of the specified file during compilation.

File incluson makes it easy to handle callection of #define statements and declarations(among other
things). They are often kept in aseparate file and read into the * C’ sourcefile a compiletime. Inthisway,
libraries of different macros may be used in many different sourcefiles.

If thefile gpecified in the directive is not present, fatd error is displayed and the compilation is terminated.

Nesting leve of include files is redtricted to ten files (induding the source file).

1.7.2 Include File Specification Using Double Quotation Marks
Syntax :
include “filename”
Thefilename may contain apath specification. If thefilenameisnot specified with the path, it issearched in
the following order :

a) directory of parent filesis searched (parent file is the file containing the # include directive)
b) the directories of any grand parent files

Page 11

CC665S Ver.2.01 Language Reference

c) thedirectories specified usng /I command line option
d) the standard directory set by the environment variable INCL66K.

Example 1.27
include “\dir1\dir2\abc.c”

The above #include directive causes the compiler to replace the contents of the file abc.c present in the
directory \dir1\dir2 for the line where the directive is specified.

1.7.3 Include File Specification Using Angle Brackets

Syntax :
#include <filename>
The filename may contain a path pecification.
If the filename is not pecified with the path, it is searched in the following order :

a) thedirectory specified usng the/I command line option
b) the standard directory set by the environment variable.

1.7.4 MacrosIn Include Directive
Syntax :
include token_sequence
The above #include directive causes the preprocessor to expand the token_sequence.
The expansion of the token sequence must result in one of the following two forms.
a) filename specified within double quotation marks
b) filename specified within angle brackets.

The processing of the #include directive depends on the filename specification.

Example 1.28

#defineFILENAME “filel.c”
#include FILENAME

In the above example, the preprocessor includes filel.c.

Page 12

Preprocessor

1.8 CONDITIONAL COMPILATION

1.8.1 Introduction
The following preprocessor directives are used for conditional compilation.

1. #if

2. #ifdef
3. #ifndef
4. #dif
5.#dse
6. # endif

These directives dlow to suppress compilation of parts of asourcefile by testing aconstant expression or
Identifier, to determine which parts of the code will be sent to the compiler and which parts of the code will
be removed from the source file during preprocessing.

1.8.2 Conditional Compilation Directives
Syntax :

#if restricted_constant_expression
[text-block]

[#elif restricted_constant_expression
[text-block]

]

[#else
[text-block]

]
#endif

The text-block following the #if directive can be any sequence of text. It can occupy more than one line.
The text-block may aso contain preprocessor directives.

The#elif and #el se directives are optiona . Any number of #elif directives may appear between #if and
#endif directives. Only one #el se directive may appear between #if and #endif. The #el se directive, if
present, must be the last conditional directive before #endif. The #endif ends the block.

Page 13

CC665S Ver.2.01 Language Reference

The restricted constant expression in #if and subsequent #elif are evduated until an expresson with a
non-zero vaueisfound. Text following the zero vaue is discarded. The text following the non-zero value

istreated normally. Once asuccessful #if or #€lif has been found and itstext processed, succeeding #elif

and #el se lines, together with their text are discarded.

If dl the expressons evaluate to zero, and if there is a #else directive, the text following the #else is
processed normally.

Example 1.29

#if 1
function1 () ;
#endif

In the above example, the text following #f directive is processed.

Example 1.30

#if 0
functionl () ;
#endif

In the above example, the text following #if directiveis discarded as the result of the expression is zero.
Example 1.31

#if 1

function1 () ;
#eif 0

function2 () ;
#endif

In the above example, the text following #if directive is processed, since the result of the expression is
non-zero. The congtant expression following the #€lif directive is not evduated. The text following the
#elif directive is discarded.

Example 1.32

#if 0

functionl () ;
#elif 1

function2 () ;
#endif

In the above example, thetext following #f will not be processed. The congtant expression following #¢lif
directive will be evauated. Astheresult of the expresson is non-zero, the text following the#elif directive
will be processed.

Page 14

Preprocessor

Example 1.33

#if 0

function1 () ;
#dif 0

function2 () ;
endif

In the above example, the text following #f and #elif directives is discarded, as both the expresson
evauates to zero.

1.8.3 Restricted Constant Expression

Congtant expression in a preprocessor directive is subjected to certain redtrictions. The constant
expresson must be an integral constant expression. It must not contain sizeof expression, enumeration
congtant, floating point constant and cast expression.

If macros are present they will be expanded. All identifiers remaining after macro expansion are replaced
by OL.

The following illustrates the usage of the restricted constant expression in #if and #dlif directives

Example1.34
#if 1+2
Example 1.35
#if1+2*3%4
Example 1.36
#if A
Example 1.37
#if(1+2)/5
Example 1.38
#if (1<<2)==A
Example 1.39
#ifA|B&C
Example 1.40
#ifA?B:C

Page 15

CC665S Ver.2.01 Language Reference

Thefollowing are erroneous:

Example 1.41
#ifA=2
Example 1.42
#if X +=5
Example 1.43
#if X ++
Example 1.44
#if &X
Example 1.45
#if sizeof (struct A)
Example 1.46
#if A, C
Example 1.47
#if 1.2

1.8.4 defined Operator
Syntax :

defined identifier
defined (identifier)

Any expression of the above syntax isreplaced by 1L if theidentifier isdefined in the preprocessor and by
OL if nat.

Example 1.48

#defineA 1
#if defined (A)

printf (“This part will be compiled”) ;
#endif

#if defined (B)
printf (“This part will not be compiled”) ;
#endif

The defined operator may aso appear with other operators.

Page 16

Preprocessor

Example 1.49

#defineA 1
#if | defined (A)

printf (“This part will not be compiled”) ;
endif

#if defined (A) - 1
printf (“This part will not be compiled”) ;
endif

1.8.5 Nesting

The#if, #elif, #el se and #endif directives may be nested in the text portions of other #if directives. Each
#elif, #else and #endif directive belongsto the closest preceding #if directive.

Example 1.50
#if 0
#if 1
printf (“This part will not be compiled”) ;
endif
endif
#if 1
#if 0
printf (“This part will not be compiled”) ;
endif
#if 1
printf (“This part will be compiled”) ;
endif
endif

Nesting level isrestricted to 32.

1.8.6 Testing Symbol Definition With #ifdef and #fndef
Syntax :

ifdef identifier
ifndef identifier

The#ifdef and #fndef directives may occur wherever a #if directive can occur. The text following the
#ifdef directiveis compiled if the specified identifier isameacro. Thetext following the#ifndef directiveis
compiled when the specified identifier is not a macro.

Page 17

CC665S Ver.2.01 Language Reference

Example 1.51

#defineA 1
#ifdef A

printf (“This part will be compiled”) ;
#endif

#ifdef B
printf (“This part will not be compiled”) ;
#endif

defineB 2

#ifndef B
printf (“This part will not be compiled”) ;
#endif

undef A

#ifndef A
printf (“This part will be compiled”) ;
#endif

19LINE

Syntax :

line constant [“filename”]

The#line directive causes the preprocessor to change the following :

a) The number of the next source line to the number specified by the constant

b) The name of the current source file to the specified filename.
The congtant value must be ainteger congtant. Thisvaue must be between 1 and 32767, inclusive of both.
Thefilename is optiond. The filename must be enclosed within double quotes as a gtring literd.
Macrosin the # line directive are expanded before interpretation.
The line number and the filename are used by the compiler in specifying the error messages during
compilation.

Example 1.52
#line124

Page 18

Preprocessor

The line number of the next source lineis changed to 124. The name of the sourcefile is not changed.

Example 1.53
#line 1234 “file.c’

The line number of the next source line is changed to 1234. The name of the source file is changed to
“filec”.

Example1.54

define LINENUMBER 1234
#defineFILENAME “filel.c”
#line LINENUMBER FILENAME

The line number of the next source line is changed to 1234. The name of the source file is changed to
filel.c.

1.10 ERROR

Syntax :

error [token_sequence]
The#error directive causes the preprocessor to display a diagnostic error message that includes the
optiona token sequence.

The compiler digplays the error message with an error number, the source filename and source line
number.

Macros in the token sequence are not expanded.

Example 1.55

error thisisan old version

The above # error directive causes the compiler to display the message “# error : thisisan old verson’.

Example 1.56

define ERROR_MESSAGE thisisthe error message
error ERROR_MESSAGE

Page 19

CC665S Ver.2.01 Language Reference

The above #error directive causes the compiler to display the message “ERROR_MESSAGE". The
macro is not expanded.

1.11 MIXED LANGUAGE PROGRAMMING

Syntax :

asm
[assembly text]
endasm

The#asm and #endasm directives facilitate mixed language programming. The assembly text specified
between #asm and #endasm will not be processed.
The assembly text is not redtricted to asingle line,

#asm directive marks the beginning of assembly text. The #endasm directive marks the end of assembly
text.

Example 1.57
asm
I a, dir b na=hb+c
add a, dir c
st a, dir_a
endasm

1.12 PREDEFINED MACROS

The following macros are predefined.

1. _LINE__
2. FILE _

3. DATE__

4. _TIME__

5. _STDC__

6. CC665S

7. _VERSION__

8. ARCHITECTURE _
9. NX_8500 _

10. NX_8 500S__

Page 20

Preprocessor

11. BASEPTR _
12. NO BASEPTR _
13. MS__

14. ME__

15, MM__
16._MC__

17. MK__

18. ML__

19. MIXC__

20. _MIXM__

21, MIXL__

22. __UNSIGNEDCHAR__

The above predefined macros cannot be redefined or undefined.

1.

__LINE__

__LINE__ expandsto adecima constant. The decima constant contains the number of the current
source line being compiled.

__FILE__

__FILE _expandsto adring literal. The gtring literd contains the name of the file being compiled.

__DATE__

__ DATE _ expandstoadring literdl. The string literd containsthe date of compilation inthefollowing
format.

HMmm w yyyy”

__TIME__

__TIME__ expandsto astring literd. The gring literd containsthe time of compilation inthefollowing
format.

“hh:mm:ss’

STDC__

__STDC _ expandsto adecimd congtant 0. The value of the congtant isintended to be 1 only in the
implementation conforming to ANSl standard.

Page 21

CC665S Ver.2.01 Language Reference

6. _ CC665S
__CCe65S __ expandsto adecima constant 1.

7. _VERSION__

__VERSION__ expandsto agtring literd. The string literd contains the current version number inthe
following format.

“Ver X.YY”

where X.YY isthe current verson number.

8. __ ARCHITECTURE__

__ARCHITECTURE _ expandstoadring literal. The dtring literal containsthe core specified with /T
option in the following format:

“core”

where core is the string specified with the /T option. When /T option is not specified then the
replacement text will be*”.

9. _NX_8500

_ NX 8 500 _expandsto adecima congtant 1, if the C source program is compiled for /nX500
CPU core. Otherwise this macro is not defined.

10. NX_8 500S

__NX_ 8 500S __ expandsto adecima constant 1, if the C source program is compiled for /nX500S
CPU core. Otherwise this macro is not defined.

11. BASEPTR _

_ BASEPTR __ expands to a decimd congant 1, if the C source program is compiled with /SD
option. Otherwise this macro is not defined.

12. NO_BASEPTR _

__NO BASEPTR__ expandsto adecima congtant 1, if the C source program is compiled without
/SD option. Otherwise this macro is not defined.

Page 22

Preprocessor

13. MS__

__MS__ expandsto adecima congtant 1, if the C source program is compiled with /MS option or
with default C memory mode option. Otherwise this macro is not defined.

14. ME__

__ME__expandsto adecimd congant 1, if the C source program is compiled with /MEM option.
Otherwise this macro is not defined.

15, MM__

__ MM __ expandsto adecimd congtant 1, if the C source program is compiled with /MM option.
Otherwise this macro is not defined.

16. _MC__

__MC__ expandsto a decima congtant 1, if the C source program is compiled with /MC option.
Otherwise this macro is not defined.

17. MK__

__MK__ expandsto adecima congtant 1, if the C source program is compiled with /MEL option.
Otherwise this macro is not defined.

18. ML__

__ML__ expands to a decima congtant 1, if the C source program is compiled with /ML option.
Otherwise this macro is not defined.

19. MIXC__

__MIXC __expandsto adecima congtant 1, if the C source program is compiled with /mixC option.
Otherwise this macro is not defined.

20. MIXM__

__MIXM__ expandstoadecima congtant 1, if the C source program is compiled with /mixM option.
Otherwise this macro is not defined.

21, MIXL__

__MIXL__ expandsto adecima congtant 1, if the C source program is compiled with /mixL option.
Otherwise this macro is not defined.

Page 23

CC665S Ver.2.01 Language Reference

22. UNSIGNEDCHAR__

__UNSIGNEDCHAR __expandsto adecima congtant 1, if the C source program is compiled with
/J option. Otherwise this macro is not defined.

Consder the source filename as filel.c, the number of the source line being compiled as 200, the date of
compilation as 23 December 1992 and the time of compilation as 10 hours: 20 minutes: 30 seconds. The
predefined macros expand as follows.

Example 1.58
MACRO CALL REPLACEMENT TEXT
__LINE__ 200
__FILE “filel.c”
__ DATE__ “Dec 23 1992”
__TIME__ “10:20:30"
__STDC__ 0

Example 1.59
inti;
void
func (void)

{
}

i= MS_

If the above C source program is compiled with small C memory mode option, then it is equivalent to
inti;
void

func (void)

{
}

i=1;

Page 24

Lexical Conventions

2. LEXICAL CONVENTIONS

2.1 CHARACTER SET

This section describes the lexica conventions adopted by CC665S. After preprocessing, the source
program is reduced to a series of tokens based on the lexical conventions.

‘C’ character st congdts of the letters, digits and punctuation marks having specific meaningsin the ' C’
language. ‘' C’ program is congtructed by combining the characters of the‘C’ character set into meaningful
satements.

The following characters can beused in ‘C’ to form congtants, identifiers and keywords:

English characters (A-Z, &2)

Numerds (0-9)

! # ‘ . % & () = ~
- A \ | , . / ? { }
< > : : + * [] _
SPACE(20H) TAB(09H) CR(ODH)

LF(OAH) FF(OCH) VT(0BH)

CC665S treats upper-case and lower-case letters as distinct characters.

Blanks(spaces), horizontal and vertical tabs, new-lines, line- feeds, carriage-returns, and form-feeds are
collectively called as white-space characters. Compiler considers them as separators of tokens and
ignores. These characters separate user defined items, such as congtants and identifiers, from other items
in the program.

Page 25

CC665S Ver.2.01 Language Reference

2.2 TOKENS

Ina‘C’ source program, the bas ¢ e ement recognized by the compiler isthe character group known asa
“token’. A token is source program text, the compiler will not attempt to further analyze into component
elements. The tokens recognized by CC665S are :

* |dentifiers
* Keywords
* Comments
* Congtants
* Operators

2.2.1 ldentifiers

An identifier is a sequence of letters, digits and underscores. The first character must be a letter or
underscore. By default, CC665S assumes maximum identifier length as 31. If an identifier exceeding this
length is specified, CC665S outputs a warning message and congders only the firs 31 characters.
However, CC665S provides acommand line option /SL for the user to specify the maximum length of an
identifier. User may specify alength ranging from 31 to 254, inclusive of both.

Following are examples of identifiers
Example2.1
i
count
number
end_of_file
Minus

SUBTRACT_THIS
_var

2.2.2 Keywords

Identifiers which are set aside by the compiler for its use are keywords. They cannot be redeclared. They
identify datatypes, storage class and statementsin CC665S. Keywords must be expressed in lower-case
letters. CC665S reserves the following words as keywords :

auto break case char const
continue default do double dse
enum extern float for goto
if int long register return

Page 26

Lexical Conventions

short sgned Szeof ddic Sruct
switch typedef union unsgned void
voldile while __accpass _asm __divbu
__divqu __divu _far __interrupt __modbu
__modqu __modu __mulbu __mulu __nfar
__hoacc

2.2.3 Comments

Comments, delimited by the character pairs (/*) and (*/), can be placed anywhere a white-space can
gppear. The text of a comment can contain any character except the close comment delimiter (*/).
Comments cannot be nested and cannot occur within string or character literd.

Example 2.2
i./* Thisisacomment */

ii. /* Comments/* nesting */ is not allowed */

The second line (i) would result in error.

Each comment is replaced by a single space.

2.2.4 Constants

Congantsin ‘C’ refer to fixed values, characters and character strings, which cannot be dtered by the
program. CC665S supports four types of constants - integrd, floating, character and strings.

2.2.4.1 INTEGRAL CONSTANTS

Integer congtants represent va ues themsalvesin hexadecimal, decima or octa format. The first character
of adecimad integra congtant must be adigit. A sequence of digits preceded by 0X or Ox is taken to be
hexadecimd integer. If the sequence of digits begin with O, it is octd; otherwise it is decimd integra
constant.

Valid Characters Prefix
Hexadecimal 0123456789ABCDEFab | 0X or Ox
cdef
Decimal 0123456789 None
Octal 01234567 0

Page 27

CC665S Ver.2.01 Language Reference

An integrd congtant may be suffixed by the letter ‘U or ‘U’ to specify that it is unsigned. It can aso be
auffixed by ‘I' or ‘L’ to specify that it islong.

Every integra congtant is given atype based on its value. The type of constant determines the conversion
to be performed on it when is used in an expression. Conversion rules are summarized below :

* Thetype of an integer congtant depends on its form, vaue and suffix. The type of an integer congtant
isthe firgt of the corresponding list in which its value can be represented.

Unsuffixed decimal :int, long int, unsigned long int
Unsuffixed octd or hexadecimd :int, unsgned int, long int, unsigned long int
Suffixed by theletter u or U :unsigned int, unsigned long int
Suffixed by the letter | or L :long int, unsgned long int
Suffixed by both the lettersu or U :unsigned long int
andlorL

The following table shows the range of vaues and the corresponding type for octd and hexadecimd
congtants in CC665S where int type is 16 bits long.

Hexadecimal range Octal range Type

0x0 to Ox7fff 0to 077777 int

0x8000 to Oxffff 0100000 to 0177777 unggned int
0x10000 to O 7fffffff 0200000 to 017777777777 long
0x80000000 to Oxffffffff 020000000000 to 037777777777 | unsigned long

The following table shows the range of values and the corresponding type for decima congtants.

Decimal range Type
0to 32767 int
32768 to 2147483647 long

2147483648 10 4294967295 | unsigned long

An integer constant can be forced to long type by appending the letter ‘I' or ‘L.

Page 28

Lexical Conventions

Some examples of integer constants are shown below:

Example2.3
Ox177AF /* Hexadecimal integer */
0167 /* Octal integer */
1826 /* Decimal integer */
0X1abe /* Hexadecimal integer */
10 /* Decimal long integer */
OxabL /* Hexadecimal long integer */
0333l /* Octal long integer */

2.24.2 FLOATING-POINT CONSTANTS

A floating-point constant has an integral part (decima part), afractiona part (the letter e or E), and an
optionaly signed integer exponent. Theintegral and fractiond parts consist of decima digits; one of which
can be omitted. Omission of ether decima point with the following digits or the E (exponent) is dlowed,
but both cannot be omitted.

Hoating-point constants may be of type float or double. Thetypeis determined by the suffix; F makesit
float, L or | makesit long double; otherwiseit is double. Long double congtants are treated similar to
double congants. The following are examples of floating-point constants:

Example24

1.0e10f
75
1.03e-12L
30
120e22
10e04
-0.0021

2.2.43 CHARACTER CONSTANTS

Character congtants are formed by asingle ASCII character enclosed within single quotation marks ().
Only one byte characters can be used for character constants. An escape sequenceisregarded asasingle
character and is therefore vaid in a character constant. To use a single quotation mark or backdash
character as a character constant, a backdash must precede them.

Page 29

CC665S Ver.2.01 Language Reference

Example 25

‘* Single blank space
‘Z Lower-casez

‘\n’ Newline character
‘\\' Backslash

‘\"* Single quote

2.2.4.4 STRING CONSTANTS

A string constant also called astring literal, isasequence of characters surrounded by double quotes (“..”).
A dring hastype “array of characters’ and storage class static and isinitiglized with the given characters.

Adjacent gtring literals are concatenated into a single gtring. After concatenation, a null byte ‘\O’ is
gppended to the dring so that programs that scan the string can find its end. All strings even if not
concatenated are appended with anull bytein order to indicate its end. String literals can contain escape
sequences.

To form a dring litera that takes up more than one line is to type a backdash and then to press the
RETURN key. The backdash causes the compiler to ignore the new-line character immediately following
the backdash. For example,

“Thisstring intwo linesis combined \
intoasinglelinestring.”

issame as

“Thisstring in two linesis combined into asingleline string.”

Two or more strings separated only by white space characters are concatenated into a single string. For
example, thefollowing Srings :

“Thisisfirst,
“ thisis second.”
will be concatenated as

“Thisisfirst, thisis second.”

Escape sequences can be used inastring literd . To use double quotation mark or backdash within astring
literal, escape sequences should be used.

Example 2.6
i. “One\\two”

ii. “\"Doit\"” Mike said.”

Page 30

Lexical Conventions

2.2.4.5 ESCAPE SEQUENCES

Strings and character congtants can contain “escape sequences’. Escape sequences are character
combinations representing whitespace and non-graphic characters. An escape sequence conssts of a
backdash (\) followed by aletter or by acombination of digits.

Escape sequences are typically used to specify actions such as carriage returns and tab movements on
terminalsand printers and to provide litera representations of non-printable characters and charactersthat
normaly have special meanings, such as the double quotation mark character (). Thefollowing tableligts
the CC665S escape sequences.

Escape sequence | Name
\n New line NL (LF)
\t Horizontd tab HT
\v Verticd tab VT
\b Backspace BS
\r Carriage return CR
\f Formfeed FF
\a Bdl (dam) BEL
' Single quote
\” Double quote
\\ Backdash
\ooo ASCII character in
octal notation
\xhh ASCII character in
hexadecima
notation

If abackdash precedes a character that does not appear in the above table, the backdash isignored and
the character isrepresented literally. For example, the pattern “\nT’ represents the character “n1’ inagtring
literd or character constant.

Page 31

CC665S Ver.2.01 Language Reference

The sequence \ooo alows the programmer to specify any character in the ASCII character set as a
three-digit octd character code. The hexadecima digits that follow the backdash (\) and the letter x in a
hexadecimal escape sequence are taken to be part of the construction of a single character for an integer
character congtant. The numerica vaue of the hexadecimad integer so formed specifies the vaue of the
desired character. Each hexadecimal escape sequenceisthelongest sequence of charactersthat condtitute
the escape sequence. For example the ASCII horizonta tab character can be given as the normd ‘C’
escape sequence \t or can be coded as\011 (octa) or \x09 (hexadecimal).

Atleast one digit must be specified for both octd and hexadecima escape sequence. For example \11,
\011, \x9 and \x09 are valid escape sequences.

2.2.5 Operators

Operators are symbols that specify how vaues are to be manipulated. Each symbal is interpreted as a
sangle unit caled a“token’. Thefollowing tebleslis *C’ unary, binary and ternary operators.

UNARY OPERATORS

! ~ - * & + ++ - sizeof
BINARY OPERATORS
+ - * / % << >>
< <= > >= == I= &
A && || : = +=
-= *= /= %= >>= <<= &=

TERNARY OPERATOR
?.

Four operators*, &, - and + gppear in both unary and binary tables shown above. Their interpretation as
unary or binary depends on the context in which they appesr.

Page 32

Program Structure

3. PROGRAM STRUCTURE

3.1 SOURCE PROGRAM

This section defines the termsthat are used later in the manud to describethe’ C’ language asimplemented
by CC665S and discusses the structure of ‘C’ programs.

A ‘' C’ source programisacollection of any number of directives, declarations, definitions and statements.
These congtructs are described briefly below. These constructs can appear in any order in a program.

DIRECTIVES

A directiveingructsthe ' C’ preprocessor to perform a specific action on the text of the program before
compilation. Directives are described in section dedling with PREPROCESSOR.

DECLARATIONSAND DEFINITIONS

A declaration establishes an association between the name and the attribute of avariable, function or type.
In“C’, dl variables must be declared before being used.

A definition of a variable establishes same associations as a declaration, but also causes storage to be
dlocated for the varidble. All definitions are declarations but not al declarations are definitions.

Page 33

CC665S Ver.2.01 Language Reference

Example: 3.1
constinta=10; /* Variable definitions */
inth; /* at external level */
externint function (int, char) ; /* Function declaration or prototype */
externlongc; /* Variable declaration at external level */
extern float f ;
main ()
{
intlocall; /* Variable definitions at */
char local2; /* internal level */
locall=local2; /* Executable statements */
c=b+a+f;

3.2 SOURCE FILES

A source program can be divided into one or more sourcefiles. A ‘C’ sourcefileisatext filecontaining dl
or part of a‘C’ program. During compilation individua source files must be compiled separately.

A sourcefile can contain any combination of directives, declarations and definitions. Items such asfunction
definitions or large data structures cannot be split between source files. The last character in asourcefile
must be new-line character or end of file.

A sourcefile need not contain executable statements. For example, it may be useful to place definitions of
variablesin one sourcefile and then declare referencesto these variablesin other sourcefilesthat use them.
This technique make definitions easy to find and change. For the same reason macros and #define
satements are often organized into separate includefilesthat may be referenced in sourcefilesasrequired.

Directivesin a source gpply only to that source file and its include files. Moreover, each directive applies
only to the part of thefile that followsthe directive. To gpply acommon st of directivesto awhole source
program the directives must be included in dl source files comprising the program.

Page 34

Program Structure

3.3FUNCTIONS AND PROGRAM EXECUTION

Every ‘C’ program hasaprimary (main) function that must be named main. Themain function servesasthe
garting point for program execution. It usualy controls program execution by directing the calls to other
functionsin the program. A program usualy stops executing at the end of main, although it can terminate at
other pointsin the program for a variety of reasons depending on the execution environment.

The source program usualy has more than one function, with each function designed to perform one or
more specific tasks. The main function cals these functions to perform one or more specific tasks. When
main function calls another function, it passes execution control to that function, so that execution beginsat
thefirg satement in the called function. Thisfunction returns control when areturn statement is executed or
when the end of the function is reached.

Functions can be declared to have parameters. When such a function cdls another, the called function
receives values from the caling function. These vaues are called arguments.

Arguments are passed between functions using cal by vaue method.

34LIFETIME AND VISIBILITY

Three concepts are crucid to understanding the rules that determine how variables and functions can be
used in a program. They are blocks (or compound statement), lifetime (sometimes called extent) and
vighility (sometimes called scope).

3.4.1 Blocks

A block is a sequence of declarations, definitions and statements enclosed within curly braces. There are
two types of blocks in ‘C’. The compound statement is one type of block. The other, the function
definition, consists of acompound statement comprising the function body plus the heeder associated with
the function (the function name, return type and forma parameters). A block may encompass other
blocks, with the exception that no block can contain a function definition. A block within other blocksis
said to be nested within the encompassing blocks.

Page 35

CC665S Ver.2.01 Language Reference

All compound statements are enclosed in curly braces. However everything enclosed within curly braces
do not congtitute a compound statement. For example, though the specification of array or structure
elements may appear within curly braces, they are not considered compound statements.

3.4.2 Lifetime

Lifetimeisthe period, during execution of aprogram, in which avariable or function exigs. All functionsin
aprogram exist a dl times during its execution.

Lifetime of a varigble may be globa or locd. If its lifetime is globd (a globd item), it has Sorage and a
defined vaue for the entire duration of a program. An item with alocd lifetime has storage and a defined
vaue only within ablock wheretheitem isdefined or declared. A loca item isdlocated new storage eech
time program enters that block and it loses its storage (and hence its value) when the program exits the
block.

3.4.3 Visibility

Vighility determines the portions of the program in which an item can be referenced by name. An item is
vigbleonly in portions of aprogram encompassed by its scope which may beredtricted to thefile, function,
block or function prototype in which it appears.

3.5NAMING CLASSES

Inany ‘C’ program identifiers are used to refer to many different kinds of items. Identifiers have to be
provided for functions, variables, formd parameters, union members and other items the program uses.
‘C’ dlowsto use the same identifier for more than one program item, as long as the rules outlined in this
section are followed.

The Compiler setsup naming classesto distinguish between theidentifiersused for different kinds of items.
The names within each class must be unique to avoid conflict, but an identical name can gppear in more
than one naming class. Thismeansthat the sameidentifier can be used for two or moreitems provided that
theitems are in different naming classes. The compiler resolves the references based on the context of the
identifier in the program.

The following list describes the kinds of items that can be named in *C’ program and the rules for naming
them :

Page 36

Program Structure

Statement labdls

Statement labels form a separate naming class. Each statement labe must be digtinct from dl other
gatement |abelsin the same function. Statement label s do not haveto be distinct from other names or [abd
namesin other functions.

Variables and Functions

The names of variables and functions are in a naming class with forma parameters and typedef names.
Therefore, variables and function names must be distinct from other namesin this classthat have the same
vighility. However, variables and function names can be redefined within function blocks.

Formal parameters

The names of forma parameters to a function are grouped with the names of the loca variables, so the
forma parameter names should be distinct from theloca variable names. Theforma parameters cannot be
redefined at thetop level of the function. However the names of theforma parameters may beredefined in
subsequent blocks nested within the function bodly.

typedef names

The names of types defined with the *typedef’ keyword are in a naming class with varigble and function
names. Therefore, typedef names mug be digtinct from dl variable and function names with the same
vighility as well as from the names of forma parameters. Like variable names, names used for typedef
types can be redefined within program blocks.

Tags
Structure, union and enum tags are grouped in asingle naming dass. Thesetags must be distinct from other
tags with the same visibility. Tags do not conflict with any other names.

Members

The members of each structure and union form anaming class. The name of amember must, therefore, be
unique within the structure or union, but it does not have to be digtinct from other names in the program,
including the names of members of different structures and unions.

Page 37

CC665S Ver.2.01 Language Reference

Example 3.2
struct name {
char * name;
inttype;
int scope;
} name;

Since dructure tags, structure members and variable names are in three different naming classes, the three
items named “name” in this example do not conflict and are digtinct.

3.6 DATA TYPES

CC665S supports severa basic data types and derived data types.

BASIC TYPES

There are severd fundamental types supported by CC665S. They include char, int, long, float and
double. Three gzes of integers are avallable namdy, short int, int, and long int. Both signed and
unsigned objectsof char andint typescan bedeclared. Theszeaswedl asthe smdlest and largest values
of each type are mentioned in section 4.2.

Objects of dl the above mentioned basic types can be interpreted as numbers. Therefore they will be
referred to as arithmetic types.

Typeschar and int of al szes, each with or without sign will collectively be cdled as integra types.
The typesfloat, double and long double will be caled as floating point type.

DERIVED TYPES

Besides basic types, thereis conceptually infinite class of derived types congtructed from the fundamental
typesin the following ways:

Arrays of objects of agiven type.

Functions returning objects of a given type,

Pointers to objects of a given type.

Structures containing a sequence of objects of various types.

Unions cgpable of containing any one of severd objects of various types.

Page 38

Declarations

4. DECLARATIONS

4.1 INTRODUCTION

Declarations specify the interpretation given to each identifier; they do not necessarily reserve storage
asociated with theidentifier. Declarationsthat reserve storage are called definitions. Declarationshavethe
form

declaration : [declaration_specifiers] [init_declarator_list] ;

declaration : __asm (string)

All *C’ variables must be explicitly declared before being used.

Declarators contain the identifiers being declared that may be modified with brackets ([]), asterisks (*) or
parentheses. Declaration specifiers congst of a sequence of type and storage class specifiers.

declaration_specifiers :
storage_class_specifier [declaration_specifiers]
type_specifiers [declaration_specifiers]
type_qualifiers [declaration_specifiers]

init_declarator_list :
init_declarator
init_declarator_list , init_declarator

init_declarator :
declarator
declarator = initializer

Page 39

CC665S Ver.2.01 Language Reference

4.2 TYPE SPECIFIERS

The type specifiers supported by CC665S are listed below :

void char int short enum
long float double sgned
unsigned sruct union typedef

The keywords signed and unsigned can precede any of theintegral types and can also be used done as
type specifiers, in which case they are understood as signed int and unsigned int respectively.

When used aone the keywordint isassumed to besigned int. When used aone, the keywordslong and
short are understood as long int and short int respectively. By default if only char is specified, it is
treated as signed char. However, if /J option is specified in the command line, default char istrested as
unsigned char by the compiler.

Thesigned char, signed int, signed short int and signed long int types, together with their unsgned
counterparts are called integral types. The float and double type specifiers are referred to as floating-
point type. Any of these integra and floating-point type specifiers can be used in a variable or function
declaration.

The keyword void hasthree uses:
1. void isused to declare afunction that returns no value,
2. To declare apointer to an unspecified type.
3. When void occurs aone within the parentheses following the function name, void indicates that
the function accepts no arguments.

The storage and range of vaues for fundamenta type are summarized below :

Type Storage Range of values
char lbyte |-128to 127
unsgned char 1lbyte | Oto255
short,int 2 bytes | -32,768 to 32,767
unsigned short,unsigned int 2 bytes | 0to 65,535
long 4bytes | -2,147,483,648 to 2,147,483,647
unsgned long 4 bytes | 0to 4,294,967,295
float 4 bytes | IEEE-standard notation 3.4e-38 to 3.4e+38
double 8bytes | 1.7e-308to 1.7e+308

Page 40

Declarations

The long double type specifier may also be used. It istreated similar to double type specifier.

4.3 TYPE QUALIFIERS

1. const

2. volatile

Types may aso be qudified, to indicate specid properties of the objects being declared. The type
qualifiers supported by CC665S are const and volatile.

The const type qudifier is used to declare an object as non-modifiable. The const keyword can be used
asaqudifier for any fundamentd or aggregate type. A typedef may be qudified by aconst type qudifier.
A declaration that includes the keyword const asaquaifier of an aggregate type declarator indicates that
each dement of the aggregate type is not modifiadle. If an item is declared with only the const type
qudifier, itstype istaken to be const int.

CC665S dlocates such variables in Code memory (ROM). The const type qudifier may be used only
with globd variables. If /WIN option is specified in the command line, then CC665S dlocates const
variablesin the ROMWINDOW region. If these variables are modified, warning messageisissued by the
compiler.

CC665S ignores const qudifier for local automatic variables and function parameters, after issuing a
warning message. However, if /WIN option is specified and function parameters are qudified with const,

no warning message is issued. If the const qudified function parameter is modified, warning message is
issued.

In case of dructure and union, tags cannot be qudified by const. Only struct/union variables can be
quaified by const. CC665S ignores const in case of structur e and union tags. The const qudifier dong
with the druct/union tags are taken as qudifier for the varidbles, if any, specified dong with the
sruct/union tag declaration.

Example4.1

const struct tag {
inta;
charb;
} var0;

struct tag varl ;
const struct tag var2 ;

Page 41

CC665S Ver.2.01 Language Reference

In the above example athough congt is used in the declaration of the struct tag ‘tag, it isignored. Thus
variables declared using this‘tag must be qudified by const in order to reside in code memory, however,
variables defined with thestruct tag ‘tag declaration are qudified by const. Thus, in the above example,
‘varl’ isnot qudified by const, but ‘varQ’ and ‘var2' are qudified by const.

Individua members of a structure cannot be qudified by congt.

Example 4.2

struct tagl {
inta;
const char b ;
}varl;

struct tagl var2 ;
In the above example dthough const is used in the declaration of the structure member ‘b’ it isignored
after issuing awarning.
A typedef identifier may be qudified by const.

Example4.3

typedef constint ca;
caconst_identifier ;

In the above example the typedefed identifier is qualified by const. Hence the variable ‘ const_identifier’
declared using the typedefed variable ‘ ca’ isdso qudified by const.

The volatile type qudifier declares an item whose vaue may legitimately be changed by something
beyond the contral of the program in which it appears.

Thevolatile keyword can be used in the same circumstances as const. An item may be both const and
voldile,

Items qudified by volatile will suppress optimization of expressons in which they are used.

Example 4.4

volatileint input ;
volatile char * key_ptr ;

In the above example, vaue of ‘input’” may change beyond the control of program. Similarly, the contents
of location pointed to by ‘key ptr’ may change beyond the control of program.

Page 42

Declarations

4.4 DECLARATORS
declarator :
[pointer] direct_declarator

direct_declarator :
[memory_function_qualifier_list] identifier
(declarator)
direct_declarator [constant_expression]
direct_declarator (parameter_type_list)
direct_declarator ([identifier_list])

pointer :

[memory_function_qualifier_list]* [type_qualifier_list]

[memory_function_qualifier_list]* [type_qualifier_list] pointer
type_qualifier_list :

type_qualifier

type_qualifier_list type_qualifier
memory_function_qualifier_list :

function_qualifier

memory_function_qualifier_list memory_model_qualifier

memory_model_qualifier
memory_function_qualifier_list function_qualifier

‘C’ language dlows a programmer to declare arrays of vaues, pointers to vaues and functions returning
vaues of specified types. A declarator must be used to declare these items.

A declarator is an identifier that may be modified by brackets ([]), asterisks (*) or parentheses (()) to
declare an array, pointer or function type respectively. Declarators appear in the pointer, array and
function declarations.

When a declarator consigts of an unmodified identifier, the item being declared has a badic type. If
aderisks appear to theleft of an identifier, thetypeis modified to apointer type. If theidentifier isfollowed
by brackets ([]), the type is modified to an array type. If theidentifier isfollowed by parenthesis, the type
ismodified to afunction type.

Example45

i. inttable[100];
ii. char*cp;
iii. long function (void) ;

In the above example, (i) declares an array of integers, named table, containing 100 values. (ii) declaresa
pointer to a character value, cp. (iii) declares afunction that returns along value and takes no arguments.

Page 43

CC665S Ver.2.01 Language Reference

A ‘complex declarator is an identifier modified by more than one array, pointer or function modifier.
Vaious combinations of array, pointer, and function modifiers can be applied to a single identifier.
However, adeclarator may not have the following illegal combinations :

1. Anarray cannot have function asits dements.
2. A function cannot return an array or afunction.

Example 4.6

i. int* (*fnarray [[) O) O ; [* correct */
i. int(*funcDO)I; I* error */

Inthe above example, (ii) isan error becauseit specifiesan array of pointersto functionsreturning an array
of integers.

4.4.1 Memory Model Qualifiers

Memory modd qudifiers can be used in a declaration, to explicitly specify the addressing type of the
vaiadle. _ far and __nfar arethetwo keywords supported by CC665S that can be used to specify the
addressing type of an object. A memory modd specifier affects the token immediately to it’s right.
Memory model qualifiers can qudify only objects and pointers to object.

Example4.7
int* _ farfvar; [* ‘fvar need not bein default segment, but pointsto an object of typeint
in default segment. */
int__far* fptr; [* ‘fptr isin default segment, pointing to an object of typeint that need
not be in default segment */
__farintevar; [* error, as__far cannot qualify atype specifier */

__far keyword can be used to qudify data, table and functions. If the object is qudified by const and
__far, storage will be dlocated for the object in any one of the Code Memory segments. Smilarly, if a
non-congt object is quaified by _ far, storage will be dlocated for the object in any one of the Data
Memory ssgments. Functions qudified by _ far will be alocated in any one of the Code Memory
segments.

__nfar keyword can be used to qudify functionsonly. If afunctionisquaifiedby _ nfar , itisalocatedin
the default segment. A function cannot be qudified with both __ far and __ nfar.

Structure and union, tags cannot be qudified by _ far. Only struct/union variables can be quaified by
__far. CCe65S issues error if sruct/union tags are quaified with __ far.

Page 44

Declarations

Example 4.8
struct __ far tagl { [* error */
inta;
charb;
} va0;
struct tag {
inta;
charb;

} var0;

struct tagl varl;
structtag2 _ farvar2; [* var2 isfar structure */

In the above example, CC665Sissueserror for struct ‘tagl’ declaration, asthestruct tagisqudified with
__far. Thevaridble ‘var2’ isqudified with __ far and therefore it is dlocated in any one of the Daa

Memory segments.
Individua members of a structure cannot be quaified by _ far.

Example 4.9
struct tagl {
int a;
char _far b;
} varl;
struct tagl var2 ;

In the above example dthough __ far isused in the declaration of the structure member ‘b, it is ignored
after issuing awarning.
A typedef identifier may be qudifiedby _ far.and __ nfar

Example4.10

typedef int__far FVAR;
FVAR far_identifier ;

In the above example the typedefed identifier ‘FVAR’ is qudified by _ far. Hence the variable
‘far_identifier’ declared using the typedef name ‘FVAR' isdso qudifiedby _ far.

Page 45

CC665S Ver.2.01 Language Reference

4.4.2 Function Qualifiers

CC665S supports the following function qudifiers.

1. _ accpass
2. __nhoacc
3. __interrupt

The above listed function qudifiers can qudify functions only. If they are used to qudify any other object,
eror isissued.

If afunction isqudified with __accpass, it informs the compiler that the first argument is available in the
Accumulator and the return value should be placed in the Accumulator. However, if the Sze of the firgt
argument isgreater than 2 bytesor thefirst argument isa structure/union, thefirst argument isnot placed in
the Accumulator. Smilarly, if the Sze of the return vaue is greater than 2 bytes or if the function returns
sructure/union, the return value is not placed in the Accumulator. If afunction is qudified with more than
one__accpass, error isissued.

Example4.11

int__accpassfnl(intargl); /* valueof arglisavailablein accumulator and the return value
will be placed in the accumulator */

int__accpassfn2 (longarg) ; [* thefirst argument value is not placed in the accumulator as
the size ismore than 2 bytes */

long __accpassfn3 (intarg) ; [* thereturnvalueisnot placed intheaccumulator asthesizeis
morethan 2 bytes*/

int__accpassvar ; [* error : asvar isnot afunction */

If afunctionisqudified with__noacc, it informs the compiler not to use accumulator for the first argument
and the return vaue. If afunction is qudified with more than one ___noacc qudifier, error isissued. If a
function isquaified withboth __accpassand __noacc, error isissued.

Example4.12
int__noaccfnl(intarg); * fnl will not assume that value of arg is
available intheargument. */
int__noacc __accpassfn2 (intarg) ; I* error : asafunction cannot be qualified with

both __accpassand __noacc */

If /REG option is specified in the command line, by default dl functions are assumed to be qudified with
__accpass, unlessthey are qudified with __noacc.

Page 46

Declarations

If afunction isqudified with __interrupt, it informs the compiler that the function is an interrupt routine
function. If afunction quaified with __interrupt has ether return vaue or takes any argument, warning is
issued and the __interrupt qudifier isignored. If a__interrupt qudified function is quaified with ather
__far or __nfar, error isissued.

Example4.13
void _interrupt fnl(); /* fnl will be treated as interrupt function */
int__interruptfn2 () ; /* warning will beissued and __interrupt will be ignored */

void __interrupt fn3 (intarg); /* warning will beissued and __interrupt will beignored */

4.4.3 Interpreting Declar ations

‘C’ programming language syntax for declaring objectsis unlike the declaration syntax of other languages.
The exact meaning of a complex ‘C’ declaration is not dways immediately apparent. A complex
declarator is an identifier quaified by more than one array, pointer or function modifier.

Ininterpreting complex declarators, brackets and parentheses (that ismodifiersto theright of theidentifier)
take precedence over asterisks (that is modifiers to the left of the identifier).

Brackets and parentheses have same precedence and associate from left to right. After the declarator is
fully interpreted, the type specifier is gpplied as the last step. By using parentheses default association
order can be overridden and a particular interpretation can be forced.

A smple way to interpret complex declaratorsis to read them from ingde out using the following steps :
1. Start with the identifier and look to the right for brackets or parentheses (if any).
2. Interpret these brackets or parentheses, then look to the |eft for asterisks.

3. If aright parenthesis is encountered at any stage, go back and apply rules 1 and 2 to everything
with in the parentheses.

4. Findly apply the type specifier.

Example4.14
char * (* (* cpvar)()[20] ;

N NANANNNNAN

7 642135

Page 47

CC665S Ver.2.01 Language Reference

In the example the steps are labeled and can be interpreted as follows:

1. Theidentifier cpvar isdeclared as
apointer to

afunction returning

apointer to

an array of 20 eements, which are
pointers to

char vaues.

NoOoOa~WD

Array of pointersto int values may be declared as shown below.

Example4.15
int* variable[5] ;

The following example shows how a pointer to array of int valuesis declared.
Example4.16
int (* var) [9] ;
Example4.17
char *fn (int, char) ;
In example 4.17, a declaration to afunction returning a pointer to achar, and which takes two arguments
asint and achar is specified.
A declaration for a pointer to function returning afloat and taking no argument is given below.

Example4.18
float (*fn1)(void) ;

A declaration for afunction returning a pointer to far memory is given below:
Example4.19

int_ far* ffn(); [* ffnisfunction returning afar pointer */

A declaration for a pointer to far function is given below:
Example4.20
int (_ far* pfn) () ; * pfnispointer to far function */

Page 48

Declarations

A dedaation for afar function returning a pointer to far memory is given below:
Example4.21

int__far* _ far ffnfptr () ; [* ffnfptr isafar function returning afar pointer */

45VARIABLE DECLARATIONS

This section describes the form and meaning of variable declarations.

Syntax :
[sc-specifier] type-specifier declarator[,declarator]

In particular, this section explains how to declare the following :
Smplevarigbles : Single vaue variables with integra floating-point type

Structures : Variables composed of a collection of vaues that may have different types

Unions . Variables composed of severd vaues of different types, which occupy the same
storage space

Arrays : Variables composed of a collection of eements with the same type

Pointers : Variables that point to other variables and contain variable locations (in the form of

addresses) instead of values,

4.5.1 Smple Variable Declarations

Syntax :
[sc-specifier] type-specifier declarator [,declarator]

The declaration of a smple variable specifies the variable name and type. It can dso specify the storage
cdass of the variable. The identifier in the declaration is the name of a variable. The type-specifier isthe
name of adefined data type.

A ligt of identifiers separated by comma can be listed to specify severa variablesin the same declaration.
Each identifier in the list names avariadle. All variables defined in the declaration have the same type.

Page 49

CC665S Ver.2.01 Language Reference

Example4.22

intx;

unsigned longint lvarl, Ivar2 ;

constintinit=-1;
int__ farfvar;

int__ far fvar, nvar;

4.5.2 Structure Declar ations
Syntax :

/*

/*

/*

/*

declaresasimpleinteger variable */
two variables unsigned long int typeis declared */

declares an int variable, qualified by const and
initialized to -1 */

declaresfvar asint variable that islocated in far data
memory */

declaresfvar asint variable that islocated in far data
memory , but nvar isin near memory*/

struct [tag] {member-declaration-list} [declarator [,declarator]...];

struct tag [declarator[,declarator]...];

A dructure declaration names a structure varigble and specifies a sequence of variable values (cdled
members of the structure) that can have different types. A variable of that structure type holds the entire

sequence defined by that type.

Structure declarations begin with the struct keyword and have two forms :

* In the firgt form, a member-declaration-list specifies the types and names of the structure members.

The optiond tag is an identifier that names the structure type defined by member-declaration-list.

* The second form uses aprevioudy defined structure tag to refer to astructure type defined el sewhere.
Thus member-declaration-list isnot needed aslong asthe definition isvisble. Declarations of pointers
to structures and typedefs for structure types can use the structure tag before the structure type is
defined. However, the structure definition must be encountered prior to any actua use of the structure

members, typedef or pointer.

In both forms, each declarator specifiesastructure variable. A declarator may aso modify the type of the
variable to a pointer to the structure type, an array of structures or a function returning a pointer to the
structure type. If tag isgiven, but declarator does not appear, the declaration congtitutes atype declaration

for agtructure tag.

Structure tags must be distinct from other structure / union / enum tags with the same visibility.

Page 50

Declarations

A member-declaration-list argument contains one or more variable or bit-field declarations.

Each variable declared in the member-declaration-list is defined as a member of the Structure type.
Vaiable declarations within the member-declaration-lis have the same form as smple variable
declarations, except that the declarations cannot contain Storage class specifiers or initidizers. The
member can have any variable type :basic, aray, pointer, structure or union.

A member cannot be declared to have the type of the structure in which it appears. However, amember
can be declared asapointer to the structure typein which it appears aslong asthe structure type has atag.
Thisfacilitates the creation of linked lists of tructures.

A bit-field declaration has the following form :
type-specifier [identifier] : constant-expression;

The congtant-expression specifies the number of bits in the bit-field. The type specifier may beunsigned
char or unsigned int. If the type specified is signed char, signed int, int or char, CC665S issues
warning message and trests them as unsigned. However, if /J option is specified no warning is issued for
char specified bit fields, asit istreasted as unsigned char. Congtant-expresson must be a non-negetive
integer value which takes values from 0 to 8 for unsigned char members and O to 16 for unsigned int
members. Array of bit-fidds, pointers to bit-fields and functions returning bit-fields are not dlowed. The
optiond identifier namesthe bit-field. Named bit-fields cannot have bit-width of 0. Unnamed bit-fieldscan
be used as dummy fidds for adignment purposes. An unnamed bit-field whose width is specified as 0
guarantees that storage for the member following it in the member-declaration-list begins on an integrd
boundary.

Each identifier in amember-declaration-list must be unique within thelist. However, they do not haveto be
digtinct from ordinary variable names or from identifiers in other member-declaration ligts.

Storage

Structure members are stored sequentialy in the order in which they are declared: the first member hasthe
lowest memory address and the last member the highest. Storage for each member begins on a memory
boundary appropriate to its type. Therefore, unnamed spaces (holes) may appear between the structure
membersin memory.

Page 51

CC665S Ver.2.01 Language Reference

Sequence of bits are packed astightly as possible. Consecutive bit-field members of type char are stored
in the same byte location, as long as their cumulative size is within character sze. Similarly, consecutive
bit-field members of typeint are stored in the same word location, aslong astheir cumulative sizeiswithin
integer size. If thetotal Size exceeds character Size for consecutive char bit field members, asaresult of a
new bit-field member, anew character isdlocated for the new bit-field member. Smilarly, if thetotd sze
exceedsinteger sizefor consecutive integer bit field members, asaresult of anew bit-field member, anew
integer isdlocated for the new bit-field member. If abit field member of type char isfollowed by another
bit fiedd member of typeint, or abit field member of typeint is followed by another bit fiedld member of
type char, storage for the new member starts from the next even address boundary.

Example4.23

i. structinv_type{
char item [40] ;
float cost ;
float retail ;
intitem_on_hand ;
intlead time;

} inv_vara, inv_varb, inv_varc;

This declares a structure type cdled inv_type and declares variablesinv_vara, inv_varb, inv_varc.
ii. structinv_typeinvntry[100] ;

The above examples declares a 100 dement array of structures of typeinv_type.

iii. struct symbol_table {
char *name;
int type;
unsigned int scope: 2;
unsignedintsign: 1;
unsignedint qualy : 1;
struct symbol_table * next ;

} *global ;

The above example declares a pointer to a structure of type symbol_table. The structure has a pointer to
itsdlf. It has three bit-fields and two other members.

Page 52

Declarations

iv. struct{
unsigned char char_hitl: 2;
unsigned char char_hit2: 4;
unsigned int int_hitl :8;
unsignedint int_hit2 :1;

}bit_field_str;

The above example declares a structure that has both char bit fidds and int bit fidds.

4.5.3 Union Declarations

Syntax :
union [tag] {member-declaration-list} [declarator [,declarator]...];
union tag [declarator[,declarator]...];

A union declaration names aunion variable and specifies variable values, caled members of the union, that
can have different types. A variable with union type stores one of the values defined by thet type.

Union declarations have the same form as Structure declarations, except that they begin with the union
keyword instead of the struct keyword. The same rules govern structure and union declarations.

Storage

The storage associated with a union variable is the storage required for the largest member of the union.
When asmadler member is stored, the union variable may contain unused memory space. All membersare
stored in the same memory space and art a the same address. The stored valueis overwritten eech time
avdueis assigned to a different member.

All membersin the union are aligned with the lower memory address of the Storage dlocated.

Example4.24
union union_type{
intintvar ;
char charvar ;
} union_var ;

The above defines an union with union_type, and declares a variable union _var, that has two members
intvar and charvar.

The maximum number of levels to which structures or unions may be nested is restricted to 16.

Page 53

CC665S Ver.2.01 Language Reference

45.4 Enumeration Declarations

Syntax :
enum [tag] {enum-list} [declarator [, declarator]...] ;
enum tag [declarator [,declarator]...] ;

An enumeration declaration gives the name of an enumeration variable and defines a set of named integer
congants (the enumeration set). A variable with enumeration type stores one of the vaues of the
enumeration set defined by that type. Theinteger congtants of the enumeration set have int type.

Variables of enum type aretreated asif they are of typeint. They may be used inindexing expressonsand
as operands of al arithmetic and relationa operators.

Enumeration declarations begin with theenum keyword, have thetwo forms shown &t the beginning of this
section. Thisis described below:

* In the firgt form, enum-list specifies the vaues and names of the enumeration s=t. (The enumHligt is
described in detall below.) The optiond tag isan identifier that names the enumeration type defined by
enum-list. The declarator namesthe enumeration variable. Zero or more enumeration variablesmay be
specified in asingle enumeration declaration.

* The second form of the enumeration declaration uses a previoudy defined enumeration tag to refer to
an enumeraion type defined e sewhere. The tag mugt refer to a defined enumeration type, and that
enumeration type must be currently visble. Since the enumeration type is defined el sewhere, enum-list
does not appear in this type of declaration. Declarations of pointers to enumerations and typedef
declarationsfor enumeration types can use the enumeration tag before the enumeration typeis defined.
However, the enumeration definition must be encountered prior to any actud use of the typedef
declaration or pointer.

In both forms of declaration, if a tag argument is given, but no declarator is given, then it conditutes a
declaration for an enumeration tag.
An enumtligt has the following form:

identifier [= constant-expression]

[, identifier [= constant-expression] ...]

Each identifier in an enumeration list names avaue of the enumeration set. By defaullt, thefirgt identifier is
associated with the vaue O, the next identifier is associated with vaue 1, and so on through the last
identifier in the declaration. The name of an enumeration congtant is equivaent to its vaue.

Page %4

Declarations

The optiona phrase = congtant-expresson overrides the default sequence of values. Thus, if identifier =
congtant-expression appears in enum-ligt, the identifier is associated with the vaue given by congtant-
expression. The congtant-expresson must have int type and can be negative. The next identifier in the list
isassociated with the value of congtant-expression + 1, unlessit isexplicitly associated with another value.

The following rules gpply to the members of an enumeration set :
* Two or more identifiers in an enumeration set can be associated with the same vaue.

* The identifiers in the enumeration list mugt be distinct from other identifiers with the same visihility,
including ordinary variable names and identifiersin other enumeration ligts.

* Enumeration tags must be digtinct from other enumeration, structure, and union tags with the same
vighility.

Example4.25

enum levels tag

{

start, /* value=0*/

primary, [* value=1*/

secondary, /* value=2%*/

final /* value=3*/
} levels;

This example defines an enumeration type named levels tag and declares avariable named levelswith that
enumeration type. The values associated with identifiers are shown in comments.

Example 4.26

enum constants

{

very low, /*vaue=0 */
low =10, /* vaue=10 */
medium, /* vaue=11 */

high = 20, /* vaue=20 */
very high [* vaue=21 */
b

const enum constants speed = high ;

In this example, a vaue from the set named congtants is assigned to a variable named speed. Since the
congtants enumeration type has dready been declared, only the enumeration tag is necessary.

Page 55

CC665S Ver.2.01 Language Reference

4.5.5 Array Declarations

Syntax :
type-specifier declarator [constant-expression] ;
type-specifier declarator [] ;

An array declaration namesthe array and specifies the types of its ement. It may aso define the number
of dementsinthearray. A variablewith array typeisconsdered apointer to thetype of the array elements.

Array declarations have two forms as shown in the syntax.

* In the firgt form, the congant-expresson argument within the brackets specifies the number of
elementsin the array. Each dement hasthe type given by type-specifier, which can be any type except
void.

* The second form omitsthe constant-expression argument in brackets. Thisform can beused only if the
array isinitidized, or declared asaforma parameter, or declared as areference to an array explicitly
defined esewhere in the program.

In both forms, declarator names the variable and may modify the type of a variable. The brackets ([])
following declarator modify the declarator to array type.

A multidimensiond array can be declared by following the declarator with a list of bracketed constant
expressions as shown below :

type-specifier declarator[constant-expression] [constant-expression]

Each congtant-expression in brackets defines the number of eements in a given dimension. In case of
multidimensiond array the firgt congtant-expresson can be omitted if it isinitidized or if it isdeclared asa
forma parameter or if it isareferenceto an array explicitly defined e sewherein the program. If the vaue
of the constant expression is zero, the compiler outputs an error message.

Arrays of pointersto various types of objects can be declared usng complex declarators.

Storage

The storage associated with an array type isthe storage required for dl of its eements. The eement of an
array are stored in contiguous and increasing memory locationsfrom thefirst e ement to thelast. No blanks
separate the array element in storage. Arrays are stored in row maor order. For example the following
array conssts of two rows with three columns each :

int list [2[3)] ;

Page 56

Declarations

Thethree columns of thefirst row are sored first, before the three columns of second row. Thismeansthat
the last subscript varies most quickly.

Limitations
* Thedzeof an aray isrestricted to 65535 bytes.

Example4.27
int values[25] ; /* declares an array variable named values with 25 elements each
having typeint */
long two_dim_array [2][10] ; /* declares a two dimensional array of long type having 20
elements.*/
struct tag
{
intivar;
long lvar ;

} array_of_structures[10] ;
/* Declares an array of structures having 10 elements. */

char *arr[25] ; /* declaresan array of 25 char pointers*/
char *arr[Q] ; /* compiler issues error message */

4.5.6 Pointer Declarations

Syntax :
type-specifier [memory_function_qualifier_list] * [modification-spec] declarator ;

A pointer declaration names a pointer variable and specifies the type of the object to which the varigble
points. A variable declared as a pointer holds a memory address.

The type-specifier gives the type of the object, which can be any basic, Sructure or union type. Pointer
variables can dso point to functions, arrays and other pointers.

By making type-specifier void, programmer can delay specification of the typeto which the pointer refers.
Such an itemisreferred to as a pointer to void (void *). A variable declared as a pointer to void can be
used to point to an object of any type. However, in order to perform operations on the pointer or on the
object to which it points, the type to which it points must be explicitly specified for each operation. Such
conversion can be accomplished with atype cas.

The modification-gpec can be ether const or volatile, or both. These specify, respectively, that the
pointer will not be modified by the program itsdf (const), or that the pointer may legitimately be modified
by some process beyond the control of the program (volatile).

Page 57

CC665S Ver.2.01 Language Reference

Example 4.28

char * volatile* const buffer ;
/* ‘buffer isalocation in ROM, whose content is constant. But the contents of the location pointed
to by ‘buffer may change beyond the control of program */

A congt modification-gpec aso qudifies the pointer to be in Code Memory (ROM). Each levd of
indirection in a pointer declaration must be qualified as congt if that indirection pointsto alocation in Code
Memory (ROM).

Example4.29

int* const ptr ; [* ptrisalocationin ROM, whaose content pointsto a RAM location */
int const * constiptr; /* iptrisalocationin ROM, whose contentsalso point to alocationin ROM */

The declarator names the variable and can include a type modifier. For example, if declarator represents
an aray, the type of the pointer is modified to pointer to array.

A pointer can dso be qudified asafar pointer by specifying __ far keyword immediately toit’sleft. A far
pointer contains a far address of an object. Each leve of indirection in a pointer declaration must be
qudified as__far if that indirection points to afar memory location.

Example 4.30

int* _ farfptrl; /* fptrlisalocation in far segment, whose content pointsto an
object in default segment */

int__ far* fptr2; /* fptr2 isalocation in default segment, whose content pointsto
an object in far segment */

int__far* _ farfptr3; /* fptr3isalocation in far segment , whose contents also point
toalocationin far segment */

Storage

The amount of storage required for an address depends on the memory modd selected. If the pointer
points to near or effective near memory, the size of the pointer is 2 bytes. If the pointer pointsto far, nfar,
xnear, effective xnear memory or large memory, the size of the pointer is 4 bytes.

Example4.31
char *string ; [* apointer to character named string */
long *arr_of pntrs[10] ; [* array of pointersto long */
void (*pf)(int) ; [* pointer to afunction returning no values. The function

takes an integer argument */
struct inv_type *left, *right; /* declarestwo pointersto astructure of inv_type*/
char **p; [* declares apointer to pointer of characters*/

Page 58

Declarations

4.6 FUNCTION DECLARATIONS AND PROTOTYPES

Syntax :
[sc-specifier] [type-specifier] declarator([declarator] [[,declarator]...])

A function declaration aso cdled afunction prototype establishes the name and return type of afunction
and may specify the types, forma parameter names and number of arguments to the function. A function
declaration does not define the function body. It smply makesinformation about the function knownto the
compiler. Thisinformation enables the compiler to check the types of the actud argumentsin ensuing cals
to the function.

If the expression that precedes the parenthesized argument list in a function cal conssts soldy of an
identifier, and if no dedlarationisvishblefor thisidentifier, theidentifier isimplicitly declared exactly asif, in
the innermost block containing the function cal. This implicit declaration is visble only in thet particular
block.

The sc-specifier represents a storage-class specifier; it can be either extern or static.

The type specifier gives the function return type and the declarator names the function. If type specifier is
omitted, the function is assumed to return avalue of typeint.

The forma parameter is described in subsection 4.6.1. The fina declaration-list represents further
declaration on the same line. These may be other functions returning vaues of the same type as the first
function or declarations of variables whose type is same as the firg function' s return type. Each such
declaration must be separated from its predecessors and successors by a comma.

4.6.1 Formal Parameters

Formal parameters correspond to the actua parameters that can be passed to a function. In a function
declaration, parameter declaration establishes the number and types of the actud arguments. They can
adso include identifiers of the forma parameters. These parameter declaration influence the argument
checking done on function cals that gppear before the compiler has processed the function definition.

A patid lig of forma parameters may be declared using the above syntax. Theforma parameter list must
contain & least one declarator. Variable number of parameters may be indicated by ending the list with a
commarfollowed by three periods(,...) referred to asthe“dlipss notation’. A function isexpected to have
a least as many arguments as there are declarators or type specifiers preceding the last comma.

Page 59

CC665S Ver.2.01 Language Reference

Example 4.32

int functionl (int number_of_items,...) ;

Structure or Union variables may aso be passed as actua arguments to functions. The forma parameter
list may aso contain parameters of structure or union type.

Example4.33

int function2 (struct a_tag arg, union v_tag value) ;

Identifiers used to name the forma parametersin the prototype declaration are descriptive only. They go
out of scope at the end of the declaration. Therefore, they need not beidenticd to theidentifiersusedinthe
declaration portion of the function definition. Using the same names may enhance readability, but this use
has no other sgnificance.

4.6.2 Return Type
Functions can return vaues of any type except arrays and functions.

Example 4.34

struct tag
{
inta;
longb;
} input_structures[10] ;

struct tag
get_structure (int value)

{
}

return (input_structures [value]) ;

4.6.3 List Of Formal Parameters

All dements of the forma-parameter-list argument gppearing within the parentheses following the function
declarator are optional.

Syntax :
[type-specifier] [declarator][,...][,..-]]]

Page 60

Declarations

If forma parameters are omitted in the function declaration, the parentheses should contain the keyword
void to specify that no arguments will be passed to the function. If the parentheses are left empty, no
information about whether arguments will be passed to the function is conveyed and no checking of
argument types is performed.

A declardion in the forma parameter list can contain only the auto storage class specifier. If the type
specifier isincluded, it can specify the type name for any basic type or pointer type. The declarator can be
formed by combining a type specifier, plus the gppropriate modifier with an identifier. Alternatdly an
abstract declarator, that isadeclarator without aspecified identifier, can be used. At section 4.10 abstract
declarators are explained.

Example4.35
void function (void) ; /* declares afunction with no return value and no arguments */
long fn (int, char) ; /* declares afunction, which takes two arguments of int and

char type and which returnsavaluelong */

char *strtok(char §[],char c) ; /* declaresafunction which returns a pointer to character
and takes two arguments char array and char */

struct inv_type*sfn () ; /* declares afunction that returns a pointer to a structure of
typeinv_type and the number of arguments and argument
types are undefined */

4.6.4 Memory Model Qualifiers For Functions

A function canbequdifiedas__far or __nfar. Functionsqudifiedwith __far may not be placed in defaullt
segment. These functions are cdled through large addressing. Functions qudified with __nfar are placed
in default segment. They too are called through large addressing, but their segment addressisaways0. A
function qudified with __far cannot call anear function. However, it can cdl afunction that isqudified with
gther _ far or _ nfar. Functions that are not qudified with _ far can cal near, _nfar and _ far
functions. Therefore, if afunction that isqudified with__far hasto cal anear function, thenit hasto cdl a
nfar qudified function, which in turn cals a near function.

Example: 4.36

int__ farffn();
intnfn() ;
int__nfarnffn () ;

Page 61

CC665S Ver.2.01 Language Reference

int_ farffn()
{

nfn(); /* error : afar function cannot call near functions*/
nffn () ;

}

int_nfar nffn ()

{

nfn(); /* nfar functions can call near functions*/
nffn () ;

}

4.6.5 Function Qualifiers For Functions

CC665S supports __accpass, __noacc and __interrupt keywords that can qudify functions only.
When afunction is qudified with __accpass, the firs argument and the return vaue are placed in the
Accumulator. However, if /REG option is specified dl functions are assumed to be qudified with
__accpass, except those that are qualified with __noacc. If afunction is quaified with both __accpass
and __noacc, eror isissued.

__interrupt keyword can be used to qudify afunction as an interrupt function. These functions cannot
take or return values.

4.7 STORAGE CLASS SPECIFIERS

The storage class of avariable determines whether theitem has aglobd lifetime or locdl lifetime. An item
with aglobd lifetime exigts and has a vaue throughout the execution of the program.

All functions have globd lifetimes.

Vaiableswith locd lifetime are dlocated new storage each time execution control passes to the block in
which they are defined. When execution control passes out of the block, the variable no longer has
meaningful vaues

CC665S provides the following 5 storage class specifiers.

auto
datic
extern
typedef
register

ks wbdpE

Page 62

Declarations

Items declared with auto storage class specifier havelocd lifetimes. Items declared with static or extern
specifier have globd lifetimes.

The typedef specifier does not reserve storage and is caled a storage class specifier only for syntactic
convenience. It isdescribed in section 4.9.2.

The register storage class specifier causes the compiler to store the varidble in a regider, if possble.
Register storage accel erates access time and reduces code size. Variables declared withr egister storage
class have the same vighility as auto variables.

If registers are not available when the compiler encounters aregister declaration, the variableis givenauto
storage class and treated accordingly. For variables declared asr egister, the address operator (unary &)
cannot be applied.

Example 4.37

register int count ;
register index ;

The storage class specifiers have distinct meanings because storage class specifiers affect the vigihility of
functions and variables as well astheir gorage class. The term vishility refers to the portion of the source
program in which the function or variable can be referenced by name. Anitem with aglobd lifetime exists
throughout the execution of the source program, but it may not be visblein al parts of the program.

The placement of variable and function declarations within source files dso affect storage class and
vighility. Declarations outside al function definitions are said to gppear at the externd level; declarations
within function definitions appear a the internd level.

The exact meaning of each storage class specifier depends on two factors :

* Whether the declaration appears a the externd or internd level

* Whether the item being declared is variable or function.

The following subsactions describes the meaning of storage class specifiersin each kind of declaration and

explain the default behavior when the storage class specifier is omitted from a variable or function
declaration.

4.7.1 Variable Declar ations At The External L evel

In variable declarations at the externd leve (that is, outside al functions), the static and extern storage
class specifiers can be used or the storage class specifier can be omitted entirely. The storage class
specifier auto cannot be used at the externa level.

Page 63

CC665S Ver.2.01 Language Reference

Variable declarations at the externd level are either definitions of variables (defining declarations) or
references to variables defined € sawhere (referencing declarations).

An externd varigble declaration that dso initidizes the variable is a defining declaration of the varigble.
A definition at the externd leve can take severd forms:

* A varidble declared with the static storage class specifier is a definition of that variable. Both const
and non-cong static variable can be initialized with a constant-expression. For example satic int X;
and congt static int y = 10; are congdered definitions of varigbles‘x” and 'y’

* A vaiadle that is explicitly initidized at the externd leve are definitions of that varidble. CC665S
dlowsinitidization of both const and non-const specified variables at the externd leve. For example,
congt int i =10 and int y = 20 are the definitions of the variable‘i’. and 'y’ respectively.

Once avariable is defined a the externd levd, it is visble throughout the rest of the source filein which it
appears. Thevariableisnot visble prior to itsdefinition in the same sourcefile. Also, itisnot visblein other
source files of the program, unless areferencing declaration makesit visble, as described below.

A variable can be defined only once at the externd level. If static storage classis used, another variable
can be defined with the same name and static storage class in a different source file. Since each datic
definition is visible only within its own source file, no conflict occurs.

The extern storage class specifier declares a reference to a variable defined elsewhere. The extern
declaration can be used to make adefinition in another sourcefilevisble or to make varigble visble before
its definition in the same source file. The extern declaration makes a variable visble throughout the
remainder of the source file in which the declaration occurs.

For an extern reference to be valid, the variable must be defined only once at the externd level. The
definition can bein any of the source files that form the program.

One specid case is the omisson of both the storage class specifier and the initidizer from a variable
declaration at the externa leve; for example, the declaration int & is a vaid externd declaretion. This
declaration can have one of two different meanings depending on the context:

* |f there is an externd declaration of a variable with the same name esawhere in the program, the
current declaration is assumed to be a reference to the variable in the defining declartion as if the
exter n storage class specifier has been used in the declaration.

Page 64

Declarations

* I there is no externd declaration of a variable e'sewhere in the program, the declared variable is
dlocated gorage at link time. Thiskind of varidble is known as commund variable. If more than one
such declaration appears in the same program but in different sourcefiles, storage is alocated for the
largest size declared for the variable. For example if filel contains the declaration int i; and file2
containsthe declaration long i; and filel and file2 form part of asame program, then storage space for
along vdueisdlocaed for ‘i’ a link time.

Example 4.38

I* FILEL*/
externint globa_variable; I* reference to global_variable defined below */

main ()

{
global_variable=global_variable+ 100;
filel function();

}
int global_variable; /* definition of globa_variable*/

filel function ()

{
file2 function () ;

globa_variable-=100;
}
I* FILE2*/
externint globa_variable; [*referenceto global_variable*/
static int file2variable ; [*definition of file2variable, file2variable visible only in FILE2 */

file2_function ()

{
global_variable+=10;
return;

4.7.2 Variable Declarations At The Internal Level

The storage class specifiersauto, exter n and static can be used for variable declarations a internd level.
When storage class specifier is omitted from such a declaration, the default storage class specifier isauto.

Page 65

CC665S Ver.2.01 Language Reference

Thelocd storage class specifier declaresavariablewith alocd lifetime. An auto varigbleisvisbleonly in
theblock inwhichit isdeclared. Declarations of auto variables can indudeinitidizer. Snceauto varigbles
arenct initidized automaticaly, either they should beinitidized explicitly or should be assigned initid vaues
using statements within the block. The vaues of uninitidized auto variables are undefined.

A static locd variable can beinitidized with the address of any externd or static item, but not with the
address of anon satic auto item, because the address of an auto item is not a constant.

A variable declared with thestatic storage class a theinternd level hasaglobd lifetime but isvisble only
within the block in which it isdeclared. Unlikeauto variables, static variables keep their vaues upon exit
from the block. A const qudified datic varigble is initidized only once, when the program execution
begins, it is not initidized each time the block is entered.

A variable declared with theexter n storage class specifier isareference to avariable with the same name
defined at the externd leve in any of the source files of the program. The internd extern declaration is
used to mekethe externd level variable definition visblewithin the block. Unless otherwise declared at the
externa level, avariable declared with the*extern’ keyword at theinternd leve isvisible only inthe block
inwhich it is declared.

Example 4.39
/********* FILEl **********/
main ()
{
externint a; I* reference to‘a definedin FILE2 */
staticintb; * global lifetime, visible only within thisfunction */
intc=0; I* default storage classis auto, initialized to zero each time control
entersthisfunction */
file2();
}
/************FILEZ************/
inta;
intc;
file2 ()
{
inta; I* Globd ‘@ isredefined, global ‘a isno longer visible*/
staticint* d=&¢c; I* Address of global ‘c’ is used to initidize ‘d’.
Initializationisnot done each time control entersthe function,
it isdone only during the beginning of execution */
a=c
}

Page 66

Declarations

4.7.3 Function Declarations At The Internal And External Levels

Function declarations can have either thestatic or exter n storage class specifiers. Functionsdways have
globd lifetime.

Thevishility rulesfor functions vary dightly from the rules for variables asfollows :

* A function declared to be static isvisble only within the source filein which it is defined. Functionsin
the same sourcefile can cdl static functions, but functionsin other sourcefiles cannot. Another static
function with the same name in a different source file can be used without conflict.

* Functions declared as extern are vishle throughout al the source files that make up the program,
unlessit islater redeclared as gatic. Any function can cdl an extern function.

* Function declarations that omit the storage class specifier areextern by defavllt.

4.8 INITIALIZATION

Syntax :
= initializer

A variablecan beset to aninitid vaue by goplying aninitidizer to the declarator in the variable declaration.
The vaue or vaues of the initidizer is assigned to the variables. An equa sgn (=) precedes the initidizer.

The fallowing rules goply for initidization :

* Both congt and non-congt qualified variables declared at the externa level can beinitidized. If const
qudified varigbles are not initidized a externd leve, they are assgned vaue O.

* Variablesdeclared with auto storage class specifier areinitiaized each time control passesto the block
inwhich they are declared. If aninitidizer isomitted from the declaration of an auto variable, theinitid
vaue of the variable is undefined. Both aggregate (array, structure and unions) and non aggregate
variables can beinitidized.

Page 67

CC665S Ver.2.01 Language Reference

* The initid vaues for externd variable declaration and for dl Satic variables, whether externd or
internal, must be congtant expressions. Either congtant or variable values can be used to initidize auto
variables.

* Thecong qudifier dso causesanitemto be placed in Code Memory (ROM). Stringsand values used
for initidization are placed in Code Memory.

Example 4.40

char *volatileinput_buf ;
const int integer_varl, integer_var3;
int integer_var2;

longlong_var =4; /* CORRECT */
char * err_ptr = “pointer” ; /* ERROR */

const char * error_ptr = “pointer” ; /* CORRECT*/
const char * const ptr = “pointer”; /* CORRECT */
char * volatile* const buffer = &input_buf ; /* CORRECT */
constint * var_ptr = &integer_varl; /* CORRECT*/
int* const var_ptrl = &integer_var2 ; /* CORRECT */

const int * const var_ptr2 = &integer_var3; /* CORRECT */

Thefollowing subsections describe how to initidize varigbles of fundamenta, pointer and aggregete types.

4.8.1 Fundamental And Pointer Types

Syntax :
= expression

The vaue of expression is assigned to the variable. The conversion rulesfor assgnment apply. Refer Sec
5.31.

Aninterndly declared static variable can only beinitidized with acongtant vaue. Since the address of any
externdly declared or static variable is congtant, it may be used to initidize an interndly declared etic
pointer variable. However the address of an auto variable cannot be used as an initidizer because it may
be different for each execution of the block.

Page 68

Declarations

Example4.41
long lv=100; /* lvisinitialized to the constant value 100 */
static constint * const scp=0; /* The pointer scpisinitialized to zero */
intx;
int* consty = &x; /* The pointer y isinitialized with address of x */
intz=10; [* datamemory variable zisinitialized to 10 */
constintm; [* by default misinitialized to 0 */
func ()
{
intlocal=10; /* legal initialization */
staticint local =100
int*p=&z; * valid, address of global variable can be used in

initialization */
staticint *const Ip=&locall; /* invalid, address of local variables cannot be used to
initialize astatic variable*/

4.8.2 Aggregate Types

Syntax :
= {initializer-list}

Theinitidizer-lig isalig of initidizers separated by commeas. Each initidizer in the ligt is @ther a congtant
expresson or an initidizer list. Therefore, an initidizer-list enclosed in braces can gppear within another
initidizer-lig. Thisform is useful for initidizing aggregate members of aggregeate type.

For eech initidizer-ligt, the vaues of the constant expressions are assgned, in order, to the corresponding
members of the aggregate variable. When an union is initidized, initidizer-vaue is assgned to the firgt
member of the union.

If initidizer-list has fewer vaues than an aggregate type, space is reserved for the remaining members or
elements of the aggregate type. If initidizer-list has more vaues than an aggregate type, an error results.
These rules gpply to each initidizer-ligt, aswell asto the aggregate as awhole.

Example 4.42
intx[] ={123} ;

The above example declares and initidlizes ‘X' as an one-dimensond array with three members, since no
szeis gecified and there are three initidizers.

Page 69

CC665S Ver.2.01 Language Reference

Example 4.43
longy [4][3] ={
{li 41 7}!
{2,5, 8},
{3,6, 9},

}s

is a completely-bracketed initidization: 1,4 and 7 initidize the first row of the array y[0] namdy y[0][0],
y[O][1] and y[Q][2]. Likewise the next two lines initidize y[1] and y[2]. The initidizer ends early and,
therefore, space is reserved for the dements of y[3]. Precisdy the same effect could have been achieved
by

Example4.44
longy [4][3] ={ 1,4,7,25,8,36,9} ;

Theinitidizer for'y’ beginswith theleft brace, but that for y[O] does not; therefore, three dementsfromthe
list are used. Likewise the next three are taken successively for y[1] and y[2].

Theinitidization
Example 4.45
constlongy [4][3] ={ {1},{2}.{3}.{4} } ;

initidizes the first column of the array, namely y[O][0], y[1][O], y[2][0] and y[3][O] with 1,23 and 4
respectively and reserves spacefor therest. Asthe variableisqualified with const, theremaining locations
areinitidized to 0.

4.8.3 String Initializers

Syntax :
= “characters”

An array of characters can be initidized with atring literd. For example,

Example 4.46
char str_arr [] ="“abc” ;

Page 70

Declarations

initidizes str_arr as a four dement array of characters. The fourth dement is the null character which
terminatesdl gtring literds. If array szeis specified and the string islonger than the specified array size, the
extra characters are smply ignored and a warning message is displayed. For example, the following
declaration initidizes str_arr as athree eement character array.

Example4.47
const char str_arr[3] = “abcd” ;

Only the firg three characters of the string are assgned to ‘str_arr’. The character ‘d’ and the string
terminating null character are discarded. This creates an unterminated string and a warning message is
generated indicating the condition. If the string is shorter than the specified array Size, paceis kept asde
for the remaining dements of the array.

4.9 TYPE DECLARATION

A dructure or union type declaration definesthe name and members of astructure or union type. Thename
of adeclared type can be used in variable or function declarationsto refer to that type. Thisisuseful if many
variables and functions have the same type.

A typedef declaration defines atype specifier for atype. A typedef declaration can be used to form shorter
or more meaningful names for types adready defined by or for types declared by the programmer.

4.9.1 Structure And Union Types

Declarations of structure and union types have the same generd form as variable declarations of those
types. However, structure and union type declarations and structure and union variable declarations differ
in the following ways :

* |n dructure and union type declarations variable is omitted.
* In structure and union type declaration tag is required; it names the structure or union type.
* The member declaration list defining the type must gppear in the structure and union type declaration.

Page 71

CC665S Ver.2.01 Language Reference

Example 4.48

struct tag {
intx;
char arr[20] ;
b

The above example declares a structure type named tag.

4.9.2 Typedef Declarations

Syntax :
typedef type-specifier declarator[,declarator]...;

A typedef declaration is andogousto a variable declaration except that the ‘typedef’ keyword replaces
a storage class specifier. A typedef declaration is interpreted in the same way as a variable or function
declaration, but the identifier, instead of assuming the type specified by the declaration, becomes a

synonym for the type.
A typedef declaration does not create types. It creates synonyms for existing types, or names for types

that could be specified in other ways. Any typeincluding pointer, function and array types can be declared
with typedef. A typedef name can be declared for a pointer to a structure or union type aso.

Example 4.49
typedef int fixed_point ; [* “fixed_point’ is synonym for ‘int'’. Therefore declaring
fixed_point x ; isequivalent to declaring int x ;*/
typedef struct {
floaty ;
long X ;
} COMPLEX ;
COMPLEX *sp;

Declares COMPLEX as a dructure type with 2 members. COMPLEX can be used in further
declarations.

COMPLEX *sp; /* declares a pointer sp to the structure of type COMPLEX */

Page 72

Declarations

4.10 TYPE NAMES

A type name specifiesaparticular datatype, in addition to ordinary variable declarations and defined type
declarations, type names are used in three contexts :

* Intheforma parameter ligt of function declarations (prototypes)
* Intype casts
* In Szeof operations.,

Formal parameter ligts are discussed in section 4.6.1.

Thetype namesfor fundamenta, structure and union types are smply the type specifiersfor thosetypes. A
type name for the pointer, array or function type has the following form:

type-specifier abstract-declarator

An abstract declarator is a declarator without an identifier, consisting of one or more pointer, array or
function modifiers. The pointer modifier (*) aways precedes the identifier in a declarator; array ([]) and
function (()) modifiers dways follow the identifier. Knowing this, one can determine where the identifier
would appear and interpret the declarator accordingly.

Abdtract declarators can be complex. Parentheses in a complex abstract declarator specify a particular
interpretation, just asthey do for the complex declarators in declarations. The type specifiers established
by typedef declarations aso qualify astype names.

Example 4.50
int*; I* type name for pointer toint */
long (*)[5] ; I* type name for a pointer to an array of long elements */
int (*)(void) ; I* typename for apointer to afunction, with no arguments and returning int

type. */

4.11 FUNCTIONS

A function is an independent collection of declarations and statements, usudly designed to perform a
specific task. ‘C’ programs have atleast one function, the ‘main’ function, and can have other functions.
The following subsections describe how to define, declare and cdll *C’ functions.

Page 73

CC665S Ver.2.01 Language Reference

4.11.1 Function Definitions

Syntax :
[sc-specifier][type-specifier] declarator([formal-parameter-list])
function-body

[sc-specifier][type-specifier] declarator([identifier-list])
[parameter-declarations]
function-body

[sc-specifier] [type-specifier] declarator([declarator] [,declarator]...])
function-body

A function definition specifies the name, forma parameters and body of a function. It dso Sipulates the
return type and storage class of the function.

4.11.1.1 STORAGE CLASS

The sc-specifier in afunction definition givesthe function either exter n or static storageclass. If afunction
definition does not include a storage class oecifier, the storage class specifier defaultsto extern.

A function with gatic Sorage dassisvisble only inthe sourcefilein which it is defined. All other functions
whether they are given exter n sorage dlassexplicitly or implicitly, are visble throughout dl the sourcefiles
that make up the program.

If static storage classisdesired, it must be declared on thefirst occurrence of the declaration (if any) of the
function, and on the definition of the function.

4.11.1.2 RETURN TYPE AND FUNCTION NAME

The return type of a function establishes the Sze and type of the vaue returned by the function and
corresponds to the type-specifier in the syntax of the function definition. The type can specify any basic
type. If atype specifier is not included, the return type is assumed to be int.

Page 74

Declarations

Thedeclarator isthe function identifier, which can be modified to apointer type. The parenthesisfollowing
the declarator establishes the item as a function.

The return type given in the function definition must match the return type in declarations of the function
esawhere in the program. Return type of a function is used only when the function returns a vaue. A
function returns a vaue when a return stlatement containing an expression is executed. The expresson is
evauated, converted to the function return value type, if necessary, and returned to the point at which the
function was called. If no return statement is executed or if the return statement does not contain an
expression, the return vaue is undefined.

If ‘void’ keyword is used as a type specifier, then the function cannot return avalue.

4.11.1.3 FORMAL PARAMETERS

Syntax :

forml:
[sc-specifier][type-specifier] declarator([formal-parameter-list])
function-body

form2:

[sc-specifier][type-specifier] declarator([identifier-list])
[parameter-declarations]

function-body

Formal parameters are variables that recelve vaues passed to afunction by acal. Informl of syntax, the
parentheses following the function name contain complete declarations of the forma parameters. The
formd-parameter-list is a sequence of forma parameter declarations separated by commeas.

In form2 of a function definition the forma parameters are declared following the closing parentheses,
immediately before the beginning of the function body. In this form, the optiond identifier-list isaligt of
identifiers that the function uses as the names of formal parameters. The order of the identifiersin the list
determine the order in which they take on vauesin the function call. The identifier-list conssts of zero or
more identifiers, sparated by commas. The list must be enclosed in parentheses, evenif it isempty. The
parameter-decl aration establishes the type of the identifiersin form2.

If no arguments are to be passed, then the list of forma parameters can be replaced by the keyword
‘void'.
Forma parameter declarations specify the types, szes and identifiers of vaues stored in the forma

parameters. In form2 these have the same form as other variable declarations. In form1 each identifier in
the formal-parameter-list must be preceded by its appropriate type specifier.

Page 75

CC665S Ver.2.01 Language Reference

Example:4.51

/* function is defined in form1 */
void forml1(long a, long b, long ¢)
{

}

/* function is defined in form2 */
void form2 (a,b,c)

longb,c;

longa;

{
}

return ;

return ;

The order and type of forma parameters must be samein dl the function declarations, if any, and in the
function definition. The types of the actud argumentsin calsto afunction must be assgnment compatible
with thetypes of the corresponding formal parameters. A formal parameter can have basic or pointer type.

The only storage class dlowed for aforma parameter is auto. Undeclared identifiers in the parentheses
following the function name have a default typeint.

The identifiers of the forma parameters are used in the function body to refer to the value passed to the
function. Theseidentifiers cannot be redefined ingde the function body, &t thetop level. However, they can
be redefined in the inner blocks.

Inform2 only identifiers gppearing in the identifier list can be declared asforma parameters. In form2 the
forma parameter declarations can be in any order.

Thecompiler, if necessary, performstheusud arithmetic conversion on esch parameter. After conversion,
no formd parameter is of type char, because dl char declared forma parameters are converted to type
int.

4.11.1.4 FUNCTION BODY

A function body is acompound statement containing Statements that define what the function does. It may
aso contain declarations of variables used by these statements.

All variables declared in a function body have auto storage class unless otherwise specified. When the
function is cdled, storage is created for the loca variables. A return statement containing an expresson
must be executed ingde the function body if the function isto return avaue.

Page 76

Declarations

4.11.2 Function Prototypes

A function prototype declaration specifies the name, return type and storage class of afunction. It can dso
edtablish types and identifiers of some or dl of the arguments. The prototype has the same form as the
function definition, except that it isterminated by asemicolon immediately following the dlosing parenthesis
and therefore has no body.

If acal to afunction precedesits declaration or definition adefault prototype of the function is crested by
the compiler, giving it “int” return type. The types and the number of arguments used are the basis for
declaring the formd parameters. Thus a cdl to a function is an implicit declaration, but the prototype
generated may not adequatdly represent a subsequent cal or definition of the function. This implicit
declaration is valid only for the block containing the function call.

A prototype establishes the attributes of a function so that cals to the function that precede its definition
can be checked for argument and return type mismatches. If the static storage class is specified in a
prototype, then the static storage class must be specified in the function definition aso.

Function prototypes have the following important uses:

* They edtablish the return types of functions that return atype other than int. If such afunctioniscdled
before definition or declaration the results are undefined.

* |f the prototype contains a full list of parameter types, argument types occurring in afunction cal or
definition can be checked. The parameter list in prototype declaration is used for checking the
correspondence of actua arguments in the function cdl with the forma parameters in the function
definition.

* Prototypes are used to initidize pointers to functions before those functions are defined.

4.11.3 Function Calls

Syntax :
expression([expression-list])

A function call is an expresson that passes control and actua arguments, if any, to afunction. In function
cal, expresson evauates to a function address and expresson-list is list of expressons separated by
commas. The values of these latter expressons are the actud arguments passed to the function. If the
function takes no arguments the expression-list must be empty.

Page 77

CC665S Ver.2.01 Language Reference

When the function is executed :

1

w

Theexpression inthe expresson-list iseva uated and converted using the usud arithmetic conversons.
If afunction prototypeisavailable, the results of these expressonsmay further be converted cons stent
with the forma parameter declarations.

The expression in expression-list are passed to the forma parameters of the called function. The first
expression in the ligt aways corresponds to the first forma parameter of the function, the second
expresson corresponds to the second formal parameter and so on through the list. Since the called
function uses copies of the actua arguments, any changes it makes to the arguments do not affect the
vaues of variables from which the copies may have been made.

Execution control passes to the firgt statement in the function.

The execution of areturn statement in the body of the function returns control and possibly avaueto
the caling function. If no return statement is executed, control returns to the cdler after the called
function is executed. In such cases the return vaue is undefined.

4.11.3.1 ACTUAL ARGUMENTS

An actud argument can be any vaue with fundamenta or pointer type. All actua arguments are passed by
vaue. Pointers provide away for afunction to access a vaue by reference.

The expressonsin afunction cal are evauated and converted asfollows :

*

The usud arithmetic conversons are performed on actua argument in the function call. If a prototype
is available, the resulting argument type is compared to the prototype's corresponding formal
parameter. If they don't match, both conversion is performed and a diagnostic message is issued.

If no prototype is available, default conversions are performed on each actual argument before it is
passed to the function. In the default conversion, arguments of type‘char’ are converted to type‘int’
and arguments of type ‘float’ are converted to type ‘double’. A prototype is created whose formal
parameter types correspond to the types of the actua parameters after conversion.

The number of expressions in the expresson-lis must match the number of forma parameters in the
function prototype or function definition. If the prototype forma parameter list contains only the ‘void’
keyword, the compiler expects zero arguments in the function call and the function definition. A diagnogtic
message is issued otherwise,

Page 78

Declarations

4.11.3.2 RECURSIVE CALLS

Any functionina‘C’ program can be cdled recursively; that is, it can cal itsdf. The‘C’ compiler dlows
any number of recursve cals to itself. Each time the function is called, new storage is dlocated for the
forma parameters and for the auto variables, so that their vaues in previous, unfinished cals are not
overwritten. Variables declared as static do not require new storage with each recursve cdl. Ther
storage exigts for the lifetime of the program

4.12 ASM DECLARATION

The keyword __asm can be used to specify a*ASM’ gtatement in the following format.
__asm (gring)

The above statement can occur both outside and inside afunction. The processing of “__asm” statement
indde and outsde afunction issmilar. Refer Sec 6.8.

Page 79

Expression And Operators

5. EXPRESSIONS AND
OPERATORS

5.1 OPERATORS

An expression is any series of symbols used to produce a vadue. The smplest expressons are congtants
and variable names. Other expressions combine operators and subexpressions to produce vaues.

‘C’ operators can be used in conjunction with smple variable identifiers and congtants to create complex
expressions. The*C’ operatorsfdl into the following categories:

*

*

*

Unary operators, which take single operand.
Binary operators, which take two operands and perform avariety of arithmetic and logica operations.

Conditiona operator (a ternary operator), which takes three operands and evaluates either the
second or third expression, depending on the evauation of the first expression.

Assgnment operatorswhich assgn avaueto avariable, dso convertsthe right-hand vaueto the type
of the left-hand vaue, before the assignment takes place.

Comma operator which guarantees left to right evauation of comma-separated expressons. The
result isthe right most expression.

Page 81

CC665S Ver.2.01 Language Reference

Unary operators appear before their operand and associate from right to |eft. Binary operators associate
from Ieft toright. *C’ has one ternary operator and it associates from right to |€ft.

The precedence and associdivity of ‘C’ operators affect the grouping and evaluation of operands in
expressons. An operator precedence is meaningful only if other operators with higher or lower
precedence are present. Expressions with higher precedence operators are evaluated firs.

The following table summarizes the precedence and associativity of ‘C’ operators, listing them in order of
precedence from highest to lowest. Where several operators appear together in a line, they have equa
precedence and are eval uated according to their associativity.

Precedence and Associativity of ‘C’ Operators :

Operators Associativity
O > . Left toright
-+ ~ | * & ++ -- dzeof cadts Right to left
* [0 Left to right
+ - Left to right
<< >> Left toright
< <= > >= Left toright
== I= Left to right
& Left to right
A L eft to right
| L eft to right
&& Left to right
I Left to right
> Right to left
= += -= *= [= %= &= "= |5 <<= >>= |Righttoleft
, Left to right

An expression can contain severa operatorswith equa precedence. When severd such operators appear
at thesameleve in an expression, eva uation proceeds according to the associativity of the operator, either
from right to left, or from left to right.

Page 82

Expression And Operators

5.2LVALUESAND RVALUES

A varigbleidentifier isone of the' C’ primary expressons. Thistype of expressonyieldsasinglevaue, the
object of the variable. However, when using the variable identifier with other operators, the expresson
evauates to the location of the variable in memory. The address of the variable is the lvalue. The object
sored at the address is the rvaue. CC665S uses rvaue and Ivalue of variables in evauation of an
expression given below :

X=Y,

The contents of variabley are assgned to variable x. In other words, the expression on theright evauates
to the rvalue while the expresson on the left evauates to the Ivaue of the expression in performance of
assignment.

Thefollowing ‘C’ expressons may be Ivaue expressons :

* |dentifier of scdar variables

* Referencesto scaar eements

* References to structure and union variables

* References to structure and union members, except for references to fields which are not lvalues.

* References to pointers (also called dereferenced pointers;, an asterisk(*) followed by an address
vaued expression)

* Any of the above expressions enclosed in parentheses.

The above is expressed as the following syntax for Ivaue :

Ivalue :
identifier
expression[expression]
expression.expression
expression->expression
*expression
(Ivalue)

All lvaue expressons represent asingle location in memory.

Page 83

CC665S Ver.2.01 Language Reference

5.3 CONVERSIONS

Some operators may, depending on their operands, cause conversion of the vaue of an operand from one
type to another. This section explains the result to be expected from such conversions.

5.3.1 Integral Promotion
One of the following may be used in an expression wherever an integer may be used:

1. acharacter
2. aninteger or character bit-fied
3. an object of enumeration type.

If an int can represent Al vaues of the origind type, the vaue is converted to an int, otherwise, it is
converted to an ungigned int. These are cdled the integra promotions. All other arithmetic types are
unchanged by the integrad promations.

5.3.2 Arithmetic Conversions

Many operators cause conversons and yield result typesin asmilar way. The effect isto bring operands
into a common type, which is aso the type of the result. This pattern is cdled the usud arithmetic
conversions.

Firg, if either operand islong double, the other is converted to long double.

Otherwise, if either operand is double, the other is converted to double.

Otherwisg, if either operand isfloat, the other is converted to float.

Otherwise, the integra promotions are performed on both operands; then, if either operand is

unsgned long int, the other is converted to unsigned long int.

* Otherwisg, if one operand islong int and the other isunsigned int, both are converted tounsigned
longint.

* Otherwisg, if one operand islong int, the other is converted to long int.

* Otherwisg, if either operand is unsigned int, the other is converted to unsgned int.

* Otherwise, both operands have typeint.

* X ¥ %

Page 84

Expression And Operators

5.3.3 Pointer Conversions

When two pointers are operated upon, they are converted to same size. Pointer Size depends upon the
memory mode and the memory modd qudifier specified for the pointer. When a pointer is qudified with
__far, the 9ze of the pointer is 4 bytes, asin case of pointersin large memory model. In smal memory
model, the default pointer Szeis 2 bytes.

Expressions may contain, both near pointers (2 bytes) and far pointers (4 bytes). When two pointers of
different Sze are operated upon, they are promoted to same size. The near pointer is converted to far
pointer, with default segment address in the upper two bytes.

5.4 PRIMARY EXPRESSIONS AND OPERATORS

Simple expressons are caled primary expressons. Primary expressions are identifiers, congtants, strings
or expressions in parentheses.
primary_expression :
identifier
constant
string
(expression)

5.4.1 |dentifiers

Identifier namesavariable or function. Variablesis one of the bas ¢ data objects manipulated in aprogram.
Declaraionsligt the variables to be used. Declarations aso specify the type of the variable.

Anidentifier can be qudified asfar variable by specifying thekeyword __ far, immediady toit’ sleft. A far
variable need not be dlocated in the default segment. Therefore, segment switching is done before
accessing far variables.

5.4.2 Constants

A congtant operand has type and vaue of the constant value it represents. Its type depends on its form.
Character constants has int type. Enumerator constants aso have int type. In generd, the type of
congtants may beint, unsigned int, long, unsigned long, float or double.

Page 85

CC665S Ver.2.01 Language Reference

5.4.3 Strings

A dring literd isacharacter or sequence of adjacent characters enclosed in double quotation marks. Two
or more adjacent string literds separated only by white space are concatenated into a single string literdl.
After concatenation, anull byte‘\O’ is appended at the end, so that programs that scan the string can find
itsend.

String literal isstored as an array of eementswith char typein code memory. ltstypeisorigindly “array of
const char”. Thisis usudly modified as “pointer to const char” and the result is the pointer to the first
character in the string. The storage class of gtring literd is Setic.

Strings cannot be specified as far strings. The segment address of strings are fixed for a specified memory
modd. Therefore, no segment register switching is done under any memory model option.

5.4.4 Parenthesized Expression

A parenthesized expression is a primary expression whose type and vaue are identica to those without
parentheses. Mainly, parentheses is used to change the associativity and precedence of operators.

Example5.1
(5+5*3

In the above example, the parentheses around 5 + 5 mean that the value of 5 + 5 isthe left operand of the
multiplication operator (*). Theresult of the above expressonis 30. Without parentheses, 5+ 5* 3would
evauate to 20.

5.5. ARRAY REFERENCES

array_reference :
expressionl [expression2]

Bracket operators ([and]) are used to refer to elements of arrays. One expression followed by another
expression in square brackets denote a subscripted array reference.

Page 86

Expression And Operators

One of the two expression must have type “pointer to T”, where T is some type, and the other must have
integra type and the resultant type of the subscript expressonisT.

The expression expressonl{expresson?] is identica to *((expressonl) + (expresson?2)) by definition,
since both cases represent the value at the address that is expression2 positions beyond expressionl.

5.6 FUNCTION CALLS

function calls :
expression ()
expression (argument_list)

A function is an expresson followed by parentheses. The parentheses may contain a list of arguments
separated by commas or may be empty. The syntax of argument list is as shown below :
argument_list :

expression
argument_list, expression

Function cdls may or may not have declaration preceding it. If declaration is not specified previoudy,
return type is assumed to be of ‘int’ type.

The expression in the function call must be of type “pointer to function returning T, for sometype T. The
resultant type of the function cal isT.

In preparing for function cal, a copy is made for each argument and al argument-passng is drictly by
vaue. The cdled function may change the values of its parameters. However, these changes will not affect
the values of the argumentsin the calling function.

The arguments undergo integra promotion before being sent.

Error message is displayed if the number of arguments in function call disagrees with the number of
parameters in the definition of the function, unless the parameter list ends with the elipss notetion (...). In
the latter case, the number of arguments must equal or exceed the number of parameters; trailing
arguments beyond the explicitly typed parameters suffer default argument promotion.

If no prototypeisspecified for afunction and if its body isnot defined, the above mentioned checks are not
performed. If prototype is not specified, CC665S assumes the prototype from the body definition, if
Specified. If the prototype and the body definition differs, body definition overwrites the prototype.

Page 87

CC665S Ver.2.01 Language Reference

The order of evduation of argumentsis from left to right. Recursive cdls to any function is permitted.

When afar pointer is passed as an argument to afunction which actudly takes a near pointer, the segment
information of the argument pointer islost. CC665S issues error when afar pointer is passed as argument
in place of near pointer. However, if anear pointer is passed as argument to afunction which actudly takes
afar pointer, awarning message is issued. The near pointer is converted to far pointer with the default
segment address in the upper two bytes of the converted pointer.

Thefollowing built-in functions are supported.

__mulu __mulbu __divu __divqu
__divbu __modu __modqu __modbu

The prototypes of the above built-in functions are given below:

unsgned long __ mulu(unsgned int, unsgned int) ;
unsggned int__ mulbu(unsigned char, unsigned char) ;
unsgned long __divu(unsigned long, undgned int) ;
undggned int __divqu(unsgned long, unsigned int) ;
unsgned int __divbu(unsgned int, unsigned char) ;
unggned int __modu(unsigned long, unsigned int) ;
unsgned int__modqu(unsigned long, unsigned int) ;
unsigned char __ modbu(unsigned int, unsigned char) ;

These built-in functions may be caled asany other function iscaled. Argument conversonsare performed
smilar to other functions.

5.7 STRUCTURE AND UNION REFERENCES

structure_reference :
expression . identifier
expression -> identifier

A member of a dtructure or aunion may be referenced with either of the two operators : the period (.) or
theright arrow (->).

Page 88

Expression And Operators

Dot operator

An expression followed by a period followed by an identifier refers to a member of a structure or union.
Thefirst operand expresson must be astructure or aunion, and the identifier must name amember of the
Sructure or union.

The resultant value is the named member of the structure or union, and the resultant type isthe type of the
member. The resultant expresson is an Ivalueif the type of the member isnot an array type.

Arrow operator

An expression followed by an arrow followed by an identifier dso refers to a member of a structure or
union. The first operand expression must be apointer to Sructure or union, and the identifier must name a
member of the structure or union to which the pointer points.

The reault refers to the named member of the structure or union to which the pointer points and resultant
typeisthe type of the member.

Example 5.2

struct example{
int memberl ;
int member2 ;
struct example* ptr_to_struct ;
} s variable, struct_array [10] ;
1. s variable.ptr_to_struct = &s variable;
2. (s variable.ptr_to_struct)->memberl =25;
3. struct_array [7].member2 =100 ;

In the above example:

1. Theaddressof s variable structure isassigned to ptr_to_struct member of the structure.

2. The pointer expression s variableptr_to_struct is used with pointer selection operator (->) to
assign avaue to member memberl.

3. Anindividud sructure member is selected from an array of structures.

Page 89

CC665S Ver.2.01 Language Reference

5.8 POST INCREMENT

post_increment :
expression ++

Pogt increment is performed when an expresson isfollowed by the operator ++. Theresultant valueisthe
vaue of the operand. After the valueisnoted, the operand isincremented by one. Resultant typeisthetype
of the operand. Result of the expresson losesits lvalue.

The operand must be an integrd, floating or pointer type and must be a modifiable (non-congt) Ivaue
expresson. An operand of integral or floating typeisincremented by aninteger vaue 1. The operand of the
pointer typeisincremented by the size of the object it addresses. An incremented pointer pointsto the next
object.
Example 5.3
inta b;

a=b++

In the above example, thevaue of ‘b’ isassignedto ‘a firg and then ‘b’ isincremented.

5.9 POST DECREMENT

post_decrement :
expression --

Post decrement is performed when an expression isfollowed by the operator --. The resultant valueisthe
vaue of the operand. After the value is noted, the operand is decremented by one. Resultant type isthe
type of the operand. Result of the expression losesits Ivaue.

The operand must be an integrd, floating or pointer type and must be a modifiable (non-congt) Ivalue
expresson. An operand of integra or floating type is decremented by an integer value 1. The operand of
the pointer typeis decremented by the size of the object it addresses. A decremented pointer pointsto the
previous object.

Example5.4
inta,b;

a=b--;

Thevaueof ‘b’ isassgnedto ‘a firg andthen ‘b’ is decremented.

Page 90

Expression And Operators

5.10 PRE INCREMENT

pre_increment:
++ expression

An expression preceded by a++ operator isan unary expression. The operand isincremented (++) by 1.
Thevaue of the expression isthe vaue of the operand after the increment. The operand must be an Ivaue.
Other rules are Smilar to that of post increment (refer to section 5.8 for further detalls).
Example55
inta b;

a=++b;

Thevdueof ‘b’ isincremented before assgnment. The incremented vaueisassgnedto ‘a.

5.11 PRE DECREMENT

pre_decrement:
-- expression

An expression preceded by a-- operator isan unary expression. The operand is decremented (--) by 1.
Thevdue of the expressonisthe vaue of the operand after the decrement. The operand must bean [vaue.
Other rules are smilar to that of post decrement (refer to section 5.9 for further details).

Example 5.6
inta,b;
a=--b;

Thevdueof ‘b’ isdecremented before assignment. The decremented value isassgned to ‘&’

Page 91

CC665S Ver.2.01 Language Reference

5.12 ADDRESS OPERATOR

address_operator :
& expression

Address may be computed using the address operator &. The unary & operator takes the address of its
operand. The operand may be any valuethat isavaid lvaue of an assgnment operation. However, neither
abit-field nor an object declared asregister is alowed.

A warning messageisdisplayed if an array nameisthe operand of an address operator. Since array names
are addresses, & operator isignored. No warning isissued, if afunction designator is the operand of an
address operator. The ‘&’ operator isignored for function designators.

Theresult isapointer to the [value operand. If the type of the operand is T, the type of the result is*pointer
toT".
Example 5.7

intx,*p;

p=&x;
The address operator (&) takes the address of x and assignsto p.
When address is taken for a variable that resdesin far ssgment, the address Szeis 4 bytes. The address
contains the offset value in the lower two bytes, and segment address in the upper two bytes.

Example 5.8

int__ farx;
int_ far*p;

p=&x; [* size of the address of x is4 bytes*/

5.13 INDIRECTION OPERATOR

indirection_operator :
* expression

The unary * operator denotes indirection and is used for dereferencing apointer. The operand must be a
pointer vaue.

Page 92

Expression And Operators

The result of the operation isthe value addressed by the operand; that isthe value at the address specified
by the operand. Resultant type isthe type the operand addresses. If the type of the expression is*pointer
to T”, thetype of theresult is T.

Reault isan lvdue, if the operand is not an array type.
Example 5.9
intx,*p;
X=*p,;

The indirection operator (*) is used to access the integer value at the address stored in p. The accessed
vaueisassgned to the integer X.

5.14 UNARY PLUS OPERATOR

unary_plus_operator :
+ expression

The operand of the ‘+' operator must have arithmetic type, and the result is the value of its operand.
Integral promotions are performed. The type of the result is the type of the promoted operand.

5.15 UNARY MINUS OPERATOR

unary_minus_operator :
- expression

Unary minus operator (-) produces the negative (two’ s complement) of its operand. The operand of the
‘-’ operator must have arithmetic type, and the result isthe negative of itsoperand. Integral promotionsare
performed. Negative zero is zero. The type of the result is the type of the promoted operand.

Example5.10

int variable;
variable=999;
variable = - variable;

The value of varigble is negative of 999, that is-999.

Page 93

CC665S Ver.2.01 Language Reference

5.16 ONE'SCOMPLEMENT OPERATOR

bit_not_operator :
~ expression

The operator ~ produces the bitwise complement of itsoperand. The operand of the ~ operator must have
integra type, and the result is the one’s complement of its operand. Integra promotions are performed.
The type of the result is the type of the promoted operand.

Example5.11

unsignedint a, X ;
a=0xaaaa;
X=-a;

The vaue assigned to x is the one’s complement of the unsigned value Oxaaaa, that is 0x5555.

5.17 LOGICAL NOT OPERATOR

logical_not_operator :
I expression

Logica comparison is performed when an expresson is preceded by the operator !. The operand must
have arithmetic type or be a pointer.

Resultant valueisether 1 or 0. Result is 1 if the value of the operand compares equd to zero, and O if the
vaue of the operand is not zero. The type of the result is int.

Example5.12
intx,y;
if((x<y))
fnQ;

If x is greater than or equd to y, the result of the expresson is 1 (true). If x islessthan y, the reault is
O(fd).

Page 94

Expression And Operators

5.18 SIZEOF OPERATOR

sizeof _operator :
sizeof expression
sizeof (typename)

The sizeof operator yields the number of bytes required to store an object of the type of its operand. The
operand is either an expression, which is not evaluated, or a parenthesized type name.

When sizeof operator is gpplied to a char, the result is 1; when gpplied to an array, the result is the total
number of bytesin the array. Thesze of anarray of ‘n’ dementsis‘n’ times the Sze of one demern.

When the sizeof operator is gpplied to any structure or union, the result isthe number of bytesin the object
including any padding used to aign the members of the structure or union on memory boundaries.

The sizeof operator may not be applied to an operand of incomplete type.
The result isan undggned integral condant. Resultant type is unsigned int.
Typename is syntactically a declaration for an object of that type omitting the name of the object.

Example5.13
long array [10] ;

z=gzeof (array);

Thevaueof zis40.

Sizeof operator can dso be applied to expressions. These expressons are not evaluated. The result isthe
Sze of the result of the expression.

Example5.14
intax,y,z;
x=10;
y=10;
z=dzeof (Xx=(y*2));
a=x;

Page 95

CC665S Ver.2.01 Language Reference

In the above example, theexpresson ‘x = (y * 2)’ isnot evauated. Therefore, vdue* 10’ isassgnedto*a
and not ‘20'.

Example5.15
inti,j;
int* dptr;

fn()
{

}

i = sizeof (dptr) ;

In the above example, the Sze of the pointer variable* dptr’ degpends on the C memory modd inwhichitis
compiled. If the programis compiled insmal ‘C’ memory modd, thenthevadueof ‘" is 2. If the program
iscompiled in large‘C’ memory modd, then thevdue of ‘i’ is4.

5.19 CAST OPERATOR

cast_operator :
(typename) expression

Cagt operator consists of data type name in parentheses. A unary expression preceded by the
parenthesized name of a type causes converson of the value of the expresson to the named type.
Typenames are discussed in detall in section 4.10.

If the operand isavariable, its data type is converted to the named type; the content of the variable is not
changed.

Result of cast expresson is not an Ivdue, if the Sze of the typename is greater than the size of the
expression.
An object in data memory may not be casted to a type resulting in code memory and vice versa. In such

cases, CC665S issuesan error. However, if /AWIN option is pecified in the command line, warning will be
issued.

Example5.16
(int (*)01) p1;

In the above example, pl is cast as a pointer to array of int.

A near variable cannot be casted to afar variable. However, apointer to near memory can be casted to a
pointer to afar memory, provided the memory mode specified in the command line supports far quaifier
for that data type. When a pointer to far memory is casted to a pointer to near memory, CC665S issues
error. However, if a pointer to near memory is casted to a pointer to far memory, pointer conversion is
performed.

Page 96

Expression And Operators

Example5.17

intx,y;
int* cvar;
int__ far* dvar;

dvar=(int__far*)cvar; /* cvariscasted asfar pointer and assigned to dvar */

5.20 MULTIPLICATIVE OPERATORS

multiplicative_expression :
expression * expression
expression / expression
expression % expression

The multiplicative operators are *, / and %. They group from Ieft to right.

The operands of * and / must have arithmetic type; the operands of % must have integrd type. The usud
arithmetic conversions are performed on the operands, and predict the type of the result.

The binary * operator denotes multiplication.

The binary / operator yields the quotient, and the % operator the remainder, of the divison of the first
operand by the second operand. If the second operand is zero, the result is undefined. If CC665S detects
the second operand as zero, warning message is displayed.

Example5.18
unsignedint x,y,i,n,j;
y=x*i,;
n=ilj;
n=i%j;

5.21 ADDITIVE OPERATORS

additive_expression :
expression + expression
expression - expression

The additive operators + and - group left to right. If the operands have arithmetic type, the usua arithmetic
conversions are performed.

Page 97

CC665S Ver.2.01 Language Reference

Theresult of + operator isthe sum of the operands. A pointer to an object and avaue of any integrd type
may be added. CC665S cal culates the size of one object, multiplies this by the integer thus obtaining the
offset value, and then adds the offset value to the address of the designated eement. The result is a pointer
of the sametype asthe origina pointer, and pointsto another object, appropriately offset from the origina
object. Thusif Pisapointer to an object, the expresson P + 1 isa pointer to the next object.

CC665S issues an error if two pointers are added.

The result of the - operator is the difference of the operands. A value of any integral type may be
subtracted from a pointer; in that case the same conversions and conditions as for addition apply.

If two pointersto objects of the same type are subtracted, the result isasigned integra value representing
the displacement between the pointed-to objects. The resultant valueis cal culated by finding the difference
between the two pointers and dividing the difference by the size of the object to which the pointers point.

When two pointers are subtracted, only the offset value of the pointers are subtracted. Pointers pointing to
objects of different types are not alowed.

Example5.19

intx,y,i,j, Kl;

char *pl, *p2;

long array1 [20], array2 [20] ;
y=X+i;

pl=p2+2;

j = &arrayl[K] - &arrayl[l] ;

5.22 SHIFT OPERATORS

shift_expression :
expression << expression
expression >> expression

The shift operators << and >> group from left to right. For both operators each operand must beintegrd,
and is subject to integra promotion.

The type of the result isthat of the promoted left operand.

Page 98

Expression And Operators

The result of el << €2 is the value of the expression el shifted to the left by e2 bits. CC665S clears
vacated bits.

The result of el >> €2 is the value of the expresson el shifted to the right by e2 bits. CC665S clears
vacated hitsif the left operand el isunsigned; otherwise, vacated bits arefilled with acopy of €1’ ssgn bit.

The result is undefined if right operand is negative or greeter than or equa to the number of bitsin the left
expression type.

Example 5.20
unsignedintx,y, z;
x = 0x00aa;
y =0x5500;
z=(x<<8)+(y>>8);

In the above example, ‘X' isleft shifted eight postionsand ‘y’ is shifted right eight postions. The shifted
vaues are added giving Oxaabb, and assignedto ‘Z .

5.23 RELATIONAL OPERATORS

relational_expression :
expression < expression
expression > expression
expression <= expression
expression >= expression

The relationd operators are less than (<), greater than (>), lessthan or equd to (<=) and greater than or
equd to (>=).

The usud arithmetic conversons are performed on arithmetic operands. The result is O if the relaion is
fdseandis 1if the rdaion istrue. The resultant typeisint.

Pointers to objects of same type may be compared; the result depends on the relative locations in the
address space of the pointed-to objects. Pointer comparison is defined only for parts of the same object.
If two pointers point to the same smple object, they compare equd; if the pointers are to members of the
same dructure, pointers to objects declared later in the structure compare higher; if the pointers are to
members of the same union, they compare equd; If the pointer refers to members of an aray, the
comparison is equa to comparison of the corresponding subscripts.

Page 99

CC665S Ver.2.01 Language Reference

A pointer may be compared to a constant integra expression with value 0, or to a pointer to void.

CC665S digplays error when pointersto different memory (one pointing to code memory and the other to
data memory) are compared. However, if /WIN option is specified only warning message will be issued.
If both operands are pointers, pointer conversion is performed.

The operators group from left to right. a< b < cisparsed as(a< b) < ¢, and a< b evauatesto either O or
1

Example5.21

const staticintx =10,y =10;
intz;

Z=X>Yy;
Sincex andy are equd, the value O isassigned to z.

Example 5.22
char array [10], *p;

for (p=array ; p< &array[10] ; p ++)
*p="\0;

The above program initidizes each dement of array to anull character constant.

5.24 EQUALITY OPERATORS

equality_expression :
expression == expression
expression != expression

The == (equd to) and the != (not equa to) operators are analogous to the relational operators except for
their lower precedence. Thus a<b == c<d is 1 whenever a<b and c<d have the same truth value.

The equdity operators follow the same rules as the relational operators. If both operands are pointers,
pointer conversion is performed.

Two useful functions are provided to illustrate the use of equdity operators:

Page 100

Expression And Operators

Example5.23

stremp (char §], char t[])

{
inti=0;

while (i] ==1[i])
if (di++]=="\0")
return (0) ;
return (i] - t[i]) ;
}

The above function usesthe equdity operator. The above function returnsanegativevaueif ‘s islessthan
‘t',and zeroif 'S isequa to ‘t’, and apostivevaueif ‘s isgreater than ‘t’.

Example5.24

squeeze(char §[], intc)
{
inti,j;
for (i5j=0; Ji] '="\0'; i++)
if (di]!=c)
s[j++ =s[i];
sfi]="0;
}

The above program removes al the occurrences of the character ‘¢’ fromthedring *'s'.

5.25 BITWISE AND OPERATOR

bit_and_expression :
expression & expression

Bitwise And operator (&) may be used only with integral operands. The usud arithmetic conversons are
performed.

The result is the corresponding bitwise AND function of the operands. Bitwise AND operator compares
each bit of its first operand with the corresponding bit of the second operand. If both bits are 1, the
resultant bit is 1; Otherwise the resultant bit isO.

Page 101

CC665S Ver.2.01 Language Reference

5.26 BITWISE EXCLUSIVE OR OPERATOR

bit_xor_expression :
expression ~ expression

Bitwise Exclusve Or operator (*) may be used only with integrd operands. The usud aithmetic
conversions are performed.

The reault is the corresponding bitwise exclusve OR function of the operands. Bitwise exclusve OR
operator compares each hit of itsfirst operand with the corresponding bit of the second operand. If one bit
is zero and the other bit is 1, the resultant bit is set to 1; Otherwise the resultant bit is set to O.

5.27 BITWISE OR OPERATOR

bit_or_expression :
expression | expression

Bitwise incdlusve OR operator () may be used only with integra operands. The usud arithmetic
conversions are performed.

The result isthe corresponding bitwise OR function of the operands. Bitwise OR operator compares each
bit of itsfirst operand with the corresponding bit of the second operand. If ether bitis 1, theresultant bit is
1; Otherwise the resultant bit is 0.

5.28 LOGICAL AND OPERATOR

logical_AND_expression :
expression && expression

The & & operator isused for logicd AND operation. Operator & & groups from left to right. The result of
the expresson is either 1 or 0. Resultant typeisint.

The operands need not have the same type, but each must have arithmetic type or pointer type.

Page 102

Expression And Operators

If CCB65Sis able to make an evauation by examining only the left operand, it does not evauate the right
operand.

For the expresson el & & €2, first operand el isevauated, including dl sde effects; If itisequd to O, the
vaue of the expression is zero and the second expression €2 is not evauated. If it is non-zero, €2 is
evauated, and if it isequd to zero, the result is zero, otherwise one.

5.29 LOGICAL OR OPERATOR

logical_OR_expression :
expression || expression

The || operator is used for logica OR operation. Operator || groups from left to right. The result of the
expresson isether 1 or 0. Resultant typeisint.
The operands need not have the same type, but each must have arithmetic type or pointer type.

If CCB65Sis able to make an evauation by examining only the left operand, it does not evauate the right
operand.

For the expresson €l || €2, first operand €l is evaluated, including al sde effects; If it is non-zero, the
vaue of the expression is one and the second expression €2 is not evaluated. If el isequd to zero, €2 is
evauated, and if it isequd to zero, the result is zero, otherwise one.

Example5.25

xor (inta intb)
{

}

return ((a||b) && ! (a&& b)) ;

The XOR operation is carried out by the above function. The XOR function returns atrue vaue (1) when
only one operand is true (non-zero). The above function illustrates the use of both logical AND and OR.

5.30 CONDITIONAL EXPRESSION AND OPERATORS

conditional_expression :
expressionl ? expression2 : expression3

Page 103

CC665S Ver.2.01 Language Reference

‘C’ has one ternary operator; the conditional operator (?:).

The expressonl must beintegra, floating or pointer type. It is evauated in terms of its equivaenceto O.
Evauation proceeds asfollows :

If expressonl does not evauate to zero, expression? is evaluated and the result of the expresson is the
value of expresson2.

If expressionl evauates to O, expression3 is evauated and the result of the expression is the vaue of
expresson3.

Either expresson2 or expresson3 is evauated but not both. Operator ?: groups from right to | eft.

The type of the result of a conditiona operation depends on the type of expresson2 or expresson3 as
follows:

* If expresson2 or expresson3 has integrd or floating type, the operator performs usua arithmetic
conversons. The type of the result is the type of the operands after conversion.

* |f both expresson2 and expresson3 have the same structure, union or pointer type, the type of the
result is the same structure, union or pointer type.

* If both operands have void type, the result has type void.

* |f ether operand is a pointer to an object of any type, and the other operand is a pointer to void, the
pointer to the object is converted to a pointer to void and the result is pointer to void.

* |f ether of expresson2 or expresson3 is a near pointer and the other is a far pointer, pointer
converson is performed.

* |f either expresson2 or expresson3 is a pointer and the other operand is a constant expression with
the vaue O, the type of the result is pointer type.

Example 5.26
inti,j;
J=(i<0)?():0);
The above example assigns absolute vaue of i to). If i islessthan O, -i isassgned toj. If i is greater than
orequa t0 0, i isassigned to j.

Page 104

Expression And Operators

5.31 ASSIGNMENT EXPRESSIONS AND OPERATORS

assignment_expression :
expression assign_op expression

There are saverd assgnment operators and al group from left to right. Assgnment operators are one of :
= 4= -= * = /= 0= >>S= <<= &= |: N=

All require an Ivalue as left operand, and the Ivalue must be modifiable. It must not be an array, and must
not have an incomplete type, or afunction. Also its type must not be qualified with congt. The type of an
assgnment expression isthat of its left operand, and the valueis the value stored in the left operand after
the assgnment has taken place.

In the smple assgnment with =, the vaue of the expression replaces that of the object referred to by the
lvalue. One of the following must betrue :

* Both operands have arithmetic type, in which case the right operand is converted to the type of the left
by the assgnmen.

* Oneoperand is apointer and the other is a pointer to void.
* Theleft operand is a pointer and the right operand is congtant expression with vaue 0.

* Both operands are pointers to functions or objects whose types are the same except for the possible
absence of congt or volatile in the right operand.

* If apointer to far memory is assgned to a pointer to near memory, the segment information is lost.
Further operations using the pointer may result in undefined behavior. CC665S issues error message
if afar pointer isassigned to anear pointer. However, if anear pointer isassgned to afar pointer there
isno loss of segment information. Default segment address will be assigned to the upper two bytes of
the near pointer. CC665S issues warning message, when a near pointer is assgned to afar pointer.

An expression of the form el op= €2 isequivalent to el = el op e2.

Example5.27
floaty ;
intx;
y=X;

Page 105

CC665S Ver.2.01 Language Reference

The vaue of x is converted to float and assgned toy ;

Example 5.28

define MASK 0Xff00
unsignedintn;
n&=MASK;

In the above example a bitwise AND operation is performed on ‘n" and ‘MASK’, and the reault is
assgnedto‘n'.

5.32 COMMA EXPRESSION AND OPERATOR

comma_expression :
expression, expression

The comma operator (,) evauates its two operands sequentialy from left to right. The result of the
operation has the same va ue and type as the right operand. Each operand can be of any type. The comma
operator does not perform type conversions between its operands.

The comma operator is typicaly used to evauate two or more expressions in contexts where only one
expression is dlowed.

Example 5.29
1 f(a(t=3t+2),0);
2. for(i=0j=0;i<10;i++j+=2)
arayli] =j; I* Array of Even nos*/
The vaue of the second argument in the above example (1) is 5.
If the result of the comma operation is an array, then it is converted to pointer.

5.33 CONSTANT EXPRESSIONS

A congant expression is any expression that evauates to a constant. The operands of a constant
expresson can be integra congtants, character congtants, floating-point constants, type casts, sizeof
expressions and other congtant expressions. Operators can be used to modify and combine operators.

Page 106

Expression And Operators

Congtant expressions used in preprocessor directives are subjected to certain restrictions. They cannot
contain sizeof expressions, type casts to any type or floating-point type congtants.

Congant expressons involving floating-point constants, cast to non-arithmetic types and address of
expressions can only gppear in initidizers. The unary address-of operator (&) can be gpplied to variables
with fundamenta types that are declared at the externa level or to subscripted array references.

Page 107

Statements

6. STATEMENTS

6.1 INTRODUCTION

This section describes statements in ‘C’ language. Statements are executed in the order in which they
appear, except where a satement explicitly transfers control to another location.

Statements are executed for their effect, and do not have values. They fall into severd groups.

statements :
labeled_statement
expression_statement
compound_statement
selection_statement
iteration_statement
jump_statement
asm_statement

Limits: Themaximum number of levelsto which compound statements, conditiond statements and looping
statements may be nested is restricted to 32.

6.2 LABELED STATEMENT

labeled_statement :
identifier : statement
case constant_exp : statement
default : statement

Statements may carry labd prefixes. A label conggting of an identifier declaresthe identifier. The only use
of anidentifier label is as atarget to goto statement.

Page 109

CC665S Ver.2.01 Language Reference

The scope of an identifier is the current function. Labels cannot be redeclared within the same function.
Labe names do not collide with identifiers with same name in other declarations (loca as well as globd).
Because CC665S uses a separate name space for |abels.

A labd, consgting of the keyword case followed by a constant expression, is a case labd. A labd
congsting of the keyword default is cadled a default label. Case labels and default labdls are used within
the switch statements. If used elsewhere, error is displayed by CC665S. The congtant expression of the
case labd must be of integral type. Case labels and default |abels are explained in detail in the section for
switch statement.

Labdsin themsdves do not dter the flow of contral.

6.3 EXPRESSION STATEMENT

expression_statement :
expression ;

Any valid expresson can be used as a satement by terminating it with asemicolon. ‘C’ expressons are
explained in section 5.

Most expresson statements are assgnments or function cals. All sde effects from the expresson are
completed before the next statement is executed.

If the expression ismissing, the congtruction is caled anull statement; Null statements are used to provide
null operations in Stuations where the grammar of the language requires a satement, but the program
requires no work to be done.

Statements such as do, for, if, while require that an executable statement appear as the statement body.
The null statement satisfies the syntax requirement in cases that do not need a statement body .

The following are examples of expression statements :

Example 6.1
intxy,zi;
X=y+z; [* xisassigned thevalueof y + z*/
i ++; [* iisincremented */

Page 110

Statements

Example 6.2
inti, table[100] ;
for (i =0;i < 100; tablefi++] = 0)

In this example, the loop expression of the for statement tablefi++] = O initializes the first 100 eements of
the array table to 0. The statement body is a null statement, since no further statements are necessary.

6.4 COMPOUND STATEMENT

compound_statement :
{ declaration_list statement_list }
{ declaration_list }
{ statement_list }

{}

declaration_list :
declaration
declaration_list declaration

statement_list :
statement
statement_list statement

A compound statement is adso cdled a block. Compound statements are provided so that severa
satements may be used, where a single statement is required by the language.

The compound statement contains optiona declarations followed by a list of statements which is dso
optiond, dl enclosed in braces. If declarations are included, the variables declared are locd to the block,
and, for therest of the block, they supersede any declarations of the variables of the same name. The outer
declaration becomes valid at the end of the block.

Initiglizations of automeatic objectsincluded in the block are performed each time the block isentered inthe
order of the declarators. Initidizations of static objects inside the block are performed only once.

Page 111

CC665S Ver.2.01 Language Reference

Example 6.3
inty,z;

fn()

{
intx=10;

z=1;

if (x>vy)
X+t

else
y++]

6.5 SELECTION STATEMENTS

Sdection statements test the specified condition and depending on the result, one of severd flows of
control is chosen. There are two sdlection statements.

1. if gaement
2. switch Satement

6.5.1 if Statement

sdection_statement :
if (expresson) statement
if (expresson) satementl else Satement2

‘if’ stlatements may or may not have the ‘else’ part. The ‘if’ datement must have an expresson in
parentheses following the keyword ‘if’ . Expresson must be of arithmetic or pointer type. The expression
isevauated with dl sde effects

If result of the expression is non-zero, then statement1 is executed. If the expresson is zero, satementlis
not executed and statement2 is executed, if present.

When ‘if’ satements are nested within ‘else’ clauses, an ‘else’ clause matches the most recent ‘if’
statement that does not have an ‘else’ clause.

Page 112

Statements

Example 6.4
inti,j, x;

if (i <j)
function (i) ;
else

{
i=X++;
function (i) ;

6.5.2 switch Statement

selection_statement :
switch (expression) statement

The ‘switch’ statement transfers control to a statement within its body. Control passes to the statement
whose case congtant-expression matches the vaue of the switch expression. The switch statement may
include any number of case ingtances. Execution of the statement body begins at the selected statement
and proceeds until the end of the body or until a“‘break’ statement.

The ‘default’ statement is executed if N0 case constant expression is equd to the vaue of switch
expression. If the‘default’ statement is omitted, and no case match isfound, none of the Satementsinthe
switch body isexecuted. The'default’ statement need not come at the end; it can gppear anywherein the
body of the ‘switch’ statement.

Thetype of the switch expresson isintegral. Each case constant expression is converted using the usua
arithmetic conversions (explained in section 5.3.2). The vaue of each case congtant expresson must be
unique within the statement body.

The case and default labels of the switch datement body are sgnificant only in the initid test that
determines where execution starts in the statement body. All statements, between the statement where
execution startsand the end of the body, are executed regardless of their labelsunlessastatement transfers
control out of the body entirely.

Page 113

CC665S Ver.2.01 Language Reference

Thefollowing example illustrates the use of switch to display three different LED display items:

Example 6.5
display_fn ()
{
[* This program displays three types of displays based on the input */
int display_item;
while ((display_item = get_display_item()))
{
switch (display_item)
{
case DATE : display_date () ;
break ;
case DAY : display_day () ;
break ;
case TIME : display_time() ;
break ;

}

Declarations Within A Switch

Declarations may appear a the head of the compound statement forming the switch body. But
initidizations included in these declarations are not performed. The switch statement transfers control
directly to an executable statement within the body, bypassng the lines that contain initidizations.

Example 6.6
inty;
switch (character)
{
intx=1; /* Improper initialization */
case'd :
{
intx=10; [* Proper initialization */
y=X;
break ;
}
case'b’:
}

Page 114

Statements

6.6 I TERATION STATEMENTS

Statements in the following subsections execute repeatedly (Ioop), until an expression evauatesto false,

6.6.1 for Statement

iteration_statement :
for ([expressionl] ; [expression2] ; [expression3]) statement

The ‘for’ satement evauates three expressions and executes a Satement (loop body) until expression2
evauatestofase The'for’ statement isparticularly useful for executing aloop body a specified number of
times.

The ‘for’ statement executes the loop body zero or more times. It uses three optiona control expressions
asshown. A ‘for’ statement executes the following steps :

1. Theoptiond expressonl isevauated only once before theiteration of theloop. It usualy specifiesthe
initid valuesfor variables,

2. The optiond expresson? is evauated before each iteration. If the expresson evauates to fase,
execution of the*for’ loop body terminates. If the expression is evauated to true, the body of theloop
IS executed.

3. Theoptiona expresson3 is evauated after each iteration. It usualy specifies step vaue for variables
initidized by expressonl.

4. lterations of the ‘for’ statement continue until expresson2 produces a fdse vaue, or until some
statement such as break or goto or return interrupts.

Example 6.7
inti;
char string1 [20], string2 [20] ;
for (i=0;i <15;i++)
stringl [i] = string2 [i] ;

The above example copiesthefirst 15 characters of string2 to stringl.
Thefollowing ‘for'’ satement illustrates an infinite loop :

Page 115

CC665S Ver.2.01 Language Reference

Example 6.8
inti,j;
for (3;)
{

}

j=i+10;

Infinite loops can be terminated with agoto, break or return statement.

6.6.2 while Statement

iteration_statement :
while (expression) statement

The‘while’ statement eva uates an expression and executes a statement (Ioop body) zero or more times,
until the expresson evauatesto fase.

If the expression in parentheses evaluates to false at the first time, the loop body never executes.

Example 6.9
intx, array [15] ;

fn()
{

x=0;
while (x < 10)
{

aray [X] =X;
X++;

}
}

The above example assigns the vaues 0 to 9 to the first ten ements of array.

6.6.3 do Statement

iteration_statement :
do statement while (expression) ;

The'do’ statement executesagtatement (theloop body) one or moretimesuntil the expressoninthewhile
clause evauates to false.

Page 116

Statements

The statement isexecuted at least once, and the expression iseva uated after each subsequent execution of
the loop bodly. If the expression is true the statement is executed again.

Example 6.10
int num;
do

{
num = get_number () ;
} while (num <=100) ;

The above example gets anumber until it is greater than 100.

6.7 JUMP STATEMENTS

Jump datements trandfer control unconditionaly. The following statements are classfied as jump
Satements.

1. goto statement
2. bredk satement
3. continue gatement
4, return Statement

Statements other than the ‘goto’ statement may be used to interrupt the execution of another statement.
These gatements are primarily used to interrupt ‘ switch statements and loops.

6.7.1 goto Statement

jump_statement :
goto identifier ;

The ‘goto’ statement transfers control automeaticaly to alabeled statement, wherethe label identifier must
be located in the scope of the function containing the goto statement.

Like other ‘C’ dtatements, any of the statements in a compound statement can carry alabel. A goto
satement can trandfer into a compound statement. However, transferring into a compound statement is
dangerous when the compound statement includes declaration that initidize variables. Since declarations
appear before the executable statements in a compound statement, transferring directly to an executable
statement within the compound statement bypasses the initidization. The results are undefined.

The following example illugtrates both the *goto’ statement and the labeled statement :

Page 117

CC665S Ver.2.01 Language Reference

Example 6.11

interror_no;

fn()
{

externint error ;
if (error)
goto error_process;;

€rror_process:
return (error_no) ;

}
In the above example, ‘goto’ statement transfers control to the point labeled error_process.

6.7.2 break Statement

jump_statement :
break ;

The break satement terminates the immediatdy enclosing while, do, for or switch statement. Control
passes to the statement following the loop bodly.

Example 6.12
intx;

while (1)

{
x=fn();

if (x==1)
break ;
}

In this example the while loop is executed until the function returns avaue 1.

6.7.3 continue Statement

jump_statement :
continue ;

The continue statement passes control to the end of theimmediately enclosing while, do or for statement.
The control passesto the next iteration of thewhile, do or for statement inwhich it appears, bypassing any
remaning statements in the loop body.

Page 118

Statements

Example 6.13

even_fn ()

{
intx;
for (x = 0; x <= 100; x++)
{
if (x%02)
continue;

print (X) ;
}

The above function prints al the even numbers between 0 and 100.

6.7.4 return Statement

jump_statement :
return [expression] ;

The return satement causes a return from a function with or without a return vaue.

CC665S evduates the expression, if one is specified, and returns the vaue to the cdling function. If

necessary, compiler converts the vaue to the declared type of the function. If there is no specified return
vaue, the vdueis undefined.

Example 6.14

max (int a, int b)
{
if @>b)
return (a) ;
else
return (b) ;
}

The above function returns the larger of its two integer arguments.

When a function which is declared to return nothing (void) returns a vaue, compiler issues a error
message.

Page 119

CC665S Ver.2.01 Language Reference

6.8 ASM STATEMENTS

asm_statement :
__asm (“string”)

Theasm_statement can be used to output the string contentsin the assembly output file directly. The string
is not processed by the compiler.

Example 6.15

INPUT:

__asm(“; Test for __asnt)
intgvar;
fn (int arg)
{
gvar =arg;
__asm(“\inc dir _gvar\n);

OUTPUT:
;Testfor __asm
rseg $SNCODt

CFUNCTION O
_fn

i

CLINE7

pushs usp
mov usp, ssp

" gvar =arg;

CLINES

mov dir _gvar, 6[usp]
5 __asm("\tinc dir_gvar");
CLINEQ

inc dir _gvar

"

CLINE 10

pops usp
r

Page 120

Variations From ANSI Standard

7. VARIATIONS FROM ANSI
STANDARD

The implementation of C language in CC665S differs from the standard ANS X3. 159-1989 and
ISO/IEC 9899 proposed by ANS (American Nationd Standards Indtitute) due to the following
features:

1. Supports specification of INTERRUPT functions.

2. Qudifying avaridble by ‘const’ causes the variable to be dlocated in code memory (Read Only
Memory).

3. Membersof agtructure or union cannot be qudified by ‘const’.
4. Char bit fidds are dlowed in Sructures and unions

5. Arguments cannot be qudified by ‘const’. However, if /WIN option is specified, arguments can be
specified as const.

6. A declaration without a type specifier, a type qudifier or a Sorage class specifier is condgdered as
declaration of type‘int’.

7. A pointer can be compared to aconstant integra expression with value 0, or to apointer to void using
relationa operators aso.

8. _ farand __nfar memory modd qudifiers are supported.

9. __accpass, __noacc and __interrupt function quaifiers are supported.
10. __asm keyword is supported.

11. Thefallowing built in functions are supported

__mulu __mulbu _ divu _ divqu
_divou _modu _ modqu _ modbu

Page 121

	Part1. CC665S Ver.2.01 User Guide
	1. OVERVIEW
	2. OPERATING ENVIRONMENT
	2.1 HARDWARE AND MEMORY REQUIREMENT
	2.2 SYSTEM CONFIGURATION
	2.3 ENVIRONMENT VARIABLES

	3. INVOKING CC665S AND COMMAND LINE OPTIONS
	3.1 INVOCATION OF CC665S
	3.2 COMMAND LINE OPTIONS
	3.2.1 Machine Model Options
	3.2.2 'C' Memory Model Options
	3.2.3 Mixed Memory Model Options
	3.2.4 'C' And Mixed Memory Model Combination
	3.2.5 Optimization Options
	3.2.6 Code Generation
	3.2.7 Output Files
	3.2.8 Preprocessor Options
	3.2.9 Stack
	3.2.10 Debugging Options
	3.2.11 Miscellaneous Options
	3.2.12 Invalid Combination Of Options

	4. MEMORY MODELS
	4.1 C MEMORY MODELS
	4.2 HARDWARE MEMORY MODELS
	4.3 OBJECTS AFFECTED BY MEMORY MODELS
	4.3.1 Memory Model Qualifiers
	4.3.2 Data Variables
	4.3.3 Tables
	4.3.4 Strings
	4.3.5 Functions

	4.4 COMBINATION OF C AND MIXED MEMORY MODEL OPTIONS
	4.4.1 Small C Memory Model
	4.4.2 Effective Medium C Memory Model
	4.4.3 Medium C Memory Model
	4.4.4 Compact C Memory Model
	4.4.5 Effective Large C Memory Model
	4.4.6 Large C Memory Model

	5. PRAGMAS
	5.1 INTERRUPT PRAGMA
	5.1.1 Preserving Register Contents

	5.2 INTVECT PRAGMA
	5.3 VCAL PRAGMA
	5.4 ACAL PRAGMA
	5.5 CAL PRAGMA
	5.6 INLINE PRAGMA
	5.7 ABSOLUTE PRAGMA
	5.8 SFR PRAGMA
	5.9 INPAGE PRAGMA
	5.10 SBAINPAGE PRAGMA
	5.11 USINGINPAGE PRAGMA
	5.12 GROUP PRAGMA
	5.13 WIINDOW PRAGMA
	5.14 ROMWINDOW PRAGMA
	5.15 FIXED PAGE PRAGMA
	5.16 DUAL PORT PRAGMA
	5.17 EDATA PRAGMA
	5.18 SBAFIX PRAGMA
	5.19 COMMONVAR PRAGMA
	5.20 COMMON PRAGMA
	5.21 STACKSIZE PRAGMA
	5.22 STACK CHECK PRAGMAS
	5.23 LOOP OPTIMIZATIONS PRAGMAS
	5.24 ASM and ENDASM PRAGMAS

	6. OUTPUT FILES
	6.1 ASSEMBLY OUTPUT
	6.1.1 Comment Section
	6.1.2 Assembler Initialization Pseudo Instructions
	6.1.3 Procedure Section
	6.1.4 Symbol Declarations Section

	6.2 ERROR LISTING
	6.3 CALLTREE LISTING
	6.4 DEBUGGING INFORMATION FILE

	7. OPTIMIZATIONS
	7.1 GLOBAL OPTIMIZATIONS
	7.1.1 Constant Propagation
	7.1.2 Common Sub-Expression Elimination
	7.1.3 Code Sinking
	7.1.4 Code Hoisting

	7.2 LOOP OPTIMIZATIONS
	7.2.1 Loop Invariant Code Motion
	7.2.2 Loop Variant Code Motion
	7.2.3 Induction Variable Elimination
	7.2.4 Strength Reduction
	7.2.5 Loop Unrolling

	7.3 OTHER OPTIMIZATIONS
	7.3.1 Dead Code Elimination
	7.3.2 Dead Variable Elimination
	7.3.3 Algebraic Transformation
	7.3.4 Optimizing Jumps

	7.4 PEEPHOLE OPTIMIZATIONS
	7.4.1 Removal Of Redundant Transfer Instructions
	7.4.2 Optimizing Relative Jumps

	7.5 LOCAL OPTIMIZATIONS
	7.5.1 Constant Propagation
	7.5.2 Common Sub-Expression Elimination
	7.5.3 Use Of Algebraic Identities

	7.6 EFFECT OF ALIASING ON OPTIMIZATIONS

	8. IMPROVING COMPILER OUTPUT
	8.1 CONTROLLING OPTIMIZATIONS
	8.2 USING REGISTER VARIABLES
	8.3 REMOVING STACK PROBES
	8.4 CONTROLLING ALLOCATION OF VARIABLES
	8.5 MIXED LANGUAGE PROGRAMMING
	8.5.1 Combining Assembly And 'C' Programs
	8.5.2 Calling Conventions Of CC665S
	8.5.3 Return Values
	8.5.4 Interrupt Handling Routines In Assembly
	8.5.5 Referring C Variables

	8.6 QUALIFYING FUNCTIONS WITH '_accpass' AND '_noacc'
	8.7 BUILT-IN FUNCTIONS
	8.7.1 Higher Precision Multiplication
	8.7.2 Higher Precision Division
	8.7.3 Higher Precision Remainder

	8.8 RUNTIME STACK PREPARATION
	8.9 REGISTER USAGE
	8.10 STARTUP ROUTINE

	9. EMULATION LIBRARIES
	10. ASSEMBLING AND LINKING
	11. EXIT CODES
	12. ERROR MESSAGES
	12.1 FATAL ERROR MESSAGES
	12.1.1 Command Line
	12.1.2 General
	12.1.3 Preprocessor
	12.1.4 Lexical
	12.1.5 Syntax And Semantic

	12.2 ERROR MESSAGES
	12.2.1 Preprocessor
	12.2.2 Lexical
	12.2.3 Syntactic And Semantic
	12.2.4 Expression
	12.2.5 Control Statements

	12.3 WARNING MESSAGES
	12.3.1 Preprocessor
	12.3.2 Lexical
	12.3.3 Syntactic And Semantic
	12.3.4 Expression
	12.3.5 Pragmas

	Part2. CC665S Ver.2.01 Language Reference
	1. PREPROCESSOR
	1.1 INTRODUCTION
	1.2 TRANSLATION PHASES
	1.2.1 Trigraph sequences
	1.2.2 Line Splicing

	1.3 MACROS
	1.3.1 Introduction
	1.3.2 Macro Dufinition

	1.4 MACRO EXPANSION
	1.4.1 Expansion Of Macros Without Parameters
	1.4.2 Expansion Of Macros With Parameters

	1.5 MACRO REMOVAL
	1.6 REDEFINITION OF MACROS
	1.7 FILE INCLUSION
	1.7.1 Introduction
	1.7.2 Include File Specification Using Double Quotation Marks
	1.7.3 Include File Specification Using Angle Brackets
	1.7.4 Macros In Include Directive

	1.8 CONDITIONAL COMPILATION
	1.8.1 Introduction
	1.8.2 Conditional Compilation Directives
	1.8.3 Restricted Constant Expression
	1.8.4 defined Operator
	1.8.5 Nesting
	1.8.6 Testing Symbol Definition With #ifdef and #ifndef

	1.9 LINE
	1.10 ERROR
	1.11 MIXED LANGUAGE PROGRAMMING
	1.12 PREDEFINED MACROS

	2. LEXICAL CONVENTIONS
	2.1 CHARACTER SET
	2.2 TOKENS
	2.2.1 Identifiers
	2.2.2 Keywords
	2.2.3 Comments
	2.2.4 Constants
	2.2.5 Operators

	3. PROGRAM STRUCTURE
	3.1 SOURCE PROGRAM
	3.2 SOURCE FILES
	3.3 FUNCTIONS AND PROGRAM EXECUTION
	3.4 LIFETIME AND VISIBLITY
	3.4.1 Blocks
	3.4.2 Lifetime
	3.4.3 Visibility

	3.5 NAMING CLASSES
	3.6 DATA TYPES

	4. DECLARATIONS
	4.1 INTRODUCTION
	4.2 TYPE SPECIFIERS
	4.3 TYPE QUALIFIERS
	4.4 DECLARATORS
	4.4.1 Memory Model Qualifiers
	4.4.2 Function Qualifiers
	4.4.3 Interpreting Declarations

	4.5 VARIABLE DECLARATIONS
	4.5.1 Simple Variable Declarations
	4.5.2 Structure Declarations
	4.5.3 Union Declarations
	4.5.4 Enumeration Declarations
	4.5.5 Array Declarations
	4.5.6 Pointer Declarations

	4.6 FUNCTION DECLARATIONS AND PROTOTYPES
	4.6.1 Formal Parameters
	4.6.2 Return Type
	4.6.3 List Of Formal Parameters
	4.6.4 Memory Model Qualifiers For Functions
	4.6.5 Function Qualifiers For Functions

	4.7 STORAGE CLASS SPECIFIERS
	4.7.1 Variable Declarations At The External Level
	4.7.2 Variable Declarations At The Internal Level
	4.7.3 Function Declarations At The Internal And External Levels

	4.8 INTIALIZATION
	4.8.1 Fundamental And Pointer Types
	4.8.2 Aggregate Types
	4.8.3 String Initializers

	4.9 TYPE DECLARATION
	4.9.1 Structure And Union Types
	4.9.2 Typedef Declarations

	4.10 TYPE NAMES
	4.11 FUNCTIONS
	4.11.1 Function Definitions
	4.11.2 Function Prototypes
	4.11.3 Function Calls

	4.12 ASM DECLARATION

	5. EXPRESSIONS AND OPERATORS
	5.1 OPERATORS
	5.2 LVALUES AND RVALUES
	5.3 CONVERSIONS
	5.3.1 Integral Promotion
	5.3.2 Arithmetic Conversions
	5.3.3 Pointer Conversions

	5.4 PRIMARY EXPRESSIONS AND OPERATORS
	5.4.1 Identifiers
	5.4.2 Constants
	5.4.3 Strings
	5.4.4 Parenthesized Expression

	5.5 ARRAY REFERENCES
	5.6 FUNCTION CALLS
	5.7 STRUCTURE AND UNION REFERENCES
	5.8 POST INCREMENT
	5.9 POST DECREMENT
	5.10 PRE INCREMENT
	5.11 PRE DECREMENT
	5.12 ADDRESS OPERATOR
	5.13 INDIRECTION OPERATOR
	5.14 UNARY PLUS OPERATOR
	5.15 UNARY MINUS OPERATOR
	5.16 ONE'S COMPLEMENT OPERATOR
	5.17 LOGICAL NOT OPERATOR
	5.18 SIZEOF OPERATOR
	5.19 CAST OPERATOR
	5.20 MULTIPLICATIVE OPERATORS
	5.21 ADDITIVE OPERATORS
	5.22 SHIFT OPERATORS
	5.23 RELATIONAL OPERATORS
	5.24 EQUALITY OPERATORS
	5.25 BITWISE AND OPERATOR
	5.26 BITWISE EXCLUSIVE OR OPERATOR
	5.27 BITWISE OR OPERATOR
	5.28 LOGICAL AND OPERATOR
	5.29 LOGICAL OR OPERATOR
	5.30 CONDITIONAL EXPRESSION AND OPERATORS
	5.31 ASSIGNMENT EXPRESSIONS AND OPERATORS
	5.32 COMMA EXPRESSION AND OPERATOR
	5.33 CONSTANT EXPRESSIONS

	6. STATEMENTS
	6.1 INTRODUCTION
	6.2 LABELED STATEMENT
	6.3 EXPRESSION STATEMENT
	6.4 COMPOUND STATEMENT
	6.5 SELECTION STATEMENTS
	6.5.1 if Statement
	6.5.2 seitch Statement

	6.6 ITERATION STATEMENTS
	6.6.1 for Statement
	6.6.2 while Statement
	6.6.3 do Statement

	6.7 JUMP STATEMENTS
	6.7.1 goto Statement
	6.7.2 break Statement
	6.7.3 continue Statenent
	6.7.4 return Statement

	6.8 ASM STATEMENTS

	7. VARIATIONS FROM ANSI STANDARD

