
EEEEAAAASSSSEEEE66664444111155558888
Program Development Support for the MSM64153 Family

User's Manual
Rev. 1.01

May. 1994

OKI

NOTICE

1. The information contained herein can change without notice owing to product and/or technical
improvements. Please make sure before using the product that the information you are referring to is up
to date.

2. The outline of action and examples of application circuits described herein have been chosen as an
explanation of the standard action and performance of the product. When you actually plan to use the
product, ensure that external conditions are reflected in the actual circuit and assembling designs.

3. NO RESPONSIBILITY IS ASSUMED BY US FOR ANY CONSEQUENCE RESULTING FROM ANY
WRONG OR IMPROPER USE OR OPERATION, ETC. OF THE PRODUCT.

4. Neither indemnity against nor license of a third party’s industrial and intellectual property right, etc. is
granted by us in connection with the use of the product and/or the information and drawings contained
herein. No responsibility is assumed by us for any infringement of a third party’s right which may result
from the use thereof.

5. The product described herein falls within the category of strategic goods, etc. under the Foreign
Exchange and Foreign Trade Control Law. Accordingly, before exporting the product or any part thereof,
you are required under the law to file an application for an export license by your domestic government.

6. Although we endeavor to ensure that the information contained herein is accurate and reliable, we
welcome your comments and suggestions addressed to the following:

1st Sales Engineering Section
Product Development Department
Logic LSI Division
Electronic Devices Group
OKI ELECTRIC INDUSTRY CO., LTD.
7-5-25 Nishi-Shinjuku, Shinjuku-ku
Tokyo 160 JAPAN
Phone: 81-3-5386-8137 (direct line)

7. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

8. MS-DOS is a registered trademark of Microsoft Corporation.

Copyright 1994 OKI ELECTRIC INDUSTRY CO., LTD.

i

PREFACE

This manual explains the operation of the EASE64158 in-circuit emulator for Oki Electric’s MSM64153 family
of CMOS 4-bit microcontrollers. The EASE64158 is configured from the POD64158 evaluation module and
the EASE-LP2 special-purpose control system.

The MSM64153 family is all 4-bit microcontrollers that incorporate and provide all functions included in the
MSM64E153 evaluator chip, which was designed for the emulator. This family currently includes four
devices:

• MSM64152
• MSM64153
• MSM64155
• MSM64158

The following are related manuals:

• MSM6415X User’s Manual
- MSM6415X hardware description
- MSM6415X instruction set description
- Addressing description

• ASM64K Cross-Assembler User’s Manual
- ASM64K assembler operation description
- ASM64K assembly language description

MSM6415X User's Manual is the user's manual corresponds to one of the MSM64153 family
microcontroller that has been specified by customer.

ii

!

TABLE OF CONTENTS

Chapter 0. Before Starting ...0-1
0.1 Confirm Shipping Contents (1) ..0-3

Confirm Shipping Contents (2) ..0-4
0.2 Confirm Floppy Disk Contents...0-9

0.2.1 Host Computer ...0-9
0.2.2 Operating System...0-9
0.2.3 Floppy Disk Contents ...0-10

Chapter 1. Overview ..1-1
1.1 EASE64158 Emulator Configuration...1-2

1.1.1 Control System (EASE-LP2) ..1-2
1.1.2 POD64158 Evaluation Module ...1-3
1.1.3 ASM64K Cross-Assembler...1-3
1.1.4 SID64K Symbolic Debugger...1-4
1.1.5 System Configuration ...1-4

1.2 EASE64158 Parts and Functions..1-6
1.2.1. Control System (EASE-LP2) ..1-6
1.2.2. POD64158 Emulation Module..1-7

1.3 Program Development With EASE64158..1-8
1.3.1. General Program Development and EASE64158..1-8
1.3.2. From Source File To Object File ..1-9
1.3.3. Files Usable With the EASE64158 Emulator ...1-10

Chapter 2. EASE64158 Emulator ..2-1
2.1 EASE64158 Functions ..2-3

2.1.1 Overview ..2-3
2.1.2 Changing the Target Chip ..2-6
2.1.3 Data Memory Space...2-7
2.1.4 Code Memory (Program Memory) Space ..2-7
2.1.5 Emulation Functions...2-7
2.1.6 Realtime Trace Functions ..2-9
2.1.7 Break Functions ...2-12
2.1.8 Performance/Coverage Functions..2-16
2.1.9 Probe Cable Functions...2-17
2.1.10 EPROM Programmer ...2-18
2.1.11 Symbolic Debugging Functions..2-19
2.1.12 Assemble Command and Disassemble Command..2-20

2.2 EASE64158 Emulator Initialization..2-21
2.2.1 Setting Operating Frequency ...2-21
2.2.2 EASE64158 Switch Settings ..2-25
2.2.3 Confirming EASE-LP2 Power Supply Voltage ...2-29
2.2.4 Changing the Chip Select EPROM and Dipswitches2-30
2.2.5 A/D Board...2-33
2.2.6 Starting the EASE64158 Emulator ...2-34

2.2.6.1 Starting the EASE64158 in EASE-LP mode2-34
2.2.6.2 Starting the POD64158 in POD mode..2-49

2.3 SID64K Debugger Commands..2-54
2.3.1 Debugger Command Syntax ..2-54

2.3.1.1 Character Set ...2-56
2.3.1.2 Command Format ..2-57
2.3.1.3 Command Summary ..2-59

2.3.2 Symbolic Input (Definition of Expressions)...2-76
2.3.3 History Functions..2-80

iii

2.3.4 Special Keys For Raising Command Input Efficiency2-82

Chapter 3. SID64K Commands ...3-1
3.1 SID64K Commands ..3-2
3.1.1 Command Details ..3-2

3.1.1.1 Evaluation Chip Access Commands..3-3
3.1.1.1.1 Displaying/Changing Registers and SFR..3-4
3.1.1.1.2 Display Registration of Registers and SFR...3-17
3.1.1.1.3 Display/Change the PC (Program Ccounter) ..3-18

3.1.1.2 Code Memory Commands ...3-19
3.1.1.2.1 Displaying/Changing Code Memory Data ...3-20
3.1.1.2.2 Expanding the Memory Area...3-25
3.1.1.2.3 Comparing/Moving Code Memory...3-27
3.1.1.2.4 Load/Save/Verify ...3-28
3.1.1.2.5 Assemble/Disassemble Commands..3-37

3.1.1.3 Data Memory Commands ..3-45
3.1.1.3.1 Displaying/Changing Data Memory...3-46
3.1.1.3.2 Moving Between Data Memory ...3.50

3.1.1.4 Emulation Commands..3-53
3.1.1.4.1 Step Command ...3-54
3.1.1.4.2 Realtime Emulation Command..3-59
3.1.1.4.3 Commands Usable During Emulation ...3-65

3.1.1.5 Break Commands ..3-69
3.1.1.5.1 Setting Break Conditions...3-70
3.1.1.5.2 Setting Breaks on Executed Addresses..3-73
3.1.1.5.3 Displaying Break Results ..3-77

3.1.1.6 Trace Commands ...3-79
3.1.1.6.1 Displaying Trace Memory..3-80
3.1.1.6.2 Displaying/Changing Trace Contents..3-89
3.1.1.6.3 Setting/Displaying Trace Triggers ...3-92
3.1.1.6.4 Displaying/Changing Trace Enable Bits ..3-97
3.1.1.6.5 Displaying/Clearing the Trace Pointer...3-101
3.1.1.6.6 Searching Trace Memory..3-103

3.1.1.7 Reset Commands ..3-105
3.1.1.8 Performance/Coverage Commands ..3-109

3.1.1.8.1 Measuring Execution Time..3-110
3.1.1.8.2 Monitoring Executed Code Memory..3-118
3.1.1.8.3 Counting Execution Addresses ...3-121

3.1.1.9 EPROM Programming Commands..3-123
3.1.1.9.1 Setting EPROM Type..3-124
3.1.1.9.2 Writing to EPROM...3-126
3.1.1.9.3 Reading from EPROM...3-128
3.1.1.9.4 Comparing EPROM and Program Memory...3-130

3.1.1.10 Commands for Automatic Command Execution ..3-133
3.1.1.11 Commands for Displaying/Changing/Removing Symbols3-137

3.1.1.11.1 Displaying Symbols ...3-138
3.1.1.11.2 Changing Symbols ..3-140
3.1.1.11.3 Removing Symbols ...3-142

3.1.1.12 Other Commands...3-143
3.1.1.12.1 Saving CRT Contents..3-144
3.1.1.12.2 SH (Shell) Command ..3-146
3.1.1.12.3 Changing the Radix of Input Data ...3-148
3.1.1.12.4 Registering/Executing Commands..3-149
3.1.1.12.5 Terminating the SID64K Debugger ...3-153

iv

Chapter 4. Debugging Notes...4-1
4.1 Debugging Notes...4-2

4.1.1 Tracing ...4-2
4.1.2 Resets ..4-2
4.1.3 User Cables..4-3
4.1.4 Cycle Counter Overflow Breaks ...4-3
4.1.5 EPROM Programmer ...4-4
4.1.6 DASM Command ...4-4
4.1.7 Break ..4-4
4.1.8 Probe Cable ...4-5
4.1.9 Operating Clock..4-5
4.1.10 LCD Driver..4-5

4.2 EASE64158 Timing...4-6

Chapter 5. Assemble Command...5-1
5.1 Address Space..5-2
5.2 Segments ..5-3
5.3 Symbol Table ..5-3
5.4 Assembly Language Format ...5-4

5.4.1 Character Set ...5-4
5.4.2 Statement Format...5-4

(1) Label Field ...5-4
(2) Instruction Field..5-4
(3) Operand Field ..5-5
(4) Comment Field...5-5

5.4.3 Symbols..5-5
5.4.3.1 Reserved Symbols ...5-5

(1) Special Assembler Symbols...5-5
(2) Data Address Symbols...5-5
(3) Code Address Symbols..5-6

5.4.3.2 User-Defined Symbols ...5-6
(1) Character Set Usable In Symbols ..5-6

5.4.3.3 Location Counter Symbol ...5-6
5.4.4 Constants ...5-7

5.4.4.1 Integer Constants ...5-7
5.4.4.2 Character Constants ..5-7
5.4.4.3 String Constants...5-8

5.4.5 Expressions..5-9
5.4.5.1 General Format of Expressions..5-9
5.4.5.2 Operators ...5-9

(1) Arithmetic Operators ..5-9
(2) Bitwise Logical Operators ..5-10
(3) Relational Operators ..5-10

5.4.5.3 Operator Precedence...5-10
5.4.5.4 Segment Type Attributes In Expression Evaluation5-11

5.4.6 Addressing Modes..5-12
5.5 Basic Instructions ..5-12
5.6 Directives...5-13

5.6.1 Symbol Definition Directives...5-13
5.6.1.1 EQU..5-13
5.6.1.2 SET ..5-14
5.6.1.3 CODE...5-14
5.6.1.4 DATA..5-15

5.6.2 Memory Segment Control Directives..5-16
5.6.2.1 CSEG ...5-16
5.6.2.2 DSEG ...5-17

v

5.6.3 Location Counter Control Directives...5-18
5.6.3.1 ORG ...5-18
5.6.3.2 DS ..5-19
5.6.3.3 NSE..5-20

5.6.4 Data Definition Directives ...5-21
5.6.4.1 DB ..5-21
5.6.4.2 DW ...5-22

5.6.5 Assembler Control Directives ...5-23
5.6.5.1 END..5-23

Appendix
A.1 User Cable Configuration..A-2
A.2 Pin Layout of User Cable Connectors ...A-4
A.3 RS232C Cable Configuration..A-8
A.4 Emulator RS232C Interface Circuit ...A-10
A.5 If EASE64158 Won’t Start ...A-11
A.6 If POD64158 Isn’t Operating Correctly..A-13
A.7 User Cable Peripheral Circuit..A-15
A.8 Probe Cable Configuration..A-16
A.9 Mounting EASE-LP2 EPROMs ...A-18
A.10 Mounting POD64158 EPROMs...A-20
A.11 Mounting the POD64158 Evaluation Chip...A-22
A.12 Error Messages...A-24

vi

vii

333 mm

90
 m

m
EPROM

PIN 1

POWER

ON OFF

EASE-LP2
OKI

POWER
RUN
ERROR
POWER DOWN
POD

EPROM Programmer

Power Indicator
Run Indicator
Error Indicator
Power Down Indicator
POD Indicator

Power Supply Switch

22
2

m
m

Top View

Front View

EASE-LP2 External Views (1)

viii

RESET

: :

CN1 CN2

:: : : : : : : : : : : : : : : :

PROBE

RS232C
SW1

19
20

0
96

00
48

00
24

00
F

LO
W

Probe
Cable
Connector

Interface
Cable
Connectors

RS232C Connector

Reset
Button

SW1
OFF

ON

XON/XOFF

DTR/DSR

EASE-LP2 External Views (2)

Left View

Right View

EASE-LP2 External Views (3)

ix

AC100–240

AC Power Supply Connector

Rear View

POD64158 External Views (1)

x

– +

DC Jack

DC Power Jack

190 mm

32
 m

m

..
..
..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..
..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..
..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..
..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..
..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..
..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..
..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..
..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..
..
..

..
..

..
..

..
..

..
..

..
..

..
..

POD64158

MSM64E153 OKI

EPROM

16
5

m
m

EPROM Socket

EVA Socket

DC5V

SW3 SW4

1.
5

V

3.
0

V

IN
T

E
X

T

PIN 1

PIN 1

A/D

POWER

POWER DOWN

Front View

Top View

POD64158 External Views (2)

xi

. .. .

. .. .

USRCN1

USRCN2

. .. .

. .. .

CN1

CN2

User
Cable
Connectors

Interface
Connectors

Left View

Right View

POD64158 External Views (3)

xii

SW1 SW2

64
/1

28

25
6

51
2

P
O

D

IC
E X'tal

Rear View

Explanation of Symbols

Indicates a supplemental explanation of particular importance that relates to the topic of the
current text.

Indicates a specific example of the topic of the current text.

Indicates a section number or page number to reference for related information on the topic of
the current text.

Indicates the number of a footnote with a supplemental explanation of particular words in the
current text.

Indicates a footnote with a supplemental explanation of words marked with the above-described
symbol. The numbers following each symbol correspond to each other.

xiii

!

Example

SEE

(☞ 1)

☞ 1

Chapter 0, Before Starting

0-1Read This First

This chapter describes the first things you should do after taking
delivery of an EASE64158 program development support system.

CCCChhhhaaaapppptttteeeerrrr 0000

BBBBeeeeffffoooorrrreeee SSSSttttaaaarrrr tttt iiiinnnngggg

Thank you for buying Oki Electric’s EASE64158 program development support system. When your
system was shipped we made every effort to ensure that it would not be damaged or mispacked, but we
recommend that you confirm once more that this did not occur following the explanations in this chapter.

The RS232C cable, floppy disks, or other items may differ depending on the model of host computer that
you will use. Use with a different model could cause damage to the hardware, so please take particular
care to avoid this. If the system shipped to you was damaged, if any components were missing, or if your
host computer model is different, the please contact the dealer from whom you purchased the system or
Oki Electric’s sales department.

Chapter 0, Before Starting

0-2 Read This First

HARDWARE

0-1. Confirm Shipping Contents (1)

Chapter 0, Before Starting

0-3Read This First

ASM64K

CROSS-
ASSEMBLER
USER'S
MANUAL

EASE64158

USER'S
MANUAL

2 Manuals:
ASM64K Cross-Assembler

User's Manual
EASE64158 User's Manual

ASM64K SID64K

2 Floppy Disks:
ASM64K SID64K

SOFTWAREDOCUMENTATION

Test Result Charts

EASE64158 Component List

Customer
Registration
Postcard

OKIEASE-LP2
POD64158

OKI

POD64158EASE-LP2

EASE64158

0-1. Confirm Shipping Contents (2)

ACCESSORIES

Read This First

Chapter 0, Before Starting

0-4

60 pins 64 pins 80 pins 100 pins

Power Supply
Cable

RS232C
Cable

DC Power
Supply Cable

Probe
Cable

User Cables Interface
Cables

A/D Board

RS

RT

CRT

CS

IN

10

18

1

9

OKI QTU-11905
A/D BOARD

Evaluation Chip
(MSM64E153-1.5V)

A/D Borad

Evaluation Chip
(MSM64E153-1.5V)

Read This First

Your purchase of the EASE64158 will be followed be delivery of the necessary hardware, software, and
manuals in the shipping box illustrated in the upper left of page 2. After taking delivery, open the box
and confirm that it contains all the contents illustrated on pages 2 and 3.

Each component is described below. Note that those marked with ☞ will differ depending on the model
of host computer.

Chapter 0, Before Starting

0-5

Documents

Customer Registration Postcard

EASE64158 Components List

Test Results Charts

Hardware

EASE-LP2

POD64158

Oki Electric uses this to record you in our
customer list in order to inform you of product
maintenance and version upgrades. Please fill
out the requested items and send the postcard in
as soon as possible. If you do not send in the
registration postcard, it will it more difficult to
provide you with maintenance and version
upgrade service.

This is a list of the items shipped.

This chart shows that the EASE64158 passed all
tests before shipping.

This is the EASE-LP2 control system. It contains
hardware for host computer communications,
EPROM programming, etc.

This is the POD64158 evaluation module. It
emulates the operation of the MSM64153 family.

The EASE-LP2 and POD64158 will be called “EASE64158” or “emulation kit” for short.

Available floppy disk formats

MS-DOS format
(1) 3.5-inch 2HD (1.21 Mbytes)
(2) 5.25-inch 2HD (1.21 Mbytes)

PC-DOS format (for IBM PC/AT)
(1) 3.5-inch 2HD (1.44 Mbytes)
(2) 5.25-inch 2HD (1.232 Mbytes)

Chapter 0, Before Starting

0-6 Read This First

!

☞ 1

Software

Floppy Disk: ASM64K

Floppy Disk: SID64K

ASM64K Cross-Assembler

User's Manual

EASE64158 User's Manual

☞ 1

☞ 1

This disk contains the ASM64K executable files.
It can be supplied in the formats described below.
Floppy disk contents are explained in Section 0-2.

This disk contains the SID64K executable files. It
can be supplied in the formats described below.
Floppy disk contents are explained in Section 0-2.

This is the user's manual for the ASM64K cross-
assembler.

This is the user's manual (this manual) for the
EASE64158.

Chapter 0, Before Starting

0-7Read This First

Accessories

Power Supply Cable

RS232C Cable

Probe Cable

User's Cables

Interface Cables

DC Power Supply Cable

A/D Board

☞ 2

This cable connects to the power supply
connector.

This cable connects the EASE-LP2 with a host
computer. There are two types: for NEC-PC9801
and Oki if800 series computers, and for IBM-
PC/AT computers.
If not specified before shipment, then the cable for
NEC-PC9801 and Oki if800 series computers will
be shipped.

This cable connects to the EASE-LP2 probe
connector.

These cables connect the POD64158 to the user's
application system. Two cables are supplied: a
60-pin flat cable and a 64-pin flat cable.

These cables connect the EASE-LP2 and the
POD64158. Two cables are supplied: a 100-pin
flat cable and an 80-pin flat cable.

This cable supplies VDD to the POD64158 when
used standalone. It connects to the POD64158's
DC power jack.

Terminal board for A/D converter.
This board can be used only with the MSM64153
family microcontrollers that are equipped with A/D
converter.

An evaluation chip (MSM64E153) mounted on the
POD64158.

Evaluation Chip☞ 3

Unless specified before the EASE64158 is shipped, a cable for the NEC-PC9801 series will
be shipped. If you will use an Oki if800 series computer, then you can also use this cable. If
you will use an IBM-PC, then please tell the responsible salesperson before your system is
shipped so that a special-purpose cable will be included. If you forget to specify the personal
computer that you will be using, then please contact the responsible salesperson to
exchange cables.

To identify which type of cable was shipped to you, please refer to the features listed below.

(1) NEC-PC9801 series 25-pin D-SUB male connector on one side, and 9-pin male
connector on the other side.

(2) IBM-PC/AT 9-pin male connector on one side, and 9-pin female connector
on the other side.

If you will be using a host computer other than an NEC-PC9801 series, Oki if800 series, or
IBM PC/AT, then the connectors and their cable connections may have to be changed.
Refer to Appendix 3 and 4 to change the connectors or cable connections to match the host
computer you will use.

Two types of evaluation chips, a 1.5-V operating MSM64E153-1.5V, and a 3.0-V operating
MSM64E153-3.0V, are provided. When the EASE64158 is shipped, the 3.0-V operating
MSM64E153-3.0V is mounted on the POD64158.

Chapter 0, Before Starting

0-8 Read This First

☞ 2

☞ 3

0-2. Confirm Floppy Disk Contents

0-2-1. Host Computer

SID64K, the symbolic debugger for EASE64158, has been confirmed to operate with the following
computer models.

All of the above models must have at least 640 Kbytes of memory.

Oki Electric has not confirmed direct operation with computers other than those listed above.

Before purchasing the EASE64158, your sales dealer or the Oki Electric sales department should verify
the computer model that you will use. However, if after buying the system you want to consider a model
other than those listed above, then please consult with Oki Electric’s application engineering section.

0-2-2. Operating System

The operating system of computers other than IBM-PCs should be Japanese MS-DOS version 3.1 or
later. For IBM-PCs, it should PC-DOS version 3.1 or higher.

Chapter 0, Before Starting

0-9Read This First

OKI Electric if800RX120

if800EX120

NEC PC9801RA

EPSON PC386LS

IBM PC/AT

PC9801T

PC9801RX

98noteSX

PC386LSR

0-2-3. Floppy Disk Contents

If the conditions described in Sections 0-2-1 and 0-2-2 are satisfied, then there will be no problem with
your host computer model. Next, check the contents of the floppy disks.

(1) ASM64K floppy disk contents

As shown below, the label pasted on the floppy disk will differ for the PC9801/if800 series and the IBM-
PC.

For PC9801/if800 Series For IBM-PC Series

If you use the floppy disk for the wrong type of computer, then it will not be able to read the floppy disk
contents, so check whether or not the correct disk is inserted. Each file included on the floppy disk and a
brief explanation is given below.

Executable file for ASM64K cross-assembler.

DCL file for ASM64K cross-assembler (☞3).
For details, refer to ASM64K Cross-Assembler
User's Manual.

Chapter 0, Before Starting

0-10 Read This First

OKI OKIASM64K Cross-Assembler
for MS-DOS

ASM64K Cross-Assembler
for PC-DOS

Contents of ASM64K

Floppy Disk

ASM64K.EXE

M6415X.DCL

(2) SID64K Floppy Disk Contents

As shown below, the label pasted on the floppy disk will differ for the PC9801/if800 series and the IBM-
PC.

For PC9801/if800 Series For IBM-PC Series

If you use the floppy disk for the wrong type of computer, then it will not be able to read the floppy disk
contents, so check whether or not the correct disk is inserted. Each file included on the floppy disk and a
brief explanation is given below.

Executable file for SID64K symbolic debugger.

DCL file for SID64K (☞ 4).

Program for RS232C control
(included on IBM-PC disk only).

Chapter 0, Before Starting

0-11Read This First

OKI OKISID64K version x.xx
for MS-DOS

SID64K version x.xx
for PC-DOS

Contents of SID64K

Floppy Disk

SID64K.EXE

E6415X.DCL

INT232C.COM

The DCL file for ASM64K defines the following items to match operation with the appropriate
member of the MSM64153 family.

(a) SFR (special function register) addresses and access attributes.
(b) Code memory (program memory) address range.
(c) Data memory address range.

Currently, the following DCL files are provided for each device in the MSM64153 family.
Note that the floppy disk contains all the DCL files for the device supported by ASM64K.

MSM64152: M64152.DCL
MSM64153: M64153.DCL
MSM64155: M64155.DCL
MSM64158: M64158.DCL

The DCL file for SID64K defines the following items to match operation with the appropriate
member of the MSM64153 family. The DCL file is read when SID64K is invoked.

(a) SFR (special function register) addresses and access attributes.
(b) Code memory (program memory) address range.
(c) Data memory address range.

Currently, the following DCL files are provided for each device in the MSM64153 family.
Note that the floppy disk contains all the DCL files for the device supported by SID64K.

MSM64152: E64152.DCL
MSM64153: E64153.DCL
MSM64155: E64155.DCL
MSM64158: E64158.DCL

The DCL file used differs for SID64K symbolic debugger and ASM64K cross-assembler.
Please ensure to use the correct DCL file:

DCL file for SID64K: E64152.DCL (first character of the file name is "E")
DCL file for ASM64K: M64152.DCL (first character of the file name is "M")

Chapter 0, Before Starting

0-12 Read This First

☞ 3

☞ 4

!

Chapter 1, Overview

1-1

CCCChhhhaaaapppptttteeeerrrr 1111

OOOOvvvveeeerrrrvvvviiiieeeewwww

This chapter provides an overview of EASE64158 system configuration,
describes the program development procedure with the EASE64158 system.

1-1. EASE64158 Emulator Configuration

The EASE64158 in-circuit emulator is configured from:

(1) Control system (EASE-LP2)
(2) POD64158 evaluation module
(3) ASM64K cross-assembler
(4) SID64K symbolic debugger

1-1-1. Control System (EASE-LP2)

The EASE-LP2 is a general-purpose control system for in-circuit emulators for Oki Electric’s MSM64153
family of CMOS 4-bit microcontrollers. The EASE64158 in-circuit emulator is constructed by connecting
the control system to a POD64158 evaluation module.

The internal configuration of the EASE-LP2 control system is as follows.

• System controller MC68HC000
☞1 • Code memory 64K x 24 bits (☞2)

• Trace memory 8K steps x 64 bits
• Cycle counters 32-bit binary counter x 1 counter

☞1 • Attribute memory 64K x 8 bits
☞1 • Instruction executed bit memory 64K x 1 bit

• EPROM programmer For 2764/128/256/512
• RS232C ports 1 channel
• System power supplies 1

Refer to each microcontroller's User's Manual for the maximum addresses of code memory,
attribute memory, and instruction executed memory for the MSM64153 family.

Up to 32K x 8 bits among the 64K x 24 bits code memory of the EASE-LP2 will be used by
the EASE64158 as a program RAM .

The emulator handles the test data area of the MSM64153 family program as an unusable
area.

Chapter 1, Overview

1-2

☞ 1

☞ 2

!

1-1-2. POD64158 Evaluation Module

The EASE64158 in-circuit emulator for Oki Electric’s MSM64153 family of CMOS 4-bit microcontrollers is
constructed by connecting the POD64158 evaluation module to an EASE-LP2. The MSM64E153, a
dedicated evaluation chip developed especially for emulation, is used in the POD64158.

The POD64158 can be operated stand-alone by mounting an EPROM with a user program
in the EPROM socket. Refer to Section 2-2-6, “Starting the EASE64158 Emulator.”

Refer to Appendix 7 regarding user cable connectors and peripheral circuits for the
evaluation chip.

1-1-3. ASM64K Cross-Assembler

ASM64K is a cross-assembler developed for the OLMS-64K series. It is stored on a floppy disk that
comes with the purchase of an EASE64158 development support system.

Source files constructed from OLMS-64K instruction mnemonics and directives are converted to object
files with ASM64K. Object files (machine language files) generated this way are read and executed by
SID64K, explained in the next section.

ASM64K can be used with host computers that satisfy the following conditions.

• The operating system is MS-DOS or PC-DOS version 3.1 or higher.
• A transient program area of at least 128 Kbytes is available.

For details about ASM64K, refer to the ASM64K Cross-Assembler User’s Manual.

Chapter 1, Overview

1-3

!

!

1-1-4. SID64K Symbolic Debugger

The SID64K symbolic debugger is software that operates on a host computer interfaced to the
EASE64158. The EASE64158 operates through this software. SID64K also supports symbolic
debugging.

SID64K is stored on a floppy disk that comes with the purchase of an EASE64158 development support
system.

SID64K can be used with host computers that satisfy the following conditions.

• The operating system is MS-DOS or PC-DOS version 3.1 or higher.
• A transient program area of at least 250 Kbytes is available.
• A channel for an RS232C interface.

1-1-5. System Configuration

The system is used in the following two configurations.

• EASE-LP2 mode in which the POD64158 is connected to the EASE-LP2 and a host computer.
• POD mode in which the POD64158 is used stand-alone.

Figure 1-1 and Figure 1-2 shows each system configuration.

Figure 1-1. System Configuration in EASE-LP2 Mode

Chapter 1, Overview

1-4

POD64158 EASE-LP2

User Application System
POD64158 EASE-LP2

External Power Supply

Host Computer

MS-DOS
PC-DOS

User cables
(60-pin, 64-pin)

Interface cables
(80-pin, 100-pin)

ASM64K
SID64K

RS232C

Figure 1-2. System Configuration in POD Mode

Chapter 1, Overview

1-5

POD64158

External Power Supply External Power Supply

POD64158

User Application System

User Cables
(60-pin, 64-pin)

1-2. EASE64158 Parts and Functions

Each part of the EASE64158 and its function is summarized below.

1-2-1. Control System (EASE-LP2)

(1) EPROM programmer
Used to program the contents of the code memory to EPROM, or transfer the EPROM
contents to the code memory.

(2) Indicators

POWER indicator: Lights when the EASE64158 is turned on using EASE-LP2 power switch.

RUN indicator: Lights when realtime emulation is executed (during continuous
execution), and when the EPROM programmer is accessed.

ERROR indicator: Lights when the EASE64158 is not operating properly, or when an error
is occured during operation. For details, refer to Appendix-5.

POWER DOWN indicator: Lights when the EASE64158 is in HALT mode during emulation
(during continuous execution or during step execution).

POD indicator: Lights when the POD64158 is properly connected to the EASE-LP2.

(3) RS232C connector
A host computer is connected through the attached RS232C cable.

(4) SW1
Sets the baud rate of RS232C interface.

(5) RESET switch
Resets the EASE-LP2.

(6) PROBE cable connector
Connector for the attached probe cable to enable external break.

(7) Interface cable connectors (CN1 and CN2)
The POD64158 evaluation module is connected through the attached 80-pin and 100-pin
interface cables.

(8) AC power supply connector (AC100–240)
Connect the attached AC power supply cable. Note that EASE-LP2 rated power voltage is
AC100–240V.

(9) POWER switch
Turns the EASE64158 ON/OFF.

Chapter 1, Overview

1-6

1-2-2. POD64158 Evaluation Module

(1) EPROM socket
Mount the EPROM contains user program.

(2) Indicators

POWER indicator: Lights when POWER switch is ON.

POWER DOWN indicator: Lights when the EASE64158 is in HALT mode during emulation
(during continuous execution or during step execution).

(3) SW1
Selects the type of EPROM mounted on EPROM socket.

(4) SW2
Selects the EASE-LP2 or POD operation mode.

(5) SW3
Switch the operation voltage of the MSM64E153 evaluation chip.

(6) SW4
Switch the operaion clock supplying method.

(7) MSM64E153 evaluation chip socket
A socket to mount the MSM64E153 evaluation chip.

(8) A/D board
Terminal of A/D converter, to which resistors or capacitors are connected.

(9) Crystal board cover (X'tal)
A crystal oscillator board is inside.

(10) Interface cable connectors (CN1 and CN2)
When the POD64158 is used in EASE-LP mode, connect the attached 80-pin and 100-pin
interface cables to connect it to the EASE-LP2.

(11) User connectors (USRCN1and USRCN2)
Connect the user application system through attached 60-pin and 64-pin user cables.

(12) DC power jack (DC JACK)
When the POD64158 is used in POD mode, connect the external power supply.
DC5V must be supplied through attached DC power supply cable. Do not mix up DC polarity
when connecting the DC power cable to the external power supply.

Chapter 1, Overview

1-7

Chapter 1, Overview

1-8

1-3. Program Development With EASE64158

1-3-1. General Program Development and EASE64158

Figure 1-3 shows the general flow of program development (☞1).

First, one decides on the functions of the product to be
developed, and evaluates which hardware and software should
be designed to implement them. Specific considerations include
which MCU to use, how to allocate MCU interrupts, how much
ROM and RAM to add, etc. This is called the functional design
process.

Next is the specification design process. Here the functions to be
implemented are evaluated in detail, and the methods to use
those functions in the final product are decided. Specifically,
commands are decided upon and a command input specification
is written. The specification generated by this process is usually
called the functional specification.

The process of creating a program based on the functional
specification is called the program design process. Algorithms,
flowcharts, and a program specification are created. This process
can also include coding (source program creation) and assembly.
In other words, ASM64K is used in this process.

Next is the debug process. This is the process for which the
EASE64158 especially excels (☞2). An object file created in the
program design process is downloaded to the EASE64158, and
by using the various functions of the EASE64158 emulator,
program bug analysis, fixing, and testing are performed.

The last position of the overall program development process is
occupied by the testing process. The complete program from the
debug process is operated in the actual product, and operation
according to the functional specification is verified with test
programs, etc. If there are bugs in the operation, then the flow
from the program design process on is repeated until there are no
more bugs.

Development
Start

Development
End

Functional
Design

Specification
Design

Program
Design

Debug

Testing

Are there
bugs?

YES
NO

Figure 1-3. General Flow of Program
Development

The general flow and terminology given here are typical, but other documents and manuals
will have different expressions.

Refer to Chapter 2, “EASE64158 Emulator,” for details about the various function of the
EASE64158 emulator.

1-3-2. From Source File To Object File

In order to perform debugging with the EASE64158 emulator, an object file for downloaded to the
EASE64158 must be generated (☞3,4).

Figure 1-4 shows the process of generating an object file from a source program file coded in assembly
language (hereafter called a source file).

Figure 1-4. Process of Generating Object Files From Source Files

In the above figure, circles indicate operation of the ASM64K cross-assembler program, while cylinders
indicate files generated by programs.

Object files that the EASE64158 emulator can handle are Intel HEX format object files that include
symbol information, as shown in Figure 1-4.

Chapter 1, Overview

1-9

☞ 1

☞ 2

.ASM .HEXASM64K

Source File Intel HEX Format
Object File and Symbol

Information File

Downloading means storing the contents of an object file in EASE64158 code memory with
the SID64K LOD command. Refer to Section 3-1-2-4, “Load/Save/Verify Commands,” for
details on the LOD command.

Object files in this document refer to Intel HEX format object files that include symbol
information which the EASE64158 emulator can handle.

1-3-3. Files Usable With the EASE64158 Emulator

The files usable with the EASE64158 emulator are files generated by ASM64K, as explained in the
previous section. This section describes these files.

(1) Files generated by ASM64K

These are object files generated by ASM64K from source files built from OLMS-64K mnemonics and
various directives. These files include symbol information. Therefore, to perform symbolic debugging,
loading must be done with the SID64K symbolic debugger’s LOD command with /S option (☞5).

Refer to Section 3-1-2-3, “Load/Save/Verify Commands,” about the /S option specification of
the LOD command. Symbol information is supported by the ASM64K assembler version
1.00 and later versions. For details, refer to the ASM64K Cross-Assembler User’s Manual.

Chapter 1, Overview

1-10

☞ 3

☞ 4

☞ 5

2-1

Chapter 2, EASE64158 Emulator

CCCChhhhaaaapppptttteeeerrrr 2222

EEEEAAAASSSSEEEE66664444111155558888 EEEEmmmmuuuullllaaaattttoooorrrr

This chapter explains the actual use of the EASE64158 emulation kit
and the SID64K symbolic debugger in detail.

Sections 2-3-3 and 2-3-4 explain the history function and special-
purpose keys respectively. These are provided to support efficient input
of debugger commands.

Section 2-3-2 gives a general explanation of symbolic input.

Section 2-3-1 describes the general input format of debugger
commands and lists all debugger commands by function. This list also
gives a reference page for each command, so it is convenient for use as
a command index.

Section 2-3 explains in detail the actual use of SID64K debugger commands with
the EASE64158.

Section 2-2 explains how to start the EASE64158. EASE64158 dipswitch
settings (to set the communications mode with the host computer, etc.) are also
explained in this section.

Section 2-1 gives an overview of each group of functions that can be used with
the EASE64158 emulation kit and the SID64K symbolic debugger

Chapter 2, EASE64158 Emulator

2-2

In this chapter...

2-1. EASE64158 Functions

2-1-1. Overview

Section 1-2 explained the program development process with the microcontrollers of the
MSM64153 family. This section gives an overview of the actual emulator functions used to debug
prototype programs created by that process.

The most basic function of the emulator is to read and execute a program (an Intel HEX format
object code plus symbol information file generated by ASM64K). Here “execute” means to execute a
program under the same electrical characteristics and at the same speed as the same volume-production
microcontroller in the MSM64153 family. This is known as emulation, as distinguished from program
simulation with large computers.

Figure 2-1

2-3

Chapter 2, EASE64158 Emulator

Code Memory

MSM64E153
Evaluation Chip

EASE-LP2 POD64158 Application system that uses
an MSM64153 family controller

Interface Cables User Cables

The volume-production MSM64153 family microcontrollers have mask ROM on-chip, but once
mask ROM has been written it cannot be changed. However, program during the development stage is
difficult to debug unless it is stored in rewritable memory (RAM).

Thus the EASE64158 has in internal 64K x 24-bit program storage RAM. This RAM is called
code memory (☞ 1). Refer to Figure 2-1 on the previous page.

EASE64158 executes programs in this code memory instead of mask ROM (☞2). When the user
application system is being produced in volume, it will be mounted with an MSM64153 family
microcontroller, but at the debug stage it is replaced with a connector in the user application system. This
connector is attached to an EASE64158 user cable (Refer to Figure 2-1).

Within the EASE64158 (strictly speaking, within the POD64158) is a special device, designated
MSM64E153. The MSM64E153 has the same CPU circuit and the same external pins as MSM64153
family microcontrollers. It differs from MSM64153 family microcontrollers in that it has no internal mask
ROM, but it does have some special control circuitry and control pins.

These additional circuits and pins are used to control execution of programs and reading of
internal memory, registers, and flags. The MSM64E153 can read and execute the contents of code
memory instead of mask ROM. In other words, with the MSM64E153 one can realize a system in which
mask ROM is replaced by code memory, but its pins and electrical characteristics are identical to the
MSM64153 family microcontrollers (☞3). The MSM64E153 is often called the evaluation chip in this
manual.

The MSM64E153 evaluation chip’s external pins include the same pins as volume-production
MSM64153 family microcontrollers. These are connected to the connector on the user application
system through the user cables. A/D converter pins are located on the A/D board.

As a result, the user application system sees the end of the user cable connector as identical to a
MSM64153 family microcontroller (see Figure 2-1).

Refer to each MSM64153 family microcontroller's User's Manual regarding code memory
addresses of the EASE64158. Within code memory, up to 32K x 8 bits can be used as RAM
for program storage.

The POD64158 has an EPROM socket for code memory. If the POD64158 is used
standalone, then the EPROM in this socket will be allocated to the program area. However, if
used as an EASE64158, then do not use the EPROM socket.

Chapter 2, EASE64158 Emulator

2-4

☞ 1

☞ 2

The user cable connector’s pins cannot be said to be completely the same electrically as
MSM64153 family microcontroller pins. It is very minor, but the leads on the user cable will
add some resistance and floating capacitance. Port pins being traced also have one CMOS
comparator load, and the EXT CLK and USER RESET pins have one CMOS load. These
loads are tiny enough that they will be no problem to most systems, but note that problems
can occur on systems with subtle electrical characteristics.

For information about the relation between the evaluation chip and the user cables, refer to
Section 2-2-1, “Setting Operating Frequency,” and Section 4-1-2, “Resets,” and Appendix 7,
“User Cable Peripheral Circuit.”

That the basic function of the emulator is to read and execute programs was already explained,
but effective debugging is not possible with just simple execution. For example, one must be able to start
and stop program execution at specified addresses. One needs to display and change the states of data
memory (internal RAM), registers, and flags after execution. Furthermore, instead of just stopping
execution at a specified address, one needs the ability to set complex conditions for stopping after a
specified time has elapsed or some address has been passed a specified number of times (pass count).
To meet these needs, EASE64158 has many functions beyond its basic one. These features are
explained one by one in the following sections.

2-5

Chapter 2, EASE64158 Emulator

☞ 3

!

2-1-2. Changing the Target Chip

The EASE64158 is configured to each device of the MSM64153 family by setting the following items.

(a) Set the DCL file read when SID64K is invoked.

The DCL file defines symbol information needed to perform symbolic debugging, the code
memory address range, and the data memory address range.

(b) Set the POD64158’s internal chip select dipswitch.

The POD64158's internal dipswitch 4 specifies which SFRs and data memory in the
MSM64E153 are prohibited and which are permitted. It corresponds to the appropriate
device in the MSM64153 family.

The dipswitches 2 and 3 specify which of the MSM64E153’s internal interrupt circuits are
prohibited and which are permitted. They correspond to the appropriate device in the
MSM64153 family.

The DCL file and dipswitches must all be set to the same device in the MSM64153 family
being used. If the settings are mixed, then the EASE64158 will not operate properly.

Refer to Section 2-2-4, “Dipswitch Changes for Chip Select,” for setting the chip select
dipswitches.

❏ Reading the DCL file for the target chip (☞1)

In order to start SID64K configured for the appropriate target chip, the chip-specific DCL file must
be read. The DCL file read by SID64K is determined by power-on information (chip mode information)
from the EASE64158. When the filename is determined, SID64K first searches for it in the current
directory. If not found, then it searches the directory which contains SID64K.EXE and then the directory
specified by the DCL environment variable. If still not found, then SID64K will not start.

Refer to Section 2-2-6, “Starting the EASE64158 Emulator,” for details about reading DCL
files and about chip modes corresponding to DCL files.

Chapter 2, EASE64158 Emulator

2-6

☞ 1

2-1-3. Data Memory Space

The EASE64158 assigns the MSM64E153 evaluation chip’s internal memory and the SFR area
to data memory space. Refer to each MSM64153 family microcontroller's User's Manual for detailed
description.

2-1-4. Code Memory (Program Memory) Space

The EASE-LP2 has 64K x 24 bits as code memory space, but the EASE64158 used code
memory in accordance with the devices of the MSM64153 family. Address range of the code memory is
described in each MSM64153 family microcontroller's User's Manual.

Code memory size, attribute memory size, and instruction executed memory size can be
expanded to 32K bytes (000–7FFFH) with the EXPAND command.

EXPAND

Note that the EASE64158 emulator handles the test data area in each MSM64153 family
microcontroller's code memory (program memory) as unusable area.

2-1-5. Emulation Functions

The EASE64158 has two modes for its emulation functions (program execution functions).

(1) Single-step mode (STP command)

In this mode, program execution stops after each step (one instruction) is executed. After each
instruction is executed, the state of the evaluation chip is read and displayed on the CRT. Single-
step mode is realized with the STP command. The information to be displayed can be set with
the SSF command.

STP, SSF

(2) Realtime emulation mode (G command)

In this mode, program execution will continue until some specified break condition is satisfied or
an ESC command is input. Realtime emulation mode is realized with the G command. Even
during realtime emulation, the EASE64158 allows some of the debug commands to be input. For
details, refer to Section 3-4-3, “Commands Usable During Emulation.”

G

2-7

Chapter 2, EASE64158 Emulator

SEE

!

SEE

SEE

The emulation functions here are those of the EASE-LP2 mode. In the POD mode, in which
the POD64158 operates standalone, only the continuous execution by the user program
EPROM on the POD.

❏ Operating Clock

The operating clock of the EASE64158 can be selected from either a clock supplied by an
internal oscillation circuit or a clock input from the user cable EXT CLK pin. Operating clock selection is
performed by switching a dipswitch on the POD64158.

When the EASE64158 is shipped, it is set to operate using the clock supplied by its internal
oscillation circuit. The internal oscillation circuit’s frequency is 32.768 kHz (typical). The internal
oscillation frequency can be changed by changing the crystal oscillator on the X'tal board.

For details, refer to Section 2-2-1, “Setting Operating Clock Frequency.”

• The EASE64158 operating frequency is 32.768 kHz (typical). To use any other frequency,
please contact Oki Electric’s engineering department.

• When changing the crystal oscillator, capacitors or resistors in the oscillation circuit might
also be required to change in accordance with the manufacturer of the crystal oscillator or
the oscillation frequency being used.

• Clock input selection is performed by switching a dipswitch 4 on the POD64158. Refer to
Section 2-2-2, “EASE64158 Switch Settings.”

• However the MSM64153 family microcontrollers MSM64155 and MSM64158 can select
CR oscillation circuit as the clock generator by using mask option, the EASE64158 cannot
select the CR oscillation circuit as a clock generator. If this hinders your program
development, please contact Oki Electric's engineering department.

Chapter 2, EASE64158 Emulator

2-8

!

☞ 1

2-1-6. Realtime Trace Functions

One EASE64158’s principal functions is realtime tracing. Realtime tracing occurs during program
execution under realtime emulation mode. It stores the executed addresses, the data and addresses in
data memory used, and the states of evaluation chip port pins, registers, and flags in memory provided
for tracing. The memory provided for tracing is called trace memory.

The EASE64158 has trace memory for 8K steps. It traces the following items.

Trace Contents
Program counter (PC) value

Data memory addresses

Data memory data

A register value

B register value

H (X) register value (☞1)

L (Y) register value (☞1)

Stack pointer (SP) value

State of any two ports among ports 0, 1, 2, 3, 4, 6, 7

MI flag value

Carry (C) flag

INT flag (☞2)

SKIP flag (☞2)

STF, DTM, DTP, RTP, CTO

The CTO command selects whether the values of the H and L registers or X and Y registers
are traced.

The INT flag indicates an interrupt transfer cycle. The SKIP flag indicates skip execution.
Refer to Chapter 4, “EASE64158 Timing,” for output timing of the INT flag and SKIP flag.

2-9

Chapter 2, EASE64158 Emulator

SEE

☞ 1

☞ 2

❏ Controlling trace execution

There are six ways to control realtime tracing.

(1) Free-running trace

Tracing is always performed during program execution.

(2) Trace on trace enable bits

Tracing is performed on particular portions of program memory specified with trace enable bits.

(3) Trace disable

Tracing is not performed during program execution.

(4) Trigger-based trace start/stop

Tracing starts when the trace start address is executed, and stops when the trace stop address is
executed.

(5) Data match post-trace

Tracing starts when a probe or RAM value matches the specified value.

(6) Data match pre-trace

Tracing ends when a probe or RAM value matches the specified value.

Details of each tracing method are explained in Chapter 3, “SID64K Debugger Commands.” The
following are related commands.

DTR, CTR, STT, DTT

The address of trace memory written to is controlled by the trace pointer. The trace pointer is a
13-bit counter. It is incremented for each instruction execution in accordance with the control conditions
for each way of realtime tracing (refer to Figure 2-2).

Chapter 2, EASE64158 Emulator

2-10

SEE

Figure 2-2. Trace Control Conceptual Diagram

The trace pointer’s value indicates the address in trace memory to which data will be written. The
trace pointer is incremented at the start of each instruction while the conditions of the previously
described control methods are satisfied. As a result, the trace memory addresses written are updated
one by one as trace data is stored at each.

The trace pointer is a 13-bit counter, so its value will be between 0 and 1FFFH (in decimal, 0 and
8191). When the trace pointer exceeds 1FFFH, it overflows and becomes 0. In other words, when
traced data exceeds 8192 steps, it will be overwritten in order from the oldest data in trace memory.

2-11

Chapter 2, EASE64158 Emulator

Address Port Data Registers RAM Data RAM Address SP Flags

0

1

2

3

4

5

6

7

8

9

8190

8191

Trace Control Circuit

Trace Data

Pulse signal indicating
start of instruction

Output when tracing is called
for based on the previously
described six control methods.

12 11 10 9 8 7 6 5 4 3 2 1 0

Trace pointer
(13-bit binary counter)

Trace Memory

2-1-7. Break Functions

The following methods for breaking program execution are available with the EASE64158.

(a) Breakpoint bit breaks

The EASE64158 has a 1-bit wide memory that corresponds 1-for-1 with the entire program memory
address space (0-7FFFH). This memory is called breakpoint bits memory or breakpoint bits.

Figure 2-3. Breakpoint Bits Conceptual Diagram

Breakpoint bits can be set to 1 or 0 with the CBP (Change BreakPoint bit) command. During
emulation execution, the breakpoint bit corresponding to each executed address is referenced, and if “1,”
a break request signal is output (refer to Figure 2-3).

By using breakpoint bits, breakpoints can be set throughout the entire address space without a
limit to their number. (In this manual breaks generated by breakpoint bits are called breakpoint bit breaks
to clearly distinguish them from address breaks, which are generated by break addresses specified as
break parameters of the G command.)

DBP, CBP, SBC, DBC

Chapter 2, EASE64158 Emulator

2-12

0000
0001
0002
0003
0004
0005
0006
0007

7FFC
7FFD
7FFE
7FFF

1-bit wide

PC (program counter)

Break Request Signal

SEE

(b) Trace full breaks

The EASE64158 can force a break using overflow of the trace pointer.

DTR, CTR, SBC, DBC

(c) Cycle counter overflow breaks

The EASE64158 has a 32-bit counter that increments every machine cycle (called the cycle
counter). The overflow of the cycle counter can be used as a break condition.

SCT, RCT, TIME, CCC, DCC, SBC, DBC

(d) Address pass counter overflow breaks

The EASE64158 has four 16-bit address pass counters that are incremented when the program
at a specified address is executed. Of these address pass counters, the overflow of counter 0 (C0) can
be used as a break condition.

CAP, DAP, SBC, DBC

(e) Break on execution of power-down instruction

This break occurs when an instruction is executed that sets to “1” bit 0 (HLT) of the Halt Mode
Register (HALT), an SFR of all microcontrollers in the MSM64153 family. In other words, it occurs when
a microcontroller in the MSM64153 family enters power-down mode.

SBC, DBC

2-13

Chapter 2, EASE64158 Emulator

SEE

SEE

SEE

SEE

(f) ESC command breaks

Input an ESC command to forcibly stop G command execution (realtime emulation).

ESC

(g) Breaks specified during G command input

• Break at specified address (with pass count)
• Break at specified address (with pass sequence)
• Break when specified data matches data at a specified address in data memory
• Break when specified data matches probe data

G

(h) N area access break

The EASE64158 will forcibly break when it accesses an area that exceeds the maximum address
for its respective chip modes.

(i) External breaks

An external break will occur when the signal on the external break pin of the probe cable
transitions from “L” to “H.”

SBC, DBC

❏ Break request mask function

The break conditions explained is (a)-(d) and (i) above can each be masked. As shown in Figure 2-5,
masking of break conditions is performed using a register called the break condition register.

Chapter 2, EASE64158 Emulator

2-14

SEE

SEE

SEE

Figure 2-4. Break Masking

The order of bits in the break condition register of Figure 2-4 does not necessarily match the
order of bits in the actual register.

2-15

Chapter 2, EASE64158 Emulator

(a) Breakpoint Bit Break

(b) Trace Full Break

(c) Cycle Counter
 Overflow Break

(d) Address Pass Counter
 Overflow Break

(e) Power-Down Break

(i) External Break

(f) ESC Command Break

(g) G Command Break
 Parameter

(h) N Area Access
 Break

Break Condition Register

to break control circuit

!

2-1-8. Performance/Coverage Functions

The EASE64158 has the following performance/coverage functions.

(a) Check for program areas not yet passed

The EASE64158 has a 32K x 1-bit instruction executed bits memory (or IE bit memory) that
corresponds 1-for-1 to code memory’s 32K addresses (0H-7FFFH). Whenever an instruction is
executed, the contents of IE bit memory at the address corresponding to the instruction will be set
to “1.” By examining the contents of IE bit memory, one can see which program areas have not
been passed (or debugged).

CIE, DIE

(b) Measuring elapsed time

Elapsed execution time for a specified block can be measured by using the EASE64158 internal
32-bit cycle counter (CC).

CCC, DCC, SCT, RCT, DCT, TIME

(c) Measuring execution passes

The number of times up to four specified addresses are executed can be measured by using the
EASE64158’s four 16-bit address pass counters (AP).

CAP, DAP

Chapter 2, EASE64158 Emulator

2-16

SEE

SEE

SEE

2-1-9. Probe Cable Functions

The EASE64158 utilizes a probe cable with nine probe pins. The probe cable is connected to the
EASE-LP2 probe connector. Refer to Appendix 8, “Probe Cable Configuration.”

The probe cable provides the following functions.

(a) Probe input, bits 0-7 (pins P1-P8)

❏ Data match break

Break when the probe value matches a specified value.

G

For details, refer to Section 2-1-7, “Break Functions.”

❏ Data match post-trace

Tracing starts when the probe value matches a specified value.

❏ Data match pre-trace

Tracing ends when the probe value matches a specified value.

STT, DTT

For details, refer to Section 2-1-6, “Realtime Trace Functions.”

(b) External break signal input (pin P9)

❏ External break

Break when the input signal on this pin transitions from”L” to “H.”

SBC, DBC

For details, refer to Section 2-1-7, “Break Functions.”

The probe cable can be used only when the MSM64E153 evaluation chip operating voltage
is 3.0 V. It cannot be used when the voltage is 1.5 V.

2-17

Chapter 2, EASE64158 Emulator

SEE

SEE

SEE

!

2-1-10. EPROM Programmer

The EASE64158 has an internal EPROM programmer (EPROM writer). By using the EPROM
programmer, EPROM contents can be transferred to code memory, and contents of a code memory area
can be written to EPROM (☞1).

The types of EPROM that the EPROM programmer can write are as follows:

2764, 27128, 27256, 27512, 27C64, 27C128, 27C256, 27C512

TPR, VPR, PPR, TYPE

DO NOT USE THE EPROM PROGRAMMER FOR PURPOSES OTHER THAN
DEBUGGING PROGRAMS. IF RELIABILITY IN WRITE CHARACTERISTICS IS
NECESSARY, THEN USE AN EPROM PROGRAMMER DESIGNED FOR THAT
PURPOSE.

Refer to Appendix 9, “Mounting EASE-LP2 EPROMs,” for information about how to handle
EPROMs.

Chapter 2, EASE64158 Emulator

2-18

SEE

!

☞ 1

2-1-11. Symbolic Debugging Functions

The SID64K debugger supports symbolic debugging functions. These functions allow symbols
to be input in addition to numbers as address and data input to all debugger commands, and as
instruction operands within the ASM command.

Symbols defined by labels or assembler directives within the ASM command can also be used as
command line input or assemble command input even after the defining assemble command terminates.
Operators are permitted on input lines, so expressions constructed from symbols and operators can also
be input.

Section 2-3-2, “Symbolic Input.”

2-19

Chapter 2, EASE64158 Emulator

SEE

2-1-12. Assemble Command and Disassemble Command

Most line assemblers (assemble command) that come with emulator systems are designed to
perform minimum necessary patches (modifications to programs). Normally they permit only instruction
mnemonics and absolute addresses. However, the line assembler of SID64K alone is more powerful,
providing nearly all the functionality of a standalone assembler. Its principal functions are as follows.

• Memory space can be coded as two logical segments: code segment, and data segment.

• The ORG, EQU, SET, CODE, DATA, CSEG, DSEG, DB, DW, DS, NSE, END and other directives can
be used exactly as they are with ASM64K. Comment can also be input the same as they are in
ASM64K.

• The full set of C language operators is supported.

• Because it is a complete 2-pass assembler, forward referenced labels can be used. Also, all symbols
in a loaded program can be referenced. All symbols defined within the assemble command can be
referenced on any command line.

• Up to 100 assembler lines can be input. When 100 lines have been input, an END will automatically
be appended.

• By saving the code input with an assemble command to a file with the LIST command, the code can
easily become a source file.

Furthermore, the disassemble command does just display simple mnemonics. If a symbol with
the code segment attribute exists for an address being displayed, then that address will be displayed as a
label. If a symbol exists for an address in an operand, then the operand will be displayed as that symbol,
and its absolute address will be displayed as a comment. The disassemble command tries to create a
display as close to a source file as possible.

ASM, DASM commands (see details of Chapter 5, “Assemble Command”)

Chapter 2, EASE64158 Emulator

2-20

SEE

2-2. EASE64158 Emulator Initialization

2-2-1. Setting Operating Frequency

As explained in Section 1-5, the EASE64158 operates with the 32.768-kHz (typical) clock
supplied from the POD64158’s internal oscillation circuit when it is shipped. Oki Electric normally
recommends that the EASE64158 be used as it is with this setting.

The clock setting can be changed with the following method. To change to an operating
frequency other than 32.768-kHz, please contact Oki Electric’s engineering department.

To change the clock setting

• Change the oscillation clock of the crystal board on the POD64158.

Selection of the clock from the POD64158 internal clock or the EXT•CLK pin of the user
connector 2 is performed with the dipswitch 4 (SW4) of the POD64158.

The POD64158 crystal board, and the EXT•CLK pin of the user connector 2, are explained next.

(1) Crystal Board

The crystal board is mounted inside the X'tal board cover in the rear side of the POD64158. It
generates a 32.768-kHz (typical) clock. Remove the X'tal board cover when disassembling/assembling
the crystal board.

Figure 2-5. Crystal Board

When the crystal oscillator on the crystal board has been changed, always check that it is
oscillating correctly. Depending on the crystal's manufacturer and type, it might not oscilate.

2-21

Chapter 2, EASE64158 Emulator

The board can
be pulled out
in this direction.

After replacing the
crystal, push the
connector back
in this direction.

O
K

I

2324

12

X
'T

A
L

 B
O

A
R

D
3

Connector

C1 C2

R
1

R
2

!

Figure 2-6. Crystal and Oscillation Circuit

This signal selects whether the EASE64158 operating clock is supplied from the POD64158
crystal board or the user cable’s EXT CLK pin. The selection of this signal is performed with
POD64158 dipswitch 4 (SW4). For details, refer to Section 2-2-2, “EASE64158 Switch
Settings.”

This signal switches the operating voltage of the MSM64E153 evaluation chip. The selection
of this signal is performed with POD64158 dipswitch 3 (SW3). For details, refer to Section 2-
2-2, "EASE64158 Switch Settings."

The MSM64E153 evaluation chip operates using this clock.

This is connected to the EXT•CLK pin of the user connector 2.

Chapter 2, EASE64158 Emulator

2-22

HC14

OSCI

☞3

MSM4069

R2R1

X'TAL

C1 C2

Crystal Board

☞1

☞2

☞4

HCU04

HC04

HC04

HC08

HC08

HC4066

HC4066

HC4066

INT/EXT.SEL

VSS1/2.SEL

EXT.CLK

VSS2

C

C

C

☞ 1

☞ 2

☞ 3

☞ 4

However the MSM64153 family microcontrollers MSM64155 and MSM64158 can select CR
oscillation circuit as the clock generator by using mask option, the EASE64158 cannot select
the CR oscillation circuit as a clock generator. If this hinders your program development,
please contact Oki Electric's engineering department.

2-23

Chapter 2, EASE64158 Emulator

!

(2) User cable EXT CLK pin input

The emulator can be made to operate with an oscillating clock input on the EXT•CLK pin (pin 46)
of the user connector 2. Use a clock like that shown below.

The input clock uses the pulse generator’s output clock and the user application system
oscillation circuit’s clock. As shown in Figure 2-6, the EXT•CLK pin clock is input to an HC4066, so
match its impedance to the HC4066.

The clock input clock to the EXT•CLK pin should be square-wave. Note that the operating
stability is not guaranteed when sign-wave clock is used.

The input clock is not only supplied to the MSM64E153 evaluation chip, but also used for
timing control inside the MSM64158 emulator.

The EASE64158 internal circuits always operate using this input clock during user program
execution as well as the EASE64158 is waiting for a command input. So, interrupt of the
clock input or an extraordinarilly distorted wave-form of the clock may cause abnormal
operation or hung-up of the EASE64158.

Chapter 2, EASE64158 Emulator

2-24

(1) When evaluation chip operating voltage is 1.5 V

(2) When evaluation chip operating voltage is 3.0 V

e

b

c

a

VDD

VSS 1

e

b

c

a

VDD

VSS 2

Duty ratio a:b = 1:1
Frequency c = operating frequency

32.768 kHz (typical)
Voltage e = 1.5 V (±5%)

Duty ratio a:b = 1:1
Frequency c = operating frequency

32.768 kHz (typical)
Voltage e = 3.0 V (±5%)

!

2-2-2. EASE64158 Switch Settings

(1) EASE-LP2

There is an 8-bit dipswitch toward the top of the left panel of the EASE-LP2, labeled SW1 (refer
to Figure 2-7). Each of the switch is explained below.

Figure 2-7. EASE-LP2 Dipswitches

❏ SW1

This dipswitch sets the EASE-LP2 interface parameters with the host computer. Each switch
should be set appropriately.

• 19200 - 2400 (switches 1-4)

These switches set the baud rate of the RS232C interface. Use them to match the EASE-LP2
baud rate with that of the host computer. When the EASE-LP2 is shipped, it is set to 9600 bps.

The baud rate can be set to 2400-19200 bps using switches 1-4 of DIP1. Table 2-1 shows the
baud rate switch settings.

Table 2-1. Baud Rate Switch Settings

19200 9600 4800 2400

SW1-1 19200 ON OFF OFF OFF

SW1-2 9600 OFF ON OFF OFF

SW1-3 4800 OFF OFF ON OFF

SW1-4 2400 OFF OFF OFF ON

2-25

Chapter 2, EASE64158 Emulator

SW1

RS232C

RESET

19
20

0
96

00
48

00
24

00
FL

O
W 19

20
0

96
00

48
00

24
00

FL
O

W

OFF

ON

XON/XOFF

DTR/DSR

OFF

ON

XON/XOFF

DTR/DSR

SW1

• Flow control (switch 5)

This switch sets the flow control of the RS232C interface. Use the switch 5 to set the flow control
to XON/XOFF control or DTR/DSR control. When the EASE-LP2 is shipped, it is set to XON/XOFF.
Match the EASE-LP2 flow control with that of the host computer. Table 2-2 shows the flow control
setting.

Table 2-2. Flow Control Switch Settings

XON/XOFF DTR/DSR

SW1-5 OFF ON

Other than baud rate and flow control, the EASE-LP2’s RS232C parameters are set as follows.

• Other parameters

° Transfer format 8 bits, 1 stop bit, no parity
° Other Asynchronous, baud rate factor x 16

The above parameters on the host computer side must match those of the EASE-LP2, except for
the stop bit (☞3).

The INT232C program, described later, does not support 19200 bps with IBM-PC personal
computers. If you are using it, set the baud rate to 9600-2400 bps. Refer to Section 2-2-6,
“EASE64158 Emulator Initialization.”

In Table 2-1 and Table 2-2, ON means to flip the switch up, and OFF means to flip it down.

Oki if800 series computers are set using the SWITCH command.
PC9801 series computers are set using the SPEED command.
IBM-PC computer uses the INT232C program (described in Section 2-2-5).

With the if800 series after changing parameters with the SWITCH command, if the if800
reset button is pushed once more to boot up the computer again, then be sure to note that
the RS232C parameters will not be set correctly.

Chapter 2, EASE64158 Emulator

2-26

!

!

☞ 3

!

(2) POD64158

There are four dipswitches on the rear panel of the POD64158, labeled SW1, SW2, SW3, and
SW4 (refer to Figure 2-8).

Figure 2-8. POD64158 Dipswitch

Each of the switches is explained below.

❏ SW1

This switch selects the type of EPROM that will be mounted in the POD64158’s EPROM socket.
The switch should be set appropriately according to the EPROM being used as shown below. Refer to
Table 2-3 for the area written in each type of EPROM.

• For 2764, 27C64, 27128, and 27C128 EPROM
Slide the SW1 to 64/128.

• For 27256 and 27C256 EPROM
Slide the SW1 to 256.

• For 27512 and 27C512 EPROM
Slide the SW1 to 512.

Table 2-3. EPROM Write Area

EPROM type Write area SW1 setting

27512, 27C512 0000–7FFFH 512

27256, 27C256 0000–7FFFH 256

27128, 27C128 0000–3FFFH 64/128

2764, 27C64 0000–1FFFH 64/128

2-27

Chapter 2, EASE64158 Emulator

SW3 SW4

SW1 SW2

64
/

12
8

25
6

51
2

PO
D

IC
E

1.
5V

3.
0V

IN
T

E
X

T

DC JACK

DC5V
– +

POD64158 Front View

POD64158 Rear View

SW1

64
/1

28

25
6

51
2

❏ SW2

This switch determines whether the POD64158 will be used in standalone mode (POD mode) or
connected with the EASE-LP2 (EASE-LP2 mode). Set it as shown below.

• When used in EASE-LP2 mode
Set SW2 to ICE.

• When used in POD mode
Set SW2 to POD.

❏ SW3

This switch determines the operating voltage of the MSM64E153 evaluation chip. Set it as
shown below.

• When the operating voltage will be 1.5V
Set SW3 to 1.5V.

• When the operating voltage will be 3.0 V
Set SW3 to 3.0V.

The MSM64E153 evaluation chip comes in two operating voltage versions: a 1.5-V version
and a 3.0-V version. The 1.5-V operating voltage evaluation chip is labeled “MSM64E153-
1.5V” on its top surface, while the 3.0-V operating voltage evaluation chip is labeled
“MSM64E153-3.0V” on its top surface.

IF THE WRONG OPERATING VOLTAGE FOR THE EVALUATION CHIP IS SET, THE
CHIP COULD BE DAMAGED.

❏ SW4

This switch determines whether the EASE64158 operating clock will be supplied from the
POD64158’s internal oscillation circuit or the EXT•CLK pin of the user connector 2. Set it as shown
below.

• When it will be supplied from the internal oscillation circuit
Set SW4 to INT.

• When it will be supplied from the EXT•CLK pin
Set SW4 to EXT.

Refer to Section 2-2-1. "Operating Frequency Setting" for details on the
operating frequency.

Chapter 2, EASE64158 Emulator

2-28

SW2
P

O
D

IC
E

SW3

1.
5V

3.
0V

!

SW4

IN
T

E
X

T

2-2-3. Confirming EASE-LP2 Power Supply Voltage

The power supply for POD64158 differs in EASE-LP2 mode in which the POD64158 will be
connected to the EASE-LP2, and in POD mode in which the POD64158 will be used standalone.

(1) EASE-LP2 mode

In EASE-LP2 mode, both of the EASE-LP2 and the POD64158 will operate by the EASE-LP2
internal switching power supply circuit that uses normal household power. The switching power supply
circuit automatically switches between the AC 100–240 V range.

EASE-LP2 Switching Power Supply Specifications

Input voltage AC 100–240 V

Frequency and phase 47–63 Hz, single-phase

ABSOLUTELY DO NOT USE A VOLTAGE OTHER THAN AC 100–240 V. DOING SO
COULD CAUSE A FIRE.

(2) POD mode

In the POD mode, the POD64158 must be supplied from an external DC power supply using
attached DC power supply cable. The DC power supply must conform to at least 5 V, 1 A. Connect the
red plug of the DC power supply cable to + side of the DC power supply, black to – side.

ABSOLUTELY DO NOT MIX UP THE POLARITY OF THE INPUT DC POWER SUPPLY.
DOING SO WILL DAMAGE THE POD64158.

2-29

Chapter 2, EASE64158 Emulator

!

AC Power Supply Connector

!

2-2-4. Changing the Chip Select Dipswitches

As explained in Section 2-1-2, the target chip can be changed with the DCL file read when the
EASE64158 initialized, and the setting of the POD64158 dipswitches. This section explains how to
change the chip select dipswitches.

The chip select dipswitch have the following respective functions.

(a) Chip Select Dipswitch 4 (SW4)

The dipswitch 4 specifies which SFRs and data memory in the MSM64E153 are prohibited and
which are permitted. It corresponds to the appropriate device in the MSM64153 family.

(b) Chip Select Dipswitches 2 and 3 (SW2 and SW3)

The dipswitches 2 and 3 specify which of the MSM64E153’s internal interrupt circuits are
prohibited and which are permitted. They correspond to the appropriate device in the
MSM64153 family.

When the system is shipped, its dipswitches will be set to correspond to the MSM64153.

The method for changing the chip select dipswitch is shown below. The chip select dipswitches
are mounted on a board inside the POD64158. They can be changed by unscrewing the top case of the
POD64158 and removing it.

Figure 2-9. Changing the Chip Select Dipswitches (1)

Chapter 2, EASE64158 Emulator

2-30

1. Remove the top cover or the POD64158. Remove the four screws on the sides, and remove the

top cover.

POD64158

OKI

Remove these screws

Figure 2-10. Changing the Chip Select Dipswitches (2)

Set the SW4 in accordance with the target chip being used as shown in below.

Table 2-4. Setting SW4 Dipswitch

Target Chip SW4-1 SW4-2 SW4-3 SW4-4

MSM64152 OFF ON OFF OFF

MSM64153 ON ON OFF OFF

MSM64155 ON OFF ON OFF

MSM64158 OFF OFF OFF ON

2-31

Chapter 2, EASE64158 Emulator

OFF OFF

ON

OFF
SW2 SW3

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

OFF

SW4

1 2 3 4 ON

OFF

CHIP153
Ver.1.01

2. Set the dipswitches shown in Figure 2-10.

Chapter 2, EASE64158 Emulator

2-32

Set SW2 and SW3 in accordance with the target chip as shown below.

Table 2-5. Setting SW2 and SW3 Dipswitches

Target Chip SW2-1 SW2-2 SW2-3 SW2-4 SW2-5 SW2-6 SW2-7 SW2-8

MSM64152 OFF ON OFF OFF ON ON OFF OFF

MSM64153 OFF ON ON ON ON ON ON OFF

MSM64155 OFF ON ON ON ON ON ON OFF

MSM64158 OFF ON OFF ON ON ON OFF OFF

Target Chip SW3-1 SW3-2 SW3-3 SW3-4 SW3-5 SW3-6 SW3-7 SW3-8

MSM64152 ON OFF ON ON OFF ON OFF OFF

MSM64153 OFF ON ON ON OFF ON OFF OFF

MSM64155 OFF ON ON ON OFF ON OFF OFF

MSM64158 OFF OFF ON OFF ON ON OFF OFF

IF THE CHIP SELECT DIPSWITCHES ARE SET INCORRECTLY, INTERRUPTS WILL
NOT BE EXECUTED PROPERLY!

Remove the user cable connector and the DC power supply cable when the top case of the
POD64158 is removed.

When the system is shipped, dipswitches are set to correspond to the MSM64153.
Set them to match the device being used.

The DCL file and dipswitches must all be set to the same device in the MSM64153 family
being used. If the settings are mixed, then the EASE64158 will not operate properly.

!

!

!

!

2-2-5. A/D Board

The A/D board is only available for the MSM64153 family microcontrollers that are equipped with
the A/D converter. Refer to the each microcontroller's User's Manual when the A/D board is used.

Figure 2-11. A/D Board

As shown above, each pin of the A/D board is directly connected to the MSM64E153 evaluation
chip's pin. So, the A/D conversion will made in accordance with the same electric characteristics of the
MSM64153 family microcontrollers being used.

2-33

Chapter 2, EASE64158 Emulator

SW3 SW4

1.
5V

3.
0V

IN
T

E
X

T

DC JACK

DC5V
– +

POD64158 Front View

A/D Board Upper View

RS

RT

CRT

CS

IN

10

18

1

9

OKI QTU-11905
A/D BOARD

10

12

14

16

18

1

3

5

7

9

RS

RT

CRT

CS

IN

RS

RT

CRT

CS

IN

MSM64E153
Evaluation Chip

A/D Board

The board can be pulled
out in this direction.

After mounting
capacitors and resistors,
push the connector
back in this direction.

A/D Board

2-2-6. Starting the EASE64158 Emulator

The procedure for starting the EASE64158 emulator differs for each operation mode. Each
starting procedure is as follows.

2-2-6-1. Starting the EASE64158 in EASE-LP2 mode

(a) Connect the AC power supply cable to the AC connector.

• Confirm that the EASE-LP2 power switch is OFF.
• Note that the AC power supply rated voltage is AC 100–240 V.

(b) Connect the host computer to the EASE-LP2.

• Connect the RS232C cable to the EASE-LP2's RS232C connector and the host computer's
RS232C connector.

(c) Connect the EASE-LP2 to the POD64158.

• Connect the interface cables (80-pin, 100-pin) between the EASE-LP2 and the POD64158.

(d) Connect the user cable.

• Connect the user cable when using the user application system.
• Connect the attached 60-pin and 64-pin user cables between the POD64158 USER connector

and the user application system.

(e) Connect the probe cable.

• Connect the probe cable to the EASE-LP2's PROBE connector and the probe points of the
user application system.

(f) Connect the external power supply.

• Connect the external power supply to the user application system.
• Confirm that the power switch of the external power supply is OFF.
• Note that the external power supply voltage should be the same as the operating voltage of

the MSM64E153 evaluation chip being used.

(g) Mount the A/D board.

• The A/D board can be used only with the MSM64153 family microcontrollers that are equipped
with the A/D converter. For details, refer to Section 2-2-5. "A/D Board."

Do not mount the A/D board on the POD64158 when the A/D board is not used.

Chapter 2, EASE64158 Emulator

2-34

(1) Confirm that the necessary cables are connected to the EASE64158 emulator (hereafter
called the emulation kit) .

!

Figure 2-12. Cable Connection in EASE-LP2 Mode

The emulation kit will start even if the user application system is not connected. In this case,
do not connect the user cable and the probe cable.

VDD is not supplied to the user application system from the user cables (however, VSS1 or
VSS2 level is connected to the user application system through the user cables). If VDD
must be supplied to the user application system, use a separate power supply.

IN EASE-LP2 MODE, DO NOT CONNECT THE DC POWER CABLE TO THE POD64158
DC JACK. IF IT IS CONNECTED, THE EMULATION KIT WILL NOT OPERATE
PROPERLY.

IN EASE-LP2 MODE, DO NOT MOUNT THE USER PROGRAM EPROM ON THE
POD64158 EPROM SOCKET. DOING SO COULD CAUSE A MALFUNCTION.

2-35

Chapter 2, EASE64158 Emulator

CN1 CN2

USR1

USR2POD64158

100-pin 80-pin
Interface Cables

Power Supply
Cable

Wall Outlet
with GND

AC100-240 V

Host Computer

RS232C

RS232C

CN1 CN2

EASE-LP2 PROBE

External
 Power Supply
(1.5V or 3.0V)

Probe Cable

64-pin

60-pin

User Application
System

GND VDD

MSM64E153

User Cables

!

!

!

!

Figure 2-13. Power Supply Configuration in EASE-LP2 Mode

The 59th and 60th pins of the POD64158 user cable connector provides VSS1 when the
MSM64E153 evaluation chip's operating voltage is 1.5 V, and VSS2 when it is 3.0 V.

The external power supply voltage should be same as the MSM64E153 evaluation chip's
operating voltage (i.e. 1.5-V power supply is required for the 1.5-V operating evaluation chip,
3.0-V power supply for the 3.0-V operating evaluation chip).

In EASE-LP2 mode, do not connect the DC power supply cable to the POD64158 DC jack. If
it is connected, then the emulation kit will not operate properly.

Chapter 2, EASE64158 Emulator

2-36

POD64158

Interface Cables

Power Supply
Cable

Wall Outlet
with GND

AC100-240 V

EASE-LP2

External
 Power Supply
(1.5V or 3.0V)

User
Application
System

VDD

MSM64E153

User Cables

Switching Power Supply

Voltage Generator

VDD

GND

GND
VDD
(+5V)

VDD
(1.5 or 3.0V)

GND

GND

VDDVSS

VSS1 or VSS2

VSS1 or VSS2

GND

59th and 60th pins
of user connector 2

!

!

!

❏ EASE-LP2

(a) Baud rate setting
• Set SW1-1 to SW1-4 to match the baud rate being used.

❏ POD64158

(a) Operating mode setting
• Set SW2 to ICE to select EASE-LP2 mode.

(b) Setting MSM64E153 evaluation chip's operating voltage
• Set SW3 to 1.5V when the evaluation chip's operating voltage is 1.5 V, and set it to

3.0V when the voltage is 3.0 V.

(c) Operating clock supply setting
• Set SW4 to select whether the operating clock is supplied from the POD64158 crystal

board, or from the EXT•CLK pin of the user connector 2.

(d) Chip select dipswitch setting
• Set chip select dipswitches to match the target chip being used.

For details on switch settings, refer to Section 2-2-2, “EASE64158 Switch Settings.”

• Be sure to match the 1-pin label on the evaluation chip to that of the POD64158.
• Refer to Appendix-11, "Handling the POD64158 Evaluation Chip," regarding the mounting

procedure of the evaluation chip.

The 1.5-V operating evaluation chip has a label "MSM64E153-1.5V" on its top, and the 3.0-V
operating chip "MSM64E153-3.0V."

2-37

Chapter 2, EASE64158 Emulator

(2) Verify that the emulation kit switches are set correctly.

!

(3) Confirm that the MSM64E153 evaluation chip is mounted correctly.

!

Use MS-DOS or PC-DOS version 3.1 or later.

When the EASE64158 is shipped, its data transfer parameters are as follows. Except for baud
rate, the EASE64158 parameters cannot be changed.

Baud rate 9600 bps

Transfer format 8 bits, 1 stop bit, no parity

Flow control XON/XOFF control

Others Asynchronous, baud rate factor x16

Oki if800 series computers are set using the SWITCH command.

PC9801 series computers are set using the SPEED command.
For details, refer to the manual of the host computer.

With the if800 series after changing parameters with the SWITCH command, if the if800 reset

button is pushed once more to boot up the computer again, then be sure to note that the RS232C
parameters will not be set correctly.

IBM-PC computer uses the INT232C program (described in step 6 below).

Chapter 2, EASE64158 Emulator

2-38

(5) Set the host computer’s transfer parameters.

(4) Turn on the host computer power supply, and start MS-DOS (PC-DOS).

!

!

INT232C is a TSR (Transient but Stay Resident) program. It sets the RS232C interface
operating conditions of the IBM-PC/AT, and simultaneously enables interrupt signals.

Invoking this program once will place it in host computer memory, where it will reside until
removed. The method for invoking and removing INT232C is shown below.

❏ Invoking INT232C

First verify the settings of the baud rate switches on the EASE-LP2 unit. Assume that the verified
baud rate is called <baud>. (☞1) Next, change to the directory that stores the INT232C.COM file and
enter the following input.

This will load INT232C into host computer memory, and display the following message.

INT232C has been loaded.

This ends the process of invoking INT232C. If INT232C had already been loaded, then the
following message will be displayed instead.

INT232C has already been loaded.

In this case, it will not be newly loaded.

Input the following to use a baud rate of 4800 bps. After the INT232C has been loaded, the
message will be displayed.

A> INT232C X;4800,N,8,1 ↵
INT232C has been loaded.

The valid baud rates for the EASE64158 are listed below. However, INT232C.COM
cannot set 19200 bps.

2400, 4800, 9600, 19200

2-39

Chapter 2, EASE64158 Emulator

(6) Invoke INT232C.
This step should be executed only if you are using an IBM-PC computer.
For other computers, skip this step and go to step 7.

A> INT232C X;<baud>,N,8,1 ↵

Example

☞ 1

❏ Removing INT232C

Because INT232C is a resident program, it will stay in memory even after you have finished with
the symbolic debugger (SID64K). Input the following to remove it.

This will remove INT232C from memory, and display the following message.

INT232C has been removed from memory.

If it has already been removed, then the following message will be displayed instead.

INT232C has not been loaded.

The above simple explanations show how to use INT232C. Read the following page if you wish
to understand each parameter in detail. If you do not need to know them in detail, go on to step 7.

If you will use SID64K with IBM PC/AT, then add the appropriate ANSI escape sequence
driver from your DOS system disk to CONFIG.SYS. If you forget to do so, then you will not
be able to use the special editing keys.

Host computer ANSI escape sequence driver name

IBM PC/AT ANSI.SYS

Chapter 2, EASE64158 Emulator

2-40

A> INT232C R ↵

!

❏ Explanation of INT232C input format and parameters

The brackets [] can be omitted. When omitted, the default values of the following explanations
apply.

<options>

X Perform XON/XOFF control.
* Do not perform XON/XOFF control.
R Remove resident INT232C.

<baud>

Specifies the baud rate. Choose one of the following.

2400, 4800, 9600 (default)

<parity>

Specifies whether and what kind of parity checking to perform. Choose one of the following.

N Do not perform parity checking (default).
O Perform odd parity checking.
E Perform even parity checking.

<databits>

Specifies the number of data bits. Choose one of the following.

7, 8 (default)

<stopbits>

Specifies the number of stop bits. Choose one of the following.

1 (default), 2

If the command is executed with all parameters omitted, then the above explanation of
INT232C usage will be displayed. This is convenient if you forget how to use INT232C.

2-41

Chapter 2, EASE64158 Emulator

A> INT232C [<options>[;<baud>,<parity>,<databits>,<stopbits>]] ↵

!

• INT232C * ↵
This is the same as: INT232C *;9600,N,8,1

• INT232C X;1200,E,7,2 ↵
This initializes the RS232C port to XON/XOFF control, 1200 bps baud rate,
even parity, 7 data bits, and 1 stop bit.

• INT232C R ↵
This removes INT232C from memory.

❏ List of messages

INT232C outputs the following messages.

• INT232C has been removed from memory.

• INT232C has not been loaded.

• INT232C has already been loaded.

• INT232C has been loaded.

Chapter 2, EASE64158 Emulator

2-42

Example

The DCL file has the symbol information necessary to perform symbolic debugging with SID64K.
SID64K first searches for it in the current directory. If not found, then it searches the directory which
contains SID64K.EXE and then the directory specified by the DCL environment variable. If still not found,
then SID64K will not start.

❏ Setting the environment

There are three ways to set the environment so that SID64K will read the DCL file when it is
started.

(1) Store the DCL file in the current directory.
(2) Store the DCL file in the directory which contains SID64K.EXE.

Copy the DCL file for the device to be used into the directory that contains SID64K with
the COPY command of MS-DOS/PC-DOS.

(3) Set the DCL environment variable to the path name of the directory that contains the
DCL file.
Set the DCL environment variable with the following input.

The path-name here is the path name of the directory that contains the DCL file.

The DCL environment variable will be lost if the host computer is reset. If this happens, then set
the DCL environment variable again.

If you feel setting the environment variable every time the host computer is started up, then you
can eliminate this step by registering the DCL environment variable in your AUTOEXEC.BAT file. For
information about AUTOEXEC.BAT files and registering environment variables, refer to the manual that
came with your host computer.

The SID64K symbolic debugger will read the DCL file corresponds to the evaluation chip
specified with the POD64158 chip select dipswitches when it is started.

2-43

Chapter 2, EASE64158 Emulator

(7) Set the DCL file environment.

A> SET DCL = path-name ↵

!

The symbolic debugger executable file SID64K.EXE can be started from the directory that stores
it or from another directory.

(1) Starting from the directory that stores SID64K.EXE

Input the following after the DOS prompt.

(2) Starting from another directory

If the PATH environment variable includes the directory that contains SID64K.EXE, then input is
the same as in (1). If not specified by PATH, then the SID64K symbolic debugger is invoked as follows.

Here path-name is the absolute path name of the directory that contains SID64K.EXE.

Confirm that the emulation kit power supply switch is turned off before starting the SID64K
symbolic debugger.

SID64K Symbolic Debugger Ver. x.xx
Copyright (C) xxxx. OKI Electric Ind.Co.,Ltd.

Chapter 2, EASE64158 Emulator

2-44

(8) Start the SID64K symbolic debugger.

A> SID64K ↵

A> path-name\SID64K ↵

(9) The following message will be displayed on the console, and the system will wait for a reset
switch input from emulation kit.

!

*** POWER ON INITIALIZATION START ***
*** RESET CODE ACCEPTED ***

DCL file (E64XXX.DCL) reading...

E64XXX.DCL is the name of the DCL file read.

64XXX>

The prompt will be the name of a chip in the MSM64153 family. For example, if E64153.DCL is
read, then the prompt will be 64153>.

(1) For more information on the emulator’s RS232C interface, refer to Section 2-2-2,
“EASE64158 Switch Settings.”

(2) The user application system cannot be supplied with VDD taken from the emulator.

(3) The VSS1 or VSS2 line in the user cable is connected, but the VDD power supply line is
not (it is an open pin).

(4) If the emulator does not start, refer to Appendix 5.

(5) When the EASE-LP2 is connected to the POD64158, do not mount an EPROM in the
POD64158 evaluation module’s EPROM socket. If an EPROM is, incorrect operation
may occur.

(6) When the EASE-LP2 is connected to the POD64158 with the interface cables, the
POD64158 is connected to the VDD from the EASE-LP2. Therefore, do not connect the
DC power supply cable to the POD64158's DC power jack. If it is connected, incorrect
operation may occur.

2-45

Chapter 2, EASE64158 Emulator

(10) Turn on the emulation kit power supply switch and the power supply of the user application
system. The following message will be displayed on the host computer, and emulator system
initialization will end.

(11) Next the following message will be displayed, the OLMS-64X series DCL file will be read, and
memory mapping of the appropriate device will be performed.

(12) When the DCL file has been read, a prompt corresponding to the DCL file type will be displayed
and the system will wait for command input (☞2).

(13) From then on, debugger commands can be input.

!

(7) When the EASE-LP2 and POD64158 are correctly connected with the interface cables,
the POD indicator on the top of the EASE-LP2 and the POWER indicator on the top of
the POD64158 will light.

(8) Always turn on the emulation kit power supply switch before the user application system
is turned on. If the user application system is turned on first, then the emulation kit will
not start properly.

Table 2-5 (a)-(b) shows the items that are initialized when power is applied to the
EASE64158, when the reset switch is pressed, when an RST command is executed, and
when an RST E command is executed. Items in the table with an entry of “O” are initialized,
while items with an entry of “-” are not.

Also, when the reset switch is pressed, all open files will be closed.

Once the EASE64158 is turned off, be sure not to make an attempt to turn it on again for
approximately 5 seconds.

Chapter 2, EASE64158 Emulator

2-46

!

!

!

Table 2-5 (a). Initialization

2-47

Chapter 2, EASE64158 Emulator

Item Contents Initialized
Power

Applied

Reset
Switch

Pressed

RST

Command

RST E

Command

MSM64153

Evaluation Chip

Initializes to same state as when a
reset is input to a microcontroller in
the MSM64153 family.

O O O O

Break

Conditions

Breakpoint bit breaks (BP) and power-

down breaks (PD) enabled. O – – –

Breakpoint

Bits

All areas cleared to "0", disabling all

breakpoint bit breaks. O – – –

Break Status Cleared to state of no breaks

generated. O O O –

Instruction

Executed Bits

All areas cleared to "0", disabling all

trace enable bit tracing. O – – –

Trace Pointer Cleared to "0"
O – – –

Trace Trigger Set to free-running trace mode.
O O – –

Trace Enable

Bits

All areas cleared to "0", disabling all

trace enable bit tracing. O – – –

Trace Execution
Format
(STF Format)

Set to default mode.
O – – –

Trace Settings Set to defaults.
O – – –

Cycle Counter Cleared to "0"
O O O –

Cycle Counter

Trigger

Cycle counter start/stop addresses are

cleared, and counting is disabled. O O – –

TIME Command
Display Units

Set to default value (91.0 µs)
O – – –

Table 2-5 (b). Initialization

Because information about symbols registered with LOD and CSYM commands, and
information about emulator commands registered with MAC commands are stored in the
SID64K symbolic debugger on the host computer, they are not initialized by applying power
or a reset to the EASE64158. However, if the SID64K terminates once, then all registered
information will be lost.

Chapter 2, EASE64158 Emulator

2-48

Item Contents Initialized
Power

Applied

Reset
Switch

Pressed

RST

Command

RST E

Command

Step execution
Format

(SSF Command)

Set to default mode.
O – – –

Address Pass

Counters 0 - 3

Cleared to "0."
O O O –

Count Address
of Address

Pass Counters

Set to address "0000."
O – – –

EPROM
Programmer

Setting

Set to type "I27512."
O O – –

RADIX
Command

Set to default (hexadecimal).
O – – –

MAC
Command

Removes registrations (☞ 1).
– – – –

Symbol
Registration

Removes registrations (☞ 1).
– – – –

☞ 1

2-2-6-2. Starting the POD64158 in POD mode

(a) Connect the DC power supply cable to the DC power jack.
• Connect the attached DC power supply cable to the POD64158 DC power jack.
• Connect the DC power supply cable red plug to the plus side of the external power supply,

black plug to the minus side. Be sure that external power supply is turned off before
connecting the cable.

• Note that the rated operating voltage of the POD64158 is DC5V.

(b) Connect the user cable.
• Connect the attached 60-pin and 64-pin user cables between the POD64158 user connectors

and the user application system.

(c) Connect the external power supply.
• Connect the external power supply to the user application system.
• Note that the external power supply voltage should be same as the operating voltage of the

MSM64E153 evaluation chip (i.e. 1.5-V external power supply for the 1.5-V operating
evaluation chip, 3.0-V power supply for the 3.0-V operating chip.)

(d) Mount the A/D board.
• The A/D board can be used only with the MSM64153 family microcontrollers that are equipped

with the A/D converter. For details, refer to Section 2-2-5, "A/D Board."

Figure 2-14. Cable Connection in POD Mode

2-49

Chapter 2, EASE64158 Emulator

(1) Confirm that the necessary cables are connected to the POD64158.

USR1

POD64158
60-pin

64-pin

External
Power Supply
 (1.5V or 3.0V)

User Application
System

GND VDD

DC Power Jack

(black) (red)

DC Power Supply Cable

0V 5V

External Power
Supply (5V)

USR2

MSM64E153

User Cables

The VDD is not supplied to the user application system (however, VSS1 or VSS2 level is
connected to the user application system through the user cable). If the user application
requires VDD, user an appropriate separate power supply.

In POD mode, do not connect the interface cable between the emulation kit to the EASE-
LP2. If it is connected, incorrect operation may occur.

Figure 2-15. Power Supply Configuration in POD Mode

The 59th and 60th pins of the user cable connector will provide VSS1 when the MSM64E153
evaluation chip's operating voltage is 1.5 V, VSS2 when it is 3.0 V.

The external power supply voltage shoule be same as the operating voltage of the
MSM64E153 evaluation chip (i.e. 1.5-V external power supply for the 1.5-V operating
evaluation chip, 3.0-V power supply for the 3.0-V operating chip).

In POD mode, do not connect the interface cable between the emulation kit and the EASE-
LP2. If it is connected, incorrect operation may occur.

Chapter 2, EASE64158 Emulator

2-50

!

!

POD64158

DC Power Supply Cable

External
 Power Supply
(1.5V or 3.0V)

User
Application
System

VDD

MSM64E153

User Cables

External
Power Supply

(5V)

Voltage Generator

VDD

GND

GND
VDD
(+5V)

VDD
(1.5 or 3.0V)

GND

GND

VDDVSS

VSS1 or VSS2

VSS1 or VSS2

GND

59th and 60th pins of user connector 2

!

!

!

(a) Selecting the user EPROM type mounted on the EPROM socket.

• Set SW1 to match the user program EPROM to be used.

(b) Operating mode setting.

• Set SW2 to POD to select POD mode.

(c) Evaluation chip's operating voltage setting.

• Set SW3 to 1.5V when the MSM64E153 evaluation chip's operating voltage is 1.5 V, and set it
to 3.0V when the voltage is 3.0 V.

(d) Operating clock supply setting

• Set SW4 to specify whether the operating clock is supplied from the POD64158 crystal board,
or from the EXT•CLK pin of the user connector 2.

(e) Chip select dipswitch setting.

• Set chip select dipswitches to match the target chip being used.

For details on switch settings, refer to Section 2-2-2, “EASE64158 Switch Settings.”

• Mount the evaluation chip so that its pin 1 mark matches the pin 1 mark on the POD64158.
• For more on mounting the evaluation chip, refer to Appendix 11, “Mounting the POD64158

Evaluation Chip.”

The 1.5-V operating voltage evaluation chip is labeled “MSM64E153-1.5V” on its top
surface, while the 3.0-V operating voltage evaluation chip is labeled “MSM64E153-3.0V” on
its top surface.

2-51

Chapter 2, EASE64158 Emulator

(2) Verify that the POD64158 switches are set correctly.

(3) Verify that the MSM64E153 is mounted correctly.

!

!

Figure 2-16. Mounting MSM64E153 Evaluation Chip

Refer to Appendix 10, “Mounting POD64158 EPROMs.”

Usable EPROM types are: 2764, 27C64, 27128, 27256, 27512, 27C128, 27C256, 27C512.
Refer to Table 2-2 in Section 2-2-2, “EASE64158 Switch Settings.”

• POD64158 POWER indicator will light.

Always turn on the external power supply to the POD64158 first, and then turn on the user
application system power supply. If the user application system power supply is turned on
first, then the POD64158 will not operate properly.

Chapter 2, EASE64158 Emulator

2-52

(4) Mount the EPROM that contains the user program into the EPROM socket.

(5) Turn the POD64158 power supply switch on, and then turn the user application system on.

!

POD64158
EPROM

EVA CHIP

PIN 1

Pin 1

Use a signal like the one below to input on the USER RESET pin.

(1) When using the POD64158 standalone, do not connect the interface cables.

(2) Do not handle the evaluation chip or EPROM when power is on.

(3) The POD64158 can currently be used for the following four devices.

The target chip can be changed on the POD64158 by changing the chip select dipswitch.
Refer to Section 2-2-4, “Changing the Chip Select Dipswitches.”

(4) The reset signal input on the USER RESET pin must be held at an “H” level after power
is applied until the POD64158 internal oscillator begins oscillating. Therefore, if you
change the oscillator mounted in your system when shipped, the a reset signal
appropriate for the new oscillator. Reset operations can be performed at times other
than when power is applied by inputting a reset signal wider than one clock. For details
on reset operation, refer to the user’s manual of the MSM64153 family device.

2-53

Chapter 2, EASE64158 Emulator

(6) Input a reset signal on the USER RESET pin.

(7) At this point, all internal states are initialized, and the user program is executed from address
000H.

VSS 2

a

b

VDD

VSS 1

a

b

VDD

When evaluating chip operating voltage is 3.0 V (MSM64E153-3.0V)

When evaluating chip operating voltage is 1.5 V (MSM64E153-1.5V)

a: Voltage 3V (±5%)
b: 10 ms or more

a: Voltage 1.5V (±5%)
b: 10 ms or more

!

MSM64152

MSM64153

MSM64155

MSM64158

2-3. SID64K Debugger Commands

2-3-1. Debugger Command Syntax

The explanations of this manual make use of the following symbols.

• UPPER CASE Debugger command names are expressed with upper case letters.

DCM, LOD, G

• italics Italicized expressions indicate user-supplied information (changes
according to operator input). The following italicized words are used.

Chapter 2, EASE64158 Emulator

2-54

Example

This indicates a general parameter that follows after a command
name. It includes fname, expression, address, data, number,
bank, and mnemonic, explained below.

parm

This indicates a file name, including drive name, path name,
primary name, and extension. Except for the extension, a file
name is handled with the exact same processing as a DOS file
name. Extensions are handled differently depending on the
command (when omitted for some commands, default extensions
exist).

fname

This indicates an expression. It can include operators and
symbols. Types of expressions are address, data, number, and
bank.

expression

This indicates an address value input.address

This indicates a data value input.data

• Special symbols These symbols have the following special meanings for explaining
command syntax.

White space is a string consisting of one or more spaces (ASCII code 20H) and/or tabs
(ASCII code 09H) in any order.

2-55

Chapter 2, EASE64158 Emulator

These are types of expressions. They are recognized as
decimal regardless of the RADIX command setting. A number is
used to indicate a cycle counter value, step count, etc. A bank
indicates an input value for a register bank number. A count
indicates a pass count value of G command breakpoints.

number
bank
count

This indicates an optional string input from a set of strings that is
determined by the command type.

mnemonic

This indicates any string.string

These are normally constructed with a slash “/” and a specific
string. They are added as needed after command parameters
(parm). They place restrictions or add functions to command
operations.

option

This indicates white space (☞1).∆

This means a carriage return input.↵

The xxxx means an optional string used within an explanation.
The xxxx enclosed in [] means that it can be omitted.

[xxxx]

This indicates an address range.[address∆address]

When text displayed automatically by the debugger and operator
input are mixed on one line, the underlined portion indicates user
input.

___ (underline)

☞ 1

2-3-1-1. Character Set

SID64K debugger commands can make use of the following character set.

Characters with letter attributes are those characters that can be used as the first character
of a symbol. Anything that starts with another kind of character will be recognized as a
number, operator, delimiter, or other special symbol. Characters bordered by the dotted
rectangle can be used only by the ASM command (during command input, these characters
are converted to upper case).

TAB is ASCII code 09H; space is ASCII code 20H; CR (carriage return) is ASCII code 0DH.

Of these operators, only +, -, (, and) are permitted in command line expressions. Other
operators are permitted only within the ASM command.

All characters usable with SID64K debugger commands are included in this character set. If
any other character is encountered, then the “Illegal character” error message will be output.
However, any character can be coded in commend fields, described later.

Chapter 2, EASE64158 Emulator

2-56

1. Characters with letter attributes (☞ 2)

(1) Alphabetic characters (upper and lower case)

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m

n o p q r s t u v w x y z

(2) Special characters

_ $

2. Digits

0 1 2 3 4 5 6 7 8 9

3. Delimiters
TAB space CR (☞ 3)

4. Operators (☞ 4)

+ - * / % & | ^ ˜ ! . < = > ()

5. Other special symbols

\ [] { } : ; ? @ # “ ‘ , ˜

☞ 2

☞ 3

☞ 4

!

2-3-1-2. Command Format

❏ Debugger Command Format

Debugger commands consist of a command name followed by several parameters (parm).
Depending on the command type, a command might further be followed by option parameters (option).
White space always delimits between the command name, parm, and option. A command line is
recognized as ending at the point a carriage return (↵) is input.

❏ Comment Input

The entire string following a semicolon (;) is recognized as a comment. It will be ignored during
command parsing. For example, in the first line below the entire line is a comment, so the emulator will
perform no operation. The second line is an example of a comment appended after a command.

64153> ;;;; This is an example of whole line comment ;;;;
64153> LOD SAMPLE.HEX /S ; This is a sample of comment after

command

❏ ESC Key Input

To forcibly terminate a debugger command, press the ESC key. The ESC key is valid during the
following commands.

D, DCM, LOD, SAV, VER, DASM, DDM, STP, DBP, DTM, DTR, DIE, VPR, BATCH, DSYM

❏ Space Key Input

When the following commands display data, pressing the space key can temporarily stop the
display. To resume, press the space key again.

DCM, VER, DASM, DDM, STP, DBP, DTM, S, DTR, DIE, VPR, DSYM

2-57

Chapter 2, EASE64158 Emulator

command_name ∆ parm ∆ parm . . . parm ∆ οption ∆ option . . . option ↵

Example

❏ Command Name Format

Command names are strings consisting of 1-5 alphabetic characters. They express instructions
given to the debugger. A command name’s function is indicated by its first character. Second and
following characters are keywords for MSM64E153 evaluation chip or emulator internal registers and
memory.

D (Display)....................... Data display commands
C (Change).......................Data change commands
E (Enable)........................ Enable commands
R (Reset).......................... Reset commands
S (Set).............................. Set commands
P (Program)..................... Commands for writing data to EPROM
T (Transfer)......................Commands for reading data from EPROM
V (Verify)..........................Commands for comparing memory contents
M (Move)...........................Data move commands
G (Go)...............................Execute (emulation) commands

However, the following commands are exceptions.

EXPAND, LOD, SAV, ASM, DASM, STP, ESC, TIME, TYPE, PAUSE, RADIX,
MAC, S, URST, BATCH, LIST, NLST, SH, EXIT

Chapter 2, EASE64158 Emulator

2-58

2-3-1-3. Command Summary

This section gives a summary table of all SID64K commands.

Detailed explanations of each command are given in Chapter 3. The table of this section was
created with the purpose of first giving a quick overview of the commands, and then in the future serving
as a command index.

The table of this section follows the format below.

• No. Sequence number.
• Command Name Name of command.
• Command Syntax Shows command syntax.
• Explanations of Parameters/Options Explains the parameters and options expressed in the command

syntax.
• Reference Page The page to reference for an explanation in Chapter 3, “SID64K

Command Details.”

2-59

Chapter 2, EASE64158 Emulator

Name Function

Syntax

Parameters / options

No.
Reference

page

Command Group Name

Chapter 2, EASE64158 Emulator

2-60

D Display the contents of the Evaluation Chip

D [∆ parm..... ∆ parm] ↵

parm : SFR_mnemonic, Register_mnemonic
PC (program counter), C (carry flag), BSR0, BSR1, BCF, BEF

1 3-4

C Change the contents of the Evaluation Chip

C ∆ parm[∆ parm..... ∆ parm] ↵

parm : mnemonic [=data]

mnemonic : SFR_mnemonic, Register_mnemonic

PC (program counter), C (carry flag), BSR0, BSR1, BCF, BEF

2 3-4

SDF Set Data Format

SDF [∆ parm..... ∆ parm] ↵

parm : [˜] SFR_mnemonic

3 3-17

Evaluation Chip Access Commands

DPC Display Program Counter

DPC ↵4 3-18

CPC Change Program Counter

CPC ∆ address ↵5 3-18

2-61

Chapter 2, EASE64158 Emulator

DCM Display Code Memory

DCM ∆ parm ↵
DCM ∆ * ↵

parm : expression ∆ [expression.....∆ expression]
expression : address

: [address ∆ address]

1 3-20

CCM Change Code Memory

CCM ∆ parm [∆ parm∆ parm] ↵
CCM ∆ * [= data]↵

parm : address [= data]

: [address ∆ address] = data

2 3-22

EXPAND Expand Code Memory

EXPAND [∆ mnemonic] ↵

mnemonic : ON, OFF

3 3-25

MCM Move Code Memory

MCM ∆ [address ∆ address] ∆ address ↵4 3-27

LOD Load Disk file program into Code Memory

LOD ∆ fname [∆ option ∆ option] ↵

fname : [Pathname] Filename [Extension]

option : /S, /N, /B

5 3-28

SAV Save Code Memory into Disk file

SAV ∆ fname [[address ∆ address]] [∆ option.....∆ option] ↵

fname : [Pathname] Filename [Extension]

option : /S, /N

6 3-32

Code Memory Commands

Chapter 2, EASE64158 Emulator

2-62

VER Verify Disk file with Code Memory

VER ∆ fname [[address ∆ address]] ↵

fname : [Pathname] Filename [Extension]

7 3-34

DASM Disassembler Command
Disassembles a specified address range of code memory.

DASM [∆ parm] [∆ option ∆ option] ↵

parm : address, [address ∆ address]

option : /NC, /NL

9 3-41

ASM
Line Assembler Command
This command provides assembler processing nearly fully
compatible with the ASM64K assembler. The code it
generates is stored in code memory.

ASM ∆ address ↵
8 3-37

Code Memory Commands (continued)

2-63

Chapter 2, EASE64158 Emulator

DDM Display Data Memory

DDM ∆ parm [∆ parm ∆ parm] ↵
DDM ∆ * ↵

parm : address
: [address ∆ address]

1 3-46

CDM Change Data Memory

CDM ∆ parm [∆ parm ∆ parm] ↵

parm : address [= data]
: [address ∆ address] = data

2 3-46

MDM Move Data Memory

MDM ∆ [address ∆ address] ∆ address ↵3 3-50

Data Memory Commands

Chapter 2, EASE64158 Emulator

2-64

STP Step Execution

STP [∆ address] [, count] ↵1 3-54

SSF Set Step Format

STP [∆ parm ∆ parm] ↵

parm : [˜] mnemonic

2 3-56

ESC Forced Break of Emulation

ESC ↵4 3-65

G Real Time Emulation (Continuous Emulation)

G [∆ Emu_start_addr] [, Break_parm] ↵

Emu_start_addr : starting address of realtime emulation

Break_parm : address [∆ address ∆ address]

: [address ∆ address]

: address [count]

: / address / address [/ address]

: mnem [&mask] = data

: mnem [&mask] = data [count]

: mnem [&mask] = data [∆ /address [∆ address]]

: mnem [&mask] = data [count] [∆ /address [∆ address]]

: mnem [&mask] = data [/ [address ∆ address]]

: mnem [&mask] = data [count] [/ [address ∆ address]]

mnem : PRB, RAM [ram_addr]

3 3-59

Emulation Commands

2-65

Chapter 2, EASE64158 Emulator

DCT Display Cycle Counter Trigger

DCT ↵5 3-66

DTT Display Trace Trigger

DTT ↵6 3-67

D Display the Contents of the Evaluation Chip

D [∆ parm ∆ parm] ↵

parm : A, B, X, Y, H, L, PC, BSR0, BSR1, BEF, BCF, C

8 3-68

Emulation Commands (continued)

Chapter 2, EASE64158 Emulator

2-66

SBC Set Break Condition Register

SBC [∆ parm ∆ parm] ↵

parm : [˜] mnemonic

1 3-70

DBC Display Break Condition Register

DBC ↵2 3-70

DBS Display Break Status

DBS ↵5 3-77

DBP Display Break Point Bits

DBP ∆ parm [∆ parm ∆ parm]↵
DBP ∆ * ↵

parm : address
: [address ∆ address]

3 3-73

CBP Change Break Point Bits

CBP ∆ parm [∆ parm ∆ parm] ↵
CBP ∆ * [= data] ↵

parm : address = data
: [address ∆ address] = data

data : 0, 1

4 3-73

Break Commands

2-67

Chapter 2, EASE64158 Emulator

DTM Display Trace Memory

DTM ∆ parm ↵
DTM ∆ * ↵

parm : – number-step ∆ numberstep

: numberTp ∆ numberstep

1 3-80

Trace Commands

STF Set Trace Format

STF [∆ parm ∆ parm] ↵

parm : [˜] mnemonic

2 3-86

CTO Change Trace Object

CTO ∆ parm [∆ parm [∆ parm]] ↵

parm : mnemonic

3 3-89

DTO Display Trace Object

DTO ↵4 3-89

DTT ↵ Display Trace Trigger

DTT ↵6 3-96

STT Set Trace Trigger

STT ∆ mnemonic1 ↵
STT ∆ mnemonic2 [/ [parm1] / [parm2]] ↵

parm1, parm2 : address
: [start_address ∆ end_address]
: .

STT ∆ mnemonic3 trc_mnem [&mask] = data ↵

mnemonic1 : ALL, TR, DIS mnemonic2 : SS mnemonic3 : AD, BD
parm1 : starting address of trace, parm2 : ending address of trace
trc_mnem : PRB (probe), RAM [∆ ram_address](data RAM)

5 3-92

Chapter 2, EASE64158 Emulator

2-68

DTR Display Trace Enable bits

DTR ∆ parm [∆ parm ∆ parm]↵
DTR ∆ * ↵

parm : address
: [address ∆ address]

7 3-97

CTR Change Trace Enable bits

CTR ∆ parm [∆ parm ∆ parm]↵
CTR ∆ * [= data]↵

parm : address = data
: [address ∆ address] = data

data : 0, 1

8 3-99

Trace Commands (continued)

DTP Display Trace Pointer

DTP ↵9 3-101

RTP Reset Trace Pointer

RTP ↵10 3-101

S Search Trace Memory

S [˜] mnemonic data [parm] ↵

mnemonic :

data : search data (comparison data)

parm : [count], [start_count ∆ end_count]

11 3-103

2-69

Chapter 2, EASE64158 Emulator

RST Reset the System

RST ↵1 3-106

RST E Reset the Evaluation chip

RST ∆ E ↵2 3-107

URST Set User Reset Terminal

URST [∆ mnemonic]↵

mnemonic : ON, OFF

3 3-108

Reset Commands

Chapter 2, EASE64158 Emulator

2-70

DCC Display Cycle Counter

DCC ↵1 3-110

CCC Change Cycle Counter

CCC ∆ [–] data ↵2 3-111

TIME Set Unit Time

TIME [∆ data] ↵3 3-112

DCT Display Cycle Counter Trigger

DCT ↵5 3-116

RCT Reset Cycle Counter Trigger

RCT ↵6 3-116

SCT Set Cycle Counter Trigger

SCT [∆ / [parm1] / [parm2]] ↵

parm1, parm2 : address
: [start_address ∆ end_address]
: .

parm1 : start status, parm2 : stop status

4 3-113

Performance/Coverage Commands

2-71

Chapter 2, EASE64158 Emulator

DIE Display Instruct ion Executed bits

DIE ∆ parm [∆ parm ∆ parm]↵
DIE ∆ * ↵

parm : address
: [address ∆ address]

7 3-118

CIE Change Instruct ion Executed bits

CIE ∆ parm [∆ parm ∆ parm]↵
CIE ∆ * [= data]↵

parm : address = data
: [address ∆ address] = data

data = 0, 1

8 3-119

Performance/Coverage Commands (continued)

DAP Display Address Pass Counter

DAP [∆ mnemonic ∆ mnemonic] ↵

mnemonic : C0, C1, C2, C3

9 3-121

CAP Change Address Pass Counter

CAP ∆ mnemonic [=address][∆ count] ↵

mnemonic : C0, C1, C2, C3

10 3-122

Chapter 2, EASE64158 Emulator

2-72

TYPE Set EPROM Type

TYPE [∆ mnemonic] ↵1 3-124

PPR Program EPROM

PPR ∆ [address ∆ address] [∆ eprom_address] ↵
PPR ∆ * ↵

2 3-126

TPR Transfer EPROM into Program Memory

TPR ∆ [address ∆ address] [∆ CM_address]↵
TPR ∆ * ↵

3 3-128

VPR Verify EPROM with Program Memory

VPR ∆ [address ∆ address] [∆ eprom_address]↵
VPR ∆ * ↵

4 3-130

EPROM Programming Commands

2-73

Chapter 2, EASE64158 Emulator

BATCH Batch Processing

BATCH ∆ fname ↵

fname : [Pathname] Filename [Extension]

1 3-134

PAUSE Pause Command Input

PAUSE ↵2 3-135

Commands for Automatic Command Execution

Chapter 2, EASE64158 Emulator

2-74

DSYM Display Symbol

DSYM ∆ string [∆ string∆ string] ↵
DSYM ∆ * ↵

1 3-138

RSYM Remove Symbol

RSYM ∆ string [∆ string∆ string] ↵
RSYM ∆ * ↵

3 3-142

Commands for Displaying/Changing/Removing Symbols

CSYM Change Symbol

CSYM ∆ parm [, parm , parm] ↵

parm : string [= data]

2 3-140

2-75

Chapter 2, EASE64158 Emulator

LIST Listing. Redirect the Console output to Disk file

LIST ∆ fname ↵1 3-144

NLST No Listing. Cancel the Console output Redirection

NLST ↵2 3-145

SH Call OS Shell

SH ↵3 3-146

RADIX Numeral Radix

RADIX ∆ mnemonic ↵

mnemonic : H, D, O, B

4 3-148

MAC Macro Command

MAC [∆ [˜] macro_command] ↵5 3-149

EXIT Terminate the Debugger and Exit to OS

EXIT ↵6 3-153

Other Commands

2-3-2. Symbolic Input (Definition of Expressions)

As explained in Section 2-1-11, symbols and operators can be used for all numeric inputs of the
SID64K debugger. These numeric inputs are called expressions in this manual.

Expressions are configured from symbols, numeric constants, and operators. Any number of
spaces or tabs (shown as ∆ below) can be included between these elements.

The input format of expressions is as follows.

Elements enclosed in brackets [] can be omitted. White space, indicated by ∆, follows the explanation of
Section 2-3-1. The : = indicates that the left side is defined by the right side. The “p” indicates a
preceding unary operator. The “R” indicates a relational operator.

Chapter 2, EASE64158 Emulator

2-76

expression : = constant or symbol
expression : = p [∆] expression
expression : = expression [∆] R [∆] expression
expression : = ([∆] expression [∆])

Symbols, constant expressions, preceding unary operators, and relational operators are defined
below.

❏ Symbols

A symbol is string of characters

- that starts with a character that has the letter attribute explained in Section 2-3-1-1,
“Character Set,”

- with the remainder as characters with the letter attribute or digits,
- up to a delimiting character, an operator, or any other special character.

The maximum number of characters for a symbol depends on the number of other parameters in
an input line. However, if a line consists of only one symbol, then its maximum is found as follows.

A symbol has its own value and segment attribute. These are defined at one of the following four
times.

1. When symbol information is read from an ASM64K-generated file during execution of a LOD
command.

2. When the symbol is defined as a label or defined with an EQU, SET, CODE, or DATA
directive during an ASM command.

3. When reading from a DCL file after SID64K is invoked (☞1).
4. When changed with the CSYM (Change Symbol) command.

Symbol information is stored in a memory area managed by SID64K. This memory area is
known as the symbol table.

When a symbol is input, the debugger searches the symbol table. If the given symbol is found,
then its value will be taken as the value of the input symbol.

During a symbol search, segment attribute checks of symbols are not performed. In other words,
if the name of an input symbol matches the name of a symbol in the symbol table, then the debugger will
always return the value, even when the requested segment type does not match the segment type of the
symbol in the table.

The DCL file contains system information for the target evaluation device (memory and SFR
assignment information), as well as reserved keywords. If you need to see what reserved
keywords are registered, then refer to the explanation about defining reserved keywords
below.

Reserved keywords are defined with the DEFDATA statement as bit symbols with the DATA
segment attribute. The format for defining them is as follows:

2-77

Chapter 2, EASE64158 Emulator

Input line buffer maximum characters - 1 = 71 characters

☞ 1

DEFDATA ∆ symbol, expression ↵

❏ Constants

Constants include integer constants, character constants, and string constants. String constants
can only be used with the ASM command, so they are not explained in this section. (Refer to Section 5-
4-4 for details on string constants.)

Integer constants

Any string with the first character a digit 0 to 9 is handled as an integer constant. Integer
constants can be expressed with radix 2 (binary), 8 (octal), 10 (decimal), or 16 (hexadecimal). In order to
distinguish between these expression formats (radices), the number is appended with a radix operator, as
shown in Table 2-2.

When the radix operator (H, D, O, Q, B) is omitted, the radix specified with the RADIX command
will be followed. However, if a number, bank, or count is expressed in input, then it will be recognized as
decimal regardless of the radix operator.

When the default radix specified with the RADIX command is hexadecimal, then binary
expressions are not permitted. Conversely, if the default radix specified is binary, then hexadecimal
expressions are not permitted.

If the first digit of a hexadecimal expression is a letter A-F, then it must be preceded with a 0 in
order to distinguish it from a symbol.

Table 2-6. Format of Integer Constants

Character constants

A character constant is a constant enclosed in single quotation marks (‘) or an escape
sequence. A character constant formed as a character other than backslash (\) enclosed in single
quotation marks will take that character's ASCII code as its value. When a single quotation mark is
followed by a backslash (\), then the value 00H–0FFH will be given in accordance with the following code.
The backslash and the code that follows it is called an escape sequence. Escape sequences are only
used with the ASM command, so they are not explained in detail here. Refer to Chapter 5, "Assembler
Command Details."

Chapter 2, EASE64158 Emulator

2-78

Radix

2
(binary)

8
(octal)

10
(decimal)

16
(hexadecimal)

Usable Characters Radix Operator Examples

0, 1 B
1010B
01101101B
1001_1001B

0 to 7 O, Q 271O
514Q

0 to 9 D 30D
1263

0 to 9, A to F H 753H
0C6E7H

❏ Operators

The ASM command permits all C language-compatible operators, but other commands only allow
the binary operators '+' (addition) and '–' (substraction), and parentheses. A detailed explanation of
operators is given in Chapter 5, so it is omitted here.

All calculations are performed as 32-bit unsigned format. If a calculation result is negative, then it
will be expressed in 2's complement. Overflows will be ignored. A value of expression will be the
calculated result of the operators acting on the values of symbols and integer constants.

Below are shown some examples of expressions using symbols and operators.

Example 1

DCM [LOOP1 + 10 LOOP2]

Displays the values of code memory from address LOOP1 + 10 to LOOP2.

Example 2

C PC = DATA1 SP = MAX - 10

Changes the contents of the PSW to DATA1. Changes the contents of SP to
MAX - 10.

Example 3

DATA1 EQU 200H
CAL DATA1 & DATA2

Defines DATA1 as 200H within the assemble command. Incorporates the result
of evaluating DATA1 & DATA2 (the logical AND of DATA1 and DATA2) as
immediate data.

2-79

Chapter 2, EASE64158 Emulator

Example

2-3-3. History Function

SID64K has a function for saving previous command line input (☞1). This function is known as
the history function.

When using the debugger, occasionally you will want to input the same command as one several
previous, or the same command except with different parameters. This is when the history function is
especially powerful.

(1) Current line buffer and history buffer

SID64K has a current line buffer for editing the current command line input and a history buffer
for saving command lines.

The command line buffer is a 72-character buffer for command line input. The history buffer is a
72-character by 20-line buffer for storing command line input in order.

There are two types of history buffers. One is for normal command line input, and one is for
command line input during execution of the ASM command.

Figure 2-5. Current Line Buffer and History Buffer

Chapter 2, EASE64158 Emulator

2-80

SSTTPP 111100,,55

DTM -10 10

G 100, 10F

C SP=12

D SP PC P3

ASM 1000

:

STP 110, 5 ↵

ADC

CMA

SUBC @XY

L1:

ORG 1000H

TEN EQU 10H

:

History buffer for
normal command
line input

History buffer for
command line input
during execution of
ASM commands

ASM command?
NO YES

Current line buffer

A command line input by an operator is first stored in the current line buffer. Simultaneous to the
operator pressing a carriage return, the contents of the current line buffer are stored in the history buffer.
Each time a command line is input, its contents are stored in order in the history buffer.

The history buffer is configured as a ring. The oldest input line (the command line input 20 lines
before the current command line input) is overwritten. As a result, the previous 10 lines of command line
input will always be stored.

The operator can read the contents of the history buffer into the current line buffer at any time
during command line input.

Note that input from a file called by the BATCH command will not be stored in the history buffer.

❏ Using history functions

This somewhat covers the same material as Section 2-3-4, “Special Keys For Raising Command
Input Efficiency,” but the history functions are utilized with the ↑ key (or CTRL + K) and the ↓ key (or
CTRL + J).

Pressing the ↑ key will read the immediately previous command line input from the history buffer
into the command line buffer and display it on the console. Then each time the ↑ key is pressed, the next
previous command line input will be read and displayed.

Converse to the ↑ key, the ↓ key reads the command line input immediately afterward from the
history buffer and displays it on the console.

After the operator has edited the displayed current line buffer contents with the special keys for
command line editing, as explained in the next section, he can enter it as the new command line input by
pressing the ↵ key. At this time, the current line buffer will be executed to its end as the command line
input, regardless of the cursor position on the line.

Of course, the contents of the current line buffer can be executed if only the ↵ key is pressed
without any editing.

SID64K command line input is input from the console after the SID64K output prompt
“64153>” or “Go>>”, and during ASM command execution.

2-81

Chapter 2, EASE64158 Emulator

☞ 1

2-3-4. Special Keys For Raising Command Input Efficiency

SID64K provides special editing keys, as mentioned in the previous section on the history
function, for raising efficiency of current line buffer editing. There are a total of 12 special keys. They can
effectively create new command line inputs. The special keys and their control functions are explained
below.

(1) CTRL+A and CTRL+Z

CTRL+A moves the cursor to the first location of the current line buffer.

CTRL+Z moves the cursor to the last location of the current line buffer.

Contents of current line buffer before editing

CTRL + A pressed

Contents of current line buffer after editing

CTRL + Z pressed

Contents of current line buffer after editing

(2) CTRL+B and CTRL+F

CTRL+B searches for a string consisting of letters and digits only from the current cursor location
in the current line buffer toward the first location. In other words, it recognizes characters other than
letters and digits as string delimiters.

If a string is detected, then the cursor will be moved to its first location. If no string could be
detected, then the cursor will be moved to the first location of the current line buffer.

Chapter 2, EASE64158 Emulator

2-82

S T P 1 0 0 0 , 1 0

S T P 1 0 0 0 , 1 0

S T P 1 0 0 0 , 1 0

Example

CTRL+F searches for a string consisting of letters and digits only from the current cursor location
in the current line buffer toward the last location. In other words, it recognizes characters other than
letters and digits as string delimiters.

If a string is detected, then the cursor will be moved to its first location. If no string could be
detected, then the cursor will be moved to the last location of the current line buffer.

Contents of current line buffer before editing

CTRL + B pressed
CTRL + B pressed

Contents of current line buffer after editing

CTRL + F pressed

Contents of current line buffer after editing

(3) CTRL+H (or ←) and CTRL+L (or →)

CTRL+H moves the cursor one location to the left of its current location in the current line buffer.

CTRL+L moves the cursor one location to the right of its current location in the current line buffer.

Contents of current line buffer before editing

CTRL + H or ← pressed

Contents of current line buffer after editing

CTRL + L or → pressed

Contents of current line buffer after editing

2-83

Chapter 2, EASE64158 Emulator

Example S T P 1 0 0 0 , 1 0

S T P 1 0 0 0 , 1 0

S T P 1 0 0 0 , 1 0

Example S T P 1 0 0 0 , 1 0

S T P 1 0 0 0 , 1 0

S T P 1 0 0 0 , 1 0

(4) CTRL+K (or ↑) and CTRL+J (or ↓)

CTRL+K (or ↑) and CTRL+J (or ↓) read history buffer contents into the current line buffer, as
explained in the previous section. For details, refer to the previous Section 2-3-3, “History Function.”

(5) CTRL+D and CTRL+X

CTRL+D deletes current line buffer contents from the current cursor position to the last location,
and then moves the cursor to the end of the line.

CTRL+X deletes the current line buffer contents, and then moves the cursor to the start of the
buffer.

Contents of current line buffer before editing

CTRL + D pressed

Contents of current line buffer after editing

CTRL + X pressed

Contents of current line buffer after editing

(6) CTRL+R (or INS) and DEL

CTRL+R (or INS) inserts a single blank character at the current cursor position in the current line
buffer.

DEL deletes a singles character at the current cursor position in the current line buffer. The
cursor position does not change.

Chapter 2, EASE64158 Emulator

2-84

Example S T P 1 0 0 0 , 1 0

S T P 1

Contents of current line buffer before editing

CTRL + R or INS pressed

Contents of current line buffer after editing

DEL pressed

Contents of current line buffer after editing

If you will use SID64K with an IBM PC-AT, then add the appropriate ANSI escape sequence
driver from your DOS system disk to CONFIG.SYS. If you forget to do so, then you will not
be able to use the special editing keys.

To use the ↑ , ↓ , ← , → , INS and DEL keys, set your host computer’s key table to the same
key code settings as in the table on the next page. If the settings do not match, then the
danger exists that a special key function will operate differently. There is no need to set
them for the IBM PC-AT, but for the NEC PC-9801 change the key table file to KEY.TBL
using the MS-DOS utility program KEY.EXE.

2-85

Chapter 2, EASE64158 Emulator

Example S T P 1 0 0 0 , 1 0

S T P 1 0 0 0 , 1 0

S T P 1 0 0 0 , 1 0

!

Host Computer ANSI Escape Sequence Driver Name

IBM PC-AT ANSI.SYS

!

The table below shows the special editing keys and how they affect the contents of the current
line buffer. It also shows the SID64K internal processing code (in hexadecimal) for each key. Check the
settings of your host computer’s key table, and if they do not match these settings, then change them to
match.

In the table, “line” means the current line buffer.

Chapter 2, EASE64158 Emulator

2-86

Editing Key Code

01H

Control Function

CTRL + A Moves the cursor to the start of the current line buffer.

02HCTRL + B
Searches for string of letters and digits only from the
current cursor location to the first location, and moves the
cursor to the start of the string.

06HCTRL + F
Searches for string of letters and digits only from the
current cursor location to the first location, and moves the
cursor to the start of the string.

0AHCTRL + J or ↓
Reads the next command line input from the history buffer
into the current line buffer and displays it.

0BHCTRL + K or ↑
Reads the previous command line input from the history
buffer into the current line buffer and displays it.

08HCTRL + H or ← Moves the current cursor position one to the left.

0CHCTRL + L or → Moves the current cursor position one to the right.

18HCTRL + X
Deletes the current line buffer, and moves the cursor to the
first location.

1AHCTRL + Z Moves the cursor to the end of the current line buffer.

7FHDEL Deletes a character at the current cursor location.

04HCTRL + D Deletes all characters from the current cursor location to
the last location.

12HCTRL + R or INS Inserts a single blank at the current cursor location.

3-1

Chapter 3, SID64K Commands

CCCChhhhaaaapppptttteeeerrrr 3333

SSSSIIIIDDDD66664444KKKK CCCCoooommmmmmmmaaaannnnddddssss

This chapter explains in detail how to use SID64K commands.

3-1. SID64K Commands

3-1-1. Command Details

This chapter explains the SID64K commands organized by function.

A list of contents like the one shown below is given at the start of each functional grouping. At
the top is a two-line title box outlining the name of the functional group. Below it are the names of the
command groups covered by the functional group, outlined in one-line title boxes. Under each command
group are the names of the commands it covers.

The header of each page shows the name of the command explained on that page in boldface
and enclosed in a rectangle. This is provided for convenience when looking up command explanations.

Each command is explained in the order of input format, description, and execution example.
These are given under the following respective title lines.

Chapter 3, SID64K Commands

3-2

3.1.1.x

Functional Group Name

3.1.1.x.x Command Group Name

3.1.1.x.x Command Group Name

Command Name

Command Name

Command Name

Command Name

Input Format

Description

Execution Example

3-3

Chapter 3, SID64K Commands

3.1.1.1

Evaluation Chip Access Commands

3.1.1.1.1 Displaying/Changing Registers and SFR

3.1.1.1.2 Display Registration of Registers and SFR

3.1.1.1.3 Displaying/Changing the PC (Program Counter)

D

C

DPC

CPC

SDF

3.1.1.1.1 Displaying/Changing Registers and SFR

D [∆ mnemonic ∆ mnemonic] ↵ Display command

C ∆ parm [∆ parm ∆ parm] ↵ Change command

parm : mnemonic [= data]
mnemonic : SFR-mnemonic

or

Register-mnemonic

or

PC (program counter), C (carry flag),

BSR0 (bank select register 0),

BSR1 (bank select register 1),

BCF (bank common flag), BEF (bank enable flag)

The D command displays the contents of the the register or SFR specified by
mnemonic. The mnemonic can be an SFR-mnemonic indicating an SFR
register, a Register-mnemonic indicating a general-purpose register, or PC or C,
or BSR0, or BSR1, or BEF, or BCF.

A Register-mnemonic is one of the following expressions.

Register-mnemonic : A (A register)
: B (B register)
: H (H register)
: L (L register)
: X (X register)
: Y (Y register)
: BA (B register and A register)
: HL (H register and L register)
: XY (X register and Y register)

Chapter 3, SID64K Commands

3-4

D, C

D, C

Input Format

Description

An SFR-mnemonic is one of the mnemonics shown in Table 3-1. Table 3-1 shows all the SFRs
included in the MSM64E153 evaluation chip. For actual use, refer to the user’s manual of the appropriate
MSM64153 family microcontroller.

If no parameters are input, then the contents of the general-purpose registers, PC, C, and any
SFR registered with the SFR command will be displayed.

The C command changes the contents of the the register or SFR specified by SFR-mnemonic,
Register-mnemonic, PC, C, BSR0, BSR1, BEF, or BCF. The format of Register-mnemonic is the same
as that of the D command.

An SFR-mnemonic is one of the mnemonics shown in Table 3-1. The data is an expression that
must evaluate to a value in the range 0–0FFH for byte access, or 0–0FH for nibble access. If data is
omitted, then the emulator outputs the following message and waits for data to be input.

Here mnemonic expresses the mnemonic of the SFR or register that is to have its current
contents changed. The old-data will be the current contents. At this point the operator enters new data
(data) and inputs a carriage return.

When the carriage return is input, processing moves to the next parameter. If there is no next
parameter, then the C command terminates.

When the emulator is waiting for input data for a change, the following two key inputs are valid in
addition to data.

If bit symbols are defined for an SFR mnemonic input with the D command, then the the contents
of each bit expressed by a bit symbol will be displayed simultaneously with the SFR contents.

If bit symbols are defined for an SFR mnemonic input with the C command, and if data is omitted
when the C command is input, then input mode will be entered for each bit expressed by a bit symbol.

Table 3-2 shows the bit symbols defined for the SID64K. The table shows all SFR bit symbols
included in the MSM64E153, so for actual use refer to the user’s manual of the appropriate MSM64153
family microcontroller.

3-5

Chapter 3, SID64K Commands

mnemonic: old-data

mnemonic: old-data data ↵

mnemonic: old-data input data for next parameter

∆ ↵ (space followed by carriage return) Move processing to the next
parameter without changing the
current data. If there is no next
parameter, then the C
command terminates.

↵ (input carriage return only) The C command terminates.

D, C

Table 3-2 shows the values assigned to each bit symbol. The values are given by the following
arithmetic expression.

Bit symbol value = SFR address x 4 + bit position

Example: The value of P3F (bit 2) of P3CON1 (0DH)
P3F bit symbol value = 0DH x 4 + 2

36H

The values assigned to respective bit symbols are used by the SID64K command interpreter. Bit
symbols can also be used during command input.

Example: “DCM P3F” is the same as “DCM 36H.”

‘D ↵ ’ will normally display the contents of PC, C, general-purpose registers, and the BCF,
BEF, BSR0, and BSR1.

For several SFRs of the MSM64153 family, unallocated bits exist as reserved bits. For the
EASE64158, these reserved bits are handled as shown below. Refer to the user’s manual of
the appropriate MSM64153 family microcontroller regarding reserved bit contents.

D command: Reserved bits are displayed as “1.”
C command: Reserved bits will not change even if set to “0” or “1” data.

Chapter 3, SID64K Commands

3-6

☞ 1

!

Table 3-1. List of SFR-mnemonics (☞1)

3-7

Chapter 3, SID64K Commands

D, C

SFR-mnemonic Register Name Address

P0 Port 0 Register 00H

P1 Port 1 Register 01H

P2 Port 2 Register 02H

P3 Port 3 Register 03H

P4D Port 4 Data Register 04H

P5D Port 5 Data Register 05H

P6D Port 6 Data Register 06H

P7D Port 7 Data Register 07H

P2CON0 Port 2 Control Register 0 08H

P2CON1 Port 2 Control Register 1 09H

P2IE Port 2 Interface Enable Register 0AH

P3CON0 Port 3 Control Register 0 0CH

P3CON1 Port 3 Control Register 1 0DH

P6CON Port 6 Control Register 0EH

P7CON Port 7 Control Register 0FH

BDCON Buzzer Control Register 10H

TBCR Time-Base Counter Register 11H

DSPCON0 Display Control Register 0 12H

DSPCON1 Display Control Register 1 13H

BUPCON Backup Control Register 14H

BATCON Battery Check Control Register 15H

CAPCON Capture Control Register 17H

CAPR0 Capture Register 0 18H

CAPR1 Capture Register 1 19H

ECLR Event Counter Low Register 1AH

ECHR Event Counter High Register 1BH

ECCON Event Counter Control Register 1CH

_100HzCON 100 Hz Control Register 1DH

_100HzC 100 Hz Count Register 1EH

_10HzC 10 Hz Count Register 1FH

ADCON0 A/D Converter Control Register 0 20H

ADCON1 A/D Converter Control Register 1 21H

CNTAL A/D Converter CounterA Register Low 22H

CNTAM A/D Converter CounterA Register Middle 23H

CNTAH A/D Converter CounterA Register High 24H

Chapter 3, SID64K Commands

3-8

D, C

ADCON2 A/D Converter Control Register 2 25H

CNTBL A/D Converter Counter B Register Low 26H

CNTBM A/D Converter Counter B Register Middle 27H

CNTBH A/D Converter Counter B Register High 28H

MDCON0 Melody Control Register 0 2AH

TEMP0 Melody Tempo Register 0 2BH

MDR00 Melody Data Register 00 2CH

MDR01 Melody Data Register 01 2DH

MDR02 Melody Data Register 02 2EH

MDR03 Melody Data Register 03 2FH

MDCON1 Melody Control Register 1 30H

TEMP1 Melody Tempo Register 1 31H

MDR10 Melody Data Register 10 32H

MDR11 Melody Data Register 11 33H

MDR12 Melody Data Register 12 34H

MDR13 Melody Data Register 13 35H

IE0 Interrupt Enable Register 0 38H

IE1 Interrupt Enable Register 1 39H

IE2 Interrupt Enable Register 2 3AH

IE3 Interrupt Enable Register 3 3BH

IRQ0 Interrupt Request Register 0 3CH

IRQ1 Interrupt Request Register 1 3DH

IRQ2 Interrupt Request Register 2 3EH

IRQ3 Interrupt Request Register 3 3FH

DSPR0 Display Register 0 40H

DSPR1 Display Register 1 41H

DSPR2 Display Register 2 42H

DSPR3 Display Register 3 43H

DSPR4 Display Register 4 44H

DSPR5 Display Register 5 45H

DSPR6 Display Register 6 46H

DSPR7 Display Register 7 47H

DSPR8 Display Register 8 48H

DSPR9 Display Register 9 49H

DSPR10 Display Register 10 4AH

DSPR11 Display Register 11 4BH

DSPR12 Display Register 12 4CH

DSPR13 Display Register 13 4DH

3-9

Chapter 3, SID64K Commands

D, C

DSPR14 Display Register 14 4EH

DSPR15 Display Register 15 4FH

DSPR16 Display Register 16 50H

DSPR17 Display Register 17 51H

DSPR18 Display Register 18 52H

DSPR19 Display Register 19 53H

DSPR20 Display Register 20 54H

DSPR21 Display Register 21 55H

DSPR22 Display Register 22 56H

DSPR23 Display Register 23 57H

DSPR24 Display Register 24 58H

DSPR25 Display Register 25 59H

DSPR26 Display Register 26 5AH

DSPR27 Display Register 27 5BH

DSPR28 Display Register 28 5CH

DSPR29 Display Register 29 5DH

DSPR30 Display Register 30 5EH

DSPR31 Display Register 31 5FH

DSPR32 Display Register 32 60H

DSPR33 Display Register 33 61H

DSPR34 Display Register 34 62H

DSPR35 Display Register 35 63H

DSPR36 Display Register 36 64H

DSPR37 Display Register 37 65H

DSPR38 Display Register 38 66H

DSPR39 Display Register 39 67H

DSPR40 Display Register 40 68H

DSPR41 Display Register 41 69H

DSPR42 Display Register 42 6AH

DSPR43 Display Register 43 6BH

DSPR44 Display Register 44 6CH

DSPR45 Display Register 45 6DH

DSPR46 Display Register 46 6EH

DSPR47 Display Register 47 6FH

DSPR48 Display Register 48 70H

DSPR49 Display Register 49 71H

DSPR50 Display Register 50 72H

DSPR51 Display Register 51 73H

DSPR52 Display Register 52 74H

Table 3-2 shows all SFRs included in the MSM64E153. For actual use refer to the user’s
manual of the appropriate MSM64153 family microcontroller. The symbols shown for special
function registers are their mnemonics. However, when the first character is a digit, prefix
the digit with an underscore (_).

Example: 100HzCON _100HzCON

In HALT mode, change commands are invalid (the HALT mode will be forcibly released
when emulation is not executed).

The SP (stack pointer) can only be changed with the C command. It cannot be changed with
the CDM command, described later.

Chapter 3, SID64K Commands

3-10

D, C

DSPR53 Display Register 53 75H

DSPR54 Display Register 54 76H

DSPR55 Display Register 55 77H

DSPR56 Display Register 56 78H

DSPR57 Display Register 57 79H

DSPR58 Display Register 58 7AH

DSPR59 Display Register 59 7BH

MIEF Master Interrupt Enable Register 7CH

SP (☞ 3) Stack Pointer 7EH, 7DH

☞ 1

☞ 2

HALT (☞ 2) Halt Mode Register 7DH

☞ 3

Table 3-2. (a) Bit Symbols

SFR-mnemonic Bit Symbols

bit 3 bit 2 bit 1 bit 0

P0 P03 P02 P01 P00

P1 P13 P12 P11 P10

P2 P23 P22 P21 P20

P3 *– *– P31 P30

P4D P43 P42 P41 P40

P5D P53 P52 P51 P50

P6D P63 P62 P61 P60

P7D P73 P72 P71 P70

P2CON0 P23MOD P22MOD P21MOD P20MOD

P2CON1 *– *– *– P2F

P2IE P23IE P22IE P21IE P20IE

P3CON0 *– *– P31MOD P30MOD

P3CON1 *– P3F P3EXT1 P3EXT0

P6CON *– P6F P6MOD P6DIR

P7CON *– P7F P7MOD P7DIR

BDCON SELF EBD BM1 BM0

TBCR _1Hz _2Hz _4Hz _8Hz

DSPCON0 DTRN1 DTRN0 ONOFF DUTY

DSPCON1 *– *– HTRN STRN

BUPCON *– *– *– BUPF

BATCON *– *– EBAT BATF

CAPCON CRF1 CRF0 ECAP1 ECAP0

CAPR0 _32Hz0 _64Hz0 _128Hz0 _256Hz0

CAPR1 _32Hz1 _64Hz1 _128Hz1 _256Hz1

ECLR EC3 EC2 EC1 EC0

ECHR EC7 EC6 EC5 EC4

ECCON *– *– ECOVF EEC

_100HzCON *– *– *– ECNT

_100HzC _100Hz3 _100Hz2 _100Hz1 _100Hz0

_10HzC _10Hz3 _10Hz2 _10Hz1 _10Hz0

Note: Table entries marked *– are reserved bits, which are currently unassigned.

3-11

Chapter 3, SID64K Commands

D, C

Table 3-2. (b) Bit Symbols

SFR-mnemonic Bit Symbols

bit 3 bit 2 bit 1 bit 0

ADCON0 OM2 OM1 OM0 EADC

ADCON1 BSTP ASTP OVFB OVFA

CNTAL a3 a2 a1 a0

CNTAM a7 a6 a5 a4

CNTAH a11 a10 a9 a8

ADCON2 *– *– *– OSCOUT

CNTBL b3 b2 b1 b0

CNTBM b7 b6 b5 b4

CNTBH b11 b10 b9 b8

MDCON0 *– *– *– MSA0

TEMP0 TP03 TP02 TP01 TP00

MDR00 L03 L02 L01 L00

MDR01 *– END0 L05 L04

MDR02 N03 N02 N01 N00

MDR03 *– N06 N05 N04

MDCON1 *– *– *– MSA1

TEMP1 TP13 TP12 TP11 TP10

MDR10 L13 L12 L11 L10

MDR11 *– END1 L15 L14

MDR12 N13 N12 N11 N10

MDR13 *– N16 N15 N14

IE0 EP3 EMD1 EMD0 EEX1

IE1 EAD EP7 EP6 EP2

IE2 E16Hz E32Hz E128Hz E256Hz

IE3 EEX0 EP01 E1Hz E4Hz

IRQ0 QP3 QMD1 QMD0 QEX1

IRQ1 QAD QP7 QP6 QP2

IRQ2 Q16Hz Q32Hz Q128Hz Q256Hz

IRQ3 QEX0 QP01 Q1Hz Q4Hz

MIEF *– *– *– MI

HALT *– *– *– HLT

SP SP3 SP2 SP1 *–

*– SP6 SP5 SP4

Note: Table entries marked *- are reserved bits, which are currently unassigned.

Chapter 3, SID64K Commands

3-12

D, C

Table 3-3. (a) Values of Bit Symbols

Bit Symbol Value Bit Symbol Value Bit Symbol Value Bit Symbol Value

P00 00H P71 1DH _8Hz 44H EC2 6AH

P01 01H P72 1EH _4Hz 45H EC3 6BH

P02 02H P73 1FH _2Hz 46H EC4 6CH

P03 03H P20MOD 20H _1Hz 47H EC5 6DH

P10 04H P21MOD 21H DUTY 48H EC6 6EH

P11 05H P22MOD 22H ONOFF 49H EC7 6FH

P12 06H P23MOD 23H DTRN0 4AH EEC 70H

P13 07H P2F 24H DTRN1 4BH ECOVF 71H

P20 08H P20IE 28H STRN 4CH ECNT 74H

P21 09H P21IE 29H HTRN 4DH _100Hz0 78H

P22 0AH P22IE 2AH BUPF 50H _100Hz1 79H

P23 0BH P23IE 2BH BATF 54H _100Hz2 7AH

P30 0CH P30MOD 30H EBAT 55H _100Hz3 7BH

P31 0DH P31MOD 31H ECAP0 5CH _10Hz0 7CH

P40 10H P3EXT0 34H ECAP1 5DH _10Hz1 7DH

P41 11H P3EXT1 35H CRF0 5EH _10Hz2 7EH

P42 12H P3F 36H CRF1 5FH _10Hz3 7FH

P43 13H P6DIR 38H _256Hz0 60H EADC 80H

P50 14H P6MOD 39H _128Hz0 61H OM0 81H

P51 15H P6F 3AH _64Hz0 62H OM1 82H

P52 16H P7DIR 3CH _32Hz0 63H OM2 83H

P53 17H P7MOD 3DH _256Hz1 64H OVFA 84H

P60 18H P7F 3EH _128Hz1 65H OVFB 85H

P61 19H BM0 40H _64Hz1 66H ASTP 86H

P62 1AH BM1 41H _32Hz1 67H BSTP 87H

P63 1BH EBD 42H EC0 68H a0 88H

P70 1CH SELF 43H EC1 69H a1 89H

3-13

Chapter 3, SID64K Commands

D, C

Table 3-3. (b) Values of Bit Symbols

Bit Symbol Value Bit Symbol Value Bit Symbol Value Bit Symbol Value

a2 8AH TP02 AEH L15 CDH QMD0 F1H

a3 8BH TP03 AFH END1 CEH QMD1 F2H

a4 8CH L00 B0H N10 D0H QP3 F3H

a5 8DH L01 B1H N11 D1H QP2 F4H

a6 8EH L02 B2H N12 D2H QP6 F5H

a7 8FH L03 B3H N13 D3H QP7 F6H

a8 90H L04 B4H N14 D4H QAD F7H

a9 91H L05 B5H N15 D5H Q256Hz F8H

a10 92H END0 B6H N16 D6H Q128Hz F9H

a11 93H N00 B8H EEX1 E0H Q32Hz FAH

OSCOUT 94H N01 B9H EMD0 E1H Q16Hz FBH

b0 98H N02 BAH EMD1 E2H Q4Hz FCH

b1 99H N03 BBH EP3 E3H Q1Hz FDH

b2 9AH N04 BCH EP2 E4H QP01 FEH

b3 9BH N05 BDH EP6 E5H QEX0 FFH

b4 9CH N06 BEH EP7 E6H MI 1F0H

b5 9DH MSA1 C0H EAD E7H HLT 1F4H

b6 9EH TP10 C4H E256Hz E8H SP1 1F9H

b7 9FH TP11 C5H E128Hz E9H SP2 1FAH

b8 A0H TP12 C6H E32Hz EAH SP3 1FBH

b9 A1H TP13 C7H E16Hz EBH SP4 1FCH

b10 A2H L10 C8H E4Hz ECH SP5 1FDH

b11 A3H L11 C9H E1Hz EDH SP6 1FEH

MSA0 A8H L12 CAH EP01 EEH SP7 1FFH

TP00 ACH L13 CBH EEX0 EFH – –

TP01 ADH L14 CCH QEX1 F0H – –

Chapter 3, SID64K Commands

3-14

D, C

64153> D P3CON1

P3CON1 : 8
(P3F : 0 P3EXT1 : 0 P3EXT0 : 0)

64153> C A
A : 0 -----> 5 New

64153> D A
A : 5

64153> C A=1 B=2 H=4
64153> C P3CON1

P3CON1 : 8
----- BIT -----

P3EXT0 : 0 -----> 1 New
P3EXT1 : 0 -----> 1 New
P3F : 0 -----> 1 New

3-15

Chapter 3, SID64K Commands

Execution Example

D, C

64153> D
A : 1 B : 2 H : 4 L : 0 X : 0
Y : 0 PC : 0000 BCF : 0 BEF : 0 BSR0 : 0
BSR1 : 0 C : 0

64153> SDF
** Not Set Display Format

64153> SDF P2 P6D P7D
A : 1 B : 2 H : 4 L : 0 X : 0
Y : 0 PC : 0000 BCF : 0 BEF : 0 BSR0 : 0
BSR1 : 0 C : 0
P6D : 0 P7D : 0 P2 : 0

Chapter 3, SID64K Commands

3-16

Execution Example

D, C

3.1.1.1.2 Display Registration of Registers and SFR

SDF [∆ parm ∆ parm] ↵

parm : [˜] SFR_mnemonic (☞ 1)

The SDF command registers which SFR mnemonics are displayed when the D
command is input as “D↵ ”.

SFR-mnemonic is one of those shown in Table 3-1. If the mnemonic is prefixed
by ‘~’ (tilde), then its registration will be cancelled.

If parm is omitted, then the currently set display format will be displayed.

“SDF↵ ” displays the registration contents.

64153> SDF
P6D P7D P2

64153> SDF P2CON0 IE0 IE2 IE2 IE3 IRQ0 DSPR11
64153> D

A : 1 B : 2 H : 4 L : 0 X : 0
Y : 0 PC : 0000 BCF : 0 BEF : 0
BSR0 : 0 BSR1: 0 C : 0
P6D : 0 P7D : 0 P2CON0 : 0 IRQ0 : 1 P2 : 0
DSPR11 : 0 IE0 : 1 IE2 : 1 IE3 : D

64153> SDF~P2~P6D~P7D~P2CON0~IE0~IE1~IE2~IE3~IRQ0~DSPR11
64153> D

A : 1 B : 2 H : 4 L : 0 X : 0
Y : 0 PC : 0000 BCF : 0 BEF : 0 BSR0 : 0
BSR1 : 0 C : 0

64153> SDF
** Not Set Display Format

64153>

3-17

Chapter 3, SID64K Commands

SDF

SDF

Input Format

Description

Execution Example

3.1.1.1.3 Displaying/Changing the PC (Program Counter)

DPC ↵

CPC ∆ address ↵

The DPC command displays the contents of the PC (program counter).

The CPC command changes the PC (program counter) to the value specified by
address.

Refer to each MSM64153 family microcontroller's User's Manual,
regarding the range of input addresses.

When the code memory is expanded using EXPAND command,
expressions evaluated as 0–7FFFH will be acceptable for address
input.

64153> DPC
PC : 0000

64153> CPC
PC : 0000 -----> 248H New

64153> DPC
PC : 248

64153> CPC
PC : 0248 -----> 5 New

64153> DPC
PC : 0005

64153>

Chapter 3, SID64K Commands

3-18

DPC, CPC

DPC,CPC

Input Format

Description

☞ 1

Execution Example

!

3-19

Chapter 3, SID64K Commands

3.1.1.2

Code Memory Commands

3.1.1.2.1 Displaying/Changing Code Memory Data

DCM

CCM

3.1.1.2.2 Expanding the Memory Area

EXPAND

3.1.1.2.3 Moving Code Memory

MCM

3.1.1.2.4 Load / Save / Verify

LOD

SAV

VER

3.1.1.2.5 Assemble / Disassemble Commands

ASM

DASM

3.1.1.2.1 Displaying/Changing Code Memory Data

DCM ∆ parm [∆ parm ∆ parm] ↵

DCM ∆ * ↵

parm : address
: [address ∆ address]

The DCM command displays the contents of code memory.

The address is an expression that evaluates within code memory’s maximum
address range. It indicates an address of code memory to be displayed (☞1).

Display contents are one of the following, depending on input format.

address Displays the contents on one address.
[address ∆ address] Displays the range enclosed in [].
* Displays the entire area of code memory.

When multiple parameters are specified, each will be displayed even if their
address areas overlap.

Refer to each MSM64153 family microcontroller's User's Manual,
regarding address ranges.

Note that the emulator handles the test data area in the program
area (code memory) of the MSM64153 family microcontrollers as an
unusable area.

Chapter 3, SID64K Commands

3-20

DCM

DCM

Input Format

Description

☞ 1

!

64153> DCM [0 1F]

0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC = 0000 00 00 D0 B0 00 00 70 D0 00 00 D0 F0 00 00 E0 60
LOC = 0010 00 00 20 00 00 00 B0 F0 00 00 80 20 00 00 40 C0
64153> DCM 5

LOC = 0005 00
64153> DCM [204 27A]

0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC = 0200 00 00 80 00 00 00 80 80 00 00 80 80 00 00 80 80
LOC = 0210 00 00 80 80 00 00 80 00 00 00 80 00 00 00 80 00
LOC = 0220 70 80 F0 F0 90 30 F0 F0 60 80 F0 F0 E0 40 F0 F0
LOC = 0230 30 70 F0 F0 A0 B0 F0 F0 00 90 F0 F0 60 10 F0 F0
LOC = 0240 00 00 40 00 00 00 C0 B0 00 00 00 00 00 00 40 10
LOC = 0250 00 00 50 00 00 00 00 20 00 00 20 00 00 00 40 30
LOC = 0260 50 00 F0 F0 00 00 F0 F0 20 20 F0 F0 00 00 F0 F0
LOC = 0270 00 00 F0 F0 00 00 F0 F0 00 10 F0 F0 00 00 F0 F0
64153> DCM 123 456 789
LOC = 0123 F0
LOC = 0456 00
LOC = 0789 00
64153>

3-21

Chapter 3, SID64K Commands

DCM

Execution Example

CCM ∆ parm ↵

CCM ∆ * [= data] ↵

parm : address [= data]
: [address ∆ address] = data

The CCM command changes the contents of code memory.

The address is an expression that evaluates within code memory’s
maximum address range. It indicates an address of code memory (☞1). A ‘*’
indicates the entire code memory area.

If ‘*’ is input and data is omitted, then the entire area will be set to ‘0.’

The data is the value of the change data. Its range is 0H to 0FFH.
Contents are changed in the order of the input parameters. The area changed is
one of the following, depending on input format.

address Changes the contents on one address.
[address ∆ address] Changes the range enclosed in [].
* Changes the entire area of code memory.

When multiple parameters are specified, each will be changed even if
their address areas overlap.

If data is omitted, then the following message will be output and the
emulator will wait for data input.

Here adrs expresses the address of code memory whose current
contents are to be changed. The old-data will be the current contents. At this
point the operator enters the change data and inputs a carriage return. The
emulator then automatically waits for change data input for the next input.

The CCM command will automatically end when adrs exceeds the
maximum allowable value.

Chapter 3, SID64K Commands

3-22

CCM

CCM

Input Format

Description

LOC = adrs old-data _

When the emulator is waiting for change data to be input, the following
three editing keys are valid.

“∆” Do not change data, and wait for change data to be
input at the next address.

“–” Do not change data, return to the address one previous,
and wait for change data to be input.

“↵ ” Move processing to the address specified by the next
parameter. If there is no parameter, the emulator will
wait for command input.

Refer to each MSM64153 family microcontroller's User's Manual,
regarding address ranges.

Note that the emulator handles the test data area in the program
area (code memory) of the MSM64153 family microcontrollers as an
unusable area.

64153> CCM 40
LOC = 0040 00 -----> 11 New
LOC = 0041 00 -----> 22 New
LOC = 0042 20 -----> 33 New
LOC = 0043 00 -----> 44 New
LOC = 0044 00 -----> 55 New
LOC = 0045 00 ----->
64153> DCM [39 47]

0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC = 0030 90 A0 F0 F0 80 D0 F0 F0 B0 F0 F0 F0 C0 D0 F0 F0
LOC = 0040 11 22 33 44 55 00 00 00 00 00 00 00 00 00 00 20
64153> CCM 100=88 101=77 102=66
64153> DCM [100 10F]

0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC = 0100 88 77 66 D0 00 00 80 D0 00 00 70 30 00 00 F0 00
64153>

3-23

Chapter 3, SID64K Commands

☞ 1

Execution Example

CCM

!

64153> CCM 200

LOC = 0200 00 -----> Not change
LOC = 0201 00 -----> Not change
LOC = 0202 80 -----> -
LOC = 0201 00 -----> 12 New
LOC = 0202 80 -----> -
LOC = 0201 12 -----> 35 New
LOC = 0202 80 -----> Not change
LOC = 0203 00 ----->
64153> DCM [200 204]

0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC = 0200 00 35 80 00 00 00 80 80 00 00 80 80 00 00 80 80
64153> CCM *
64153> DCM [0B00 0B0F]

0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC = 0B00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
64153> CCM 200
LOC = 0200 00 -----> Not change
LOC = 0201 00 -----> Not change
LOC = 0202 00 -----> -
LOC = 0201 00 -----> 12 New
LOC = 0202 00 -----> -
LOC = 0201 12 -----> 35 New
LOC = 0202 00 -----> Not change
LOC = 0203 00 ----->
64153>

Chapter 3, SID64K Commands

3-24

Execution Example

CCM

3.1.1.2.2 Expanding the Memory Area

EXPAND [∆ mnemonic] ↵

The EXPAND command changes the area of the EASE64158 code
memory, attribute memory, and instruction executed bit memory, regardless of
chip mode.

One of the following is entered for mnemonic.

ON : Set the memory area 32K bytes (☞1).
OFF : Set the memory area to the maximum address of the

appropriate MSM64153 family microcontroller (☞2).

The EASE64158 code memory, attribute memory, and instruction
executed bit memory areas are set to the maximum address of the appropriate
MSM64153 microcontroller during initialization.

If mnemonic is omitted, then the current setting will be displayed.

After this command is input, the EASE64158 resets the evaluation chip
and clears to “0” all areas of code memory, attribute memory, and instruction
executed bit memory.

By changing the memory area to 32K bytes, each memory address
will be 0–7FFFH. Table 3-5 shows the relevant commands.

Refer to the appropriate user’s manual for the maximum address of
the MSM64153 family microcontroller.

When the setting is changed by the EXPAND command, the
evaluation chip is reset.

3-25

Chapter 3, SID64K Commands

EXPAND

EXPAND

Input Format

Description

☞ 1

☞ 2

!

When EXPAND mode is ON (memory expansion), the prompt is changed to the chip name
appended by ‘S.’

Example: 64153> 64153S>

Table 3-5. Commands That Change Input Parameter Maximum Addresses

64153> EXPAND
OFF MODE

64153> EXPAND ON
CODE Memory has been expanded 32K byte.
***** EVA CHIP RESET *****

Chapter 3, SID64K Commands

3-26

EXPAND

!

Command Group Name

Command Names

Maximum
Address

Code Memory Commands

DCM, CCM, MCM, LOD, SAV, VER, ASM, DASM
7FFFH

Emulation Commands

STP, G
7FFFH

Break Commands

DBP, CBP
7FFFH

Trace Commands

STT, DTR, CTR
7FFFH

Performance / Coverage Commands

SCT, DIE, CIE, CAP
7FFFH

EPROM Programmer Commands

PPR, TPR, VPR
7FFFH

Execution Example

3.1.1.2.3 Moving Code Memory

MCM ∆ [address ∆ address] ∆ address ↵

The MCM command moves the contents of code memory in the
specified range to follow the specified the address.

Each address is an expression that evaluates within code memory’s
maximum address range. It indicates an address of code memory.

[address ∆ address] indicates the area of code memory to be moved.
The final address parameter indicates the starting address for the move.

64153S> CCM [103 10A]=55
64153S> DCM [100 12F]

0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC = 0100 00 00 00 55 55 55 55 55 55 55 55 00 00 00 00 00
LOC = 0110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
LOC = 0120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
64153S> MCM [100 10F] 120

Code Memory Copy End.
Last Code Memory Address = 010F

64153S> DCM [100 12F]

0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC = 0100 00 00 00 55 55 55 55 55 55 55 55 00 00 00 00 00
LOC = 0110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
LOC = 0120 00 00 00 55 55 55 55 55 55 55 55 00 00 00 00 00
64153S>

If the data specified by [address ∆ address] cannot be completely stored at the move

destination address, then as much data as can be stored will be moved.

3-27

Chapter 3, SID64K Commands

MCM

MCM

Input Format

Description

Execution Example

!

3.1.1.2.4 Load/Save/Verify

LOD ∆ fname [∆ option ∆ option] ↵

fname : [Pathname] Filename [Extension]
option : /S

: /N
: /B

The LOD command loads the code information contents in an object file
that has been output by ASM64K (extension of “.HEX”) into code memory.
Depending on the specified options, symbol information in the object may be
loaded into the SID64K internal symbol table.

If the extension is omitted, then a “.HEX” file will be taken as the default.

The input filename can have a path specification. If the path is omitted,
then the file in the current directory will be loaded. If the extension is omitted,
then the default extension will be appended to the file.

To load a file that has no extension, append a ‘.’ after the filename.

When the LOD command terminates, the following message will be
output, and the emulator will wait for input (☞1).

Chapter 3, SID64K Commands

3-28

LOD

LOD

Input Format

Description

Load Completed Address [X X X X – X X X X]

Minimum Maximum
value of value of
load load
addresses addresses

The file name and format to be loaded will depend on the presence of
options, as shown below.

When the /S option is input, the emulator will ask whether or not
to clear the symbol table, as shown below.

Symbol table clear (Y/N)

The operator inputs Y or N.

Y Load symbols after clearing previously user-defined symbols.

N Load symbols without clearing previously user-defined symbols.

An object file output by the ASM64K cross-assembler includes code
information translated from OLMS-64K instruction mnemonics and
assembler directives in a source program file, as well as symbols
defined in the source program file. The symbol information is
generated by appending the “/S” option when assembling.

When SID64K loads an object file and the “/S” option is specified,
first the symbol information is registered in the SID64K internal
symbol table. Next the code information is loaded into EASE64158
code memory.

If there is an error in the loaded symbol information, then only the
symbols in error will not be registered in the table. If there is an
error in the loaded code information, then loading will be forcibly
terminated. The contents loaded into the EASE64158 before
termination cannot be guaranteed, so a new object file must be
created and loaded again. For the various error messages output
when loading does not complete normally, refer to Appendix 12,
“Error Messages.”

3-29

Chapter 3, SID64K Commands

LOD

No options specified:

File format Object file output by ASM64K

Code information : Loaded

Default extension : fname.HEX

Symbol information : Not loaded

/S option : Load symbol information.

/N option : Do not load code information

/B option : Set to 0 all breakpoint bits at addresses

that are the same as the downloaded code

memory addresses. (☞ 2)

☞ 1

Program runaway can be checked by presetting all breakpoint bits to "1" and then appending
the "/B" option when loading.

During emulation execution, a breakpoint bit break will be generated if the code memory areas
corresponding to the cross-hatched areas of breakpoint bit memory are executed. Breakpoint bit
breaks need to be enabled withe the SBC command for this to occur.

Chapter 3, SID64K Commands

3-30

LOD

☞ 2

User Program

0BFFH

0H

Load with “/B” option

Code Memory Breakpoint Bit
Memory

Breakpoint
bits changed
to “0” by the
“/B” option

Breakpoint bits
set to “1”

64153S> LOD INT2
HEX File Loading...
Load Completed address [002C - 0288]

64153S> DASM 100H

LOC=0100 90 LAI 0H
LOC=0101 50 3E LHLI IRQ2 ;3EH
LOC=0103 6F LMA
LOC=0104 50 3F LHLI IRQ3 ;3FH
LOC=0106 6F LMA
LOC=0107 50 7C LHLI MIEF ;7CH
LOC=0109 6F LMA
LOC=010A 50 0E LHLI P6CON ;EH
LOC=010C 91 LAI 1H
LOC=010D 6F LMA
LOC=010E 50 0A LHLI P21E ;AH
LOC=0110 93 LAI P3 ;3H
LOC=0111 6F LMA
LOC=0112 50 39 LHLI IE1 ;39H
LOC=0114 90 LAI 0H

64153S> CBP [100 110] =1
64153S> LOD INT2 /B

HEX File Loading...
Load Completed address [002C - 0288]
Break Point Bit Cleared

64153S> DBP [100 110]

0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC = 0100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

64153S>

3-31

Chapter 3, SID64K Commands

LOD

Execution Example

SAV ∆ fname [[address ∆ address]] [∆ option ∆ option] ↵

fname : [Pathname] Filename [Extension]

option : /S

: /N

The SAV command saves the contents of the specified range of code
memory to a disk file. The input filename can have a path specification. If the
path is omitted, then a file in the current directory will be saved. If the extension
is omitted, then the default extension (HEX) will be appended to the file. To load
a file that has no extension, append a ‘.’ after the filename.

[address ∆ address] indicates the area of code memory to be moved. If
omitted, then the contents of the same address range of the file most recently
loaded with the LOD command will be saved (☞1).

The file name and format to be saved will depend on the presence of
options, as shown below.

Chapter 3, SID64K Commands

3-32

SAV

SAV

Input Format

Description

No options specified:

File format Object file output by ASM64K

Code information : Saved

Default extension : fname.HEX

Symbol information : Not saved

/S option : Save symbol information.

/N option : Do not load code information

If the input file already exists, then the emulator will output the following
message and wait for input.

File exists: delete (Y/N)

The operator inputs Y or N.

Y : File is modified.
N : File is not modified (save is not performed).

The format of the file saved is the same as object files output by
ASM64K.

Saves are performed from low address to high address. To forcibly terminate a
save, press the ESC key. By doing so, the file will not be updated. When saving
symbol information, the save cannot be forcibly terminated.

If the specified file already exists and is write-protected, then the save will be
forcibly terminated. In such cases the file will not be updated.

64153S> LOD INT2
HEX File Loading...
Load Completed address [002C - 0288]

64153S> SAV TMP [0 300]
File exist: delete (Y/N)SAV TMP [0 300] /S
HEX File Saving...
Save Completed address [0000 - 0300]

3-33

Chapter 3, SID64K Commands

☞ 1

Execution Example

SAV

VER ∆ fname [[address ∆ address]] ↵

fname : [Pathname] Filename [Extension]

The VER command compares the contents of the specified disk file with
the contents of code memory. When a difference is found, the address and the
contents of the disk file and of code memory will be displayed as shown below.
Symbol information is not compared.

The input filename can have a path specification. If the path is omitted,
then a file in the current directory will be verified. If the extension is omitted, then
the default extension (HEX) will be appended to the file. To load a file that has
no extension, append a ‘.’ after the filename (☞1).

[address_address] indicates the area of the disk file and of code memory
to be verified. If omitted, then all addresses in the disk file will be compared.

Chapter 3, SID64K Commands

3-34

VER

VER

Input Format

Description

LOC = X X X X DISK [X X X X] CM [X X X X]

Address Disk File Code Memory
contents contents

Comparison between the disk file and code memory will be performed on the overlapping
areas between the data that exists in the disk file and the [address_address] address range
specified with with VER command. Comparison is performed from low address to high
address.

3-35

Chapter 3, SID64K Commands

VER

☞ 1

0H

07FFFH

Existing
Areas

Existing
Areas

Code Memory
Area

Areas in
File

Input Address
Range

Compared
Areas

Address
Range

Compared
Areas

Compared
Areas

64153S> LOD INT1
HEX File Loading...
Load Completed address [002C - 0288]

64153S> SAV TMP
File exist: delete (Y/N)Y
HEX File Saving...
Save Completed address[002C - 0288]

64153S> CCM 100
LOC = 0100 90 -----> VER TMP
** Error 102: Illegal data input.
LOC = 0100 90 ----->

64153S>

Chapter 3, SID64K Commands

3-36

Execution Example

VER

3.1.1.2.5 Assemble/Disassemble Commands

ASM ∆ exp ↵

exp : address

line Segment Location Source Statement
1 Code adrs SOURCE STATEMENT

; comment line (☞1)
label : [OLMS-64K series mnemonic]
OLMS-64K series mnemonic
assembler directive (refer to description below)

The ASM command converts OLMS-64K series instruction statements
input from the console (directives, mnemonics, and operands) into object code
using a 2-pass assembler based on ASM64K, and then stores that object code in
code memory.

The address is an expression that evaluates within code memory’s
maximum address range. It indicates an address of code memory (☞2).

When a carriage return is input, the emulator displays the following
message and waits for input from the console.

line Segment Location Source Statement
1 Code adrs

At this point the operator can input code that follows the format below.

(1) The maximum number of characters that can be input on one
line is 56.

(2) The ASM command terminates with an “END.” When “END” is
input, assembly is performed and the resulting object code is
stored in the program memory area.

3-37

Chapter 3, SID64K Commands

ASM

ASM

Input Format

SOURCE STATEMENT =

Description

(3) The maximum number of lines that can be input is 100. When input of
the 100th line ends, an “END” will be added automatically, performing
assembly and storing the object code in code memory. To input more
than 100 lines, use the ASM command more than once.

(4) Spaces or tabs can be used as delimiters.
(5) All OLMS-64K series mnemonics and operands can be used.
(6) Symbols can be used in operands and labels (for details, refer to

Chapter 5, “Assemble Command”).
(7) Operators can be coded in operands (for details, refer to Chapter 5,

“Assemble Command”).
(8) Character constants (such as ‘A’) and string constants (such as “ABC”)

can be coded in operands.
(9) A semicolon “;” is used to code a comment.
(10) The default radix for immediate values used in operands is 10 (decimal

values). To use a radix other than 10, input as shown in the following
table.

Append a '0' before a hexadecimal number which begins with a letter (A—F).

Chapter 3, SID64K Commands

3-38

ASM

Radix Syntax Examples

Binary (radix 2)
Append a 'B' after the number. 01010101B

0101_0101B

Octal (radix 8)
Append an 'O' or 'Q' after the

number.
777O, 777Q

Decimal (radix 10)
Append a 'D' or nothing after

the number.
10D, 10

Hexadecimal (radix 16)
Append a 'H' after the number.

0ABCDH

(11) The following assembler directives can be used (for details, refer to
Chapter 5, “Assemble Command”).

(12) The history function can be used. The ASM command has a 20-line
buffer, separate from the debugger’s history buffer, for use as an
assembler-only history function. This buffer’s constants are preserved
even after the ASM command terminates, so when the ASM command
is started again, the previously input 20 lines can easily be brought up for
editing by using the arrow keys. For details on using the history
function, refer to Section 2.3.3, “History Function.”

Comments input with the ASM command cannot be displayed with
the DASM command.

Refer to each MSM64153 family microcontroller's User's Manual,
regarding the range of input addresses.

The ASM64K cross-assembler allows B (branch instruction) as an
assembler directive, but the ASM command does not support this.

Operators can be coded as an operand. Note that the result of
division by zero and modulo operation will be handles as '0.'

3-39

Chapter 3, SID64K Commands

☞ 1

☞ 2

!

Directive Type Directives Allowed

Symbol definition EQU, SET, DATA, CODE

Memory segment control CSEG, DSEG

Location counter control ORG, DS, NSE

Data definition DB, DW

ASM

!

64153S> ASM 0
line Segment Location Source Statement

1 Code 0000 lai 0
2 Code 0001 lba
3 Code 0003 lhi 0
4 Code 0005 lli 0
5 Code 0006 lxi 0
6 Code 0008 lyi 0
7 Code 000A lai 5
8 Code 000B lba
9 Code 000D lhi 5
10 Code 000F lli 5
11 Code 0010 lxi 5
12 Code 0012 lyi 5
13 Code 0014 lhli 23
14 Code 0016 lxyi 45
15 Code 0018 lam
16 Code 0019 jp 33h
17 Code 001B org 33h
18 Code 0033 nop
19 Code 0034 ;----- TEST -----
20 Code 0034 smbd 0eh,0
21 Code 0036 lhli 6h
22 Code 0038 lai 0ah
23 Code 0039 lma
24 Code 003A jp 0
25 Code 003C nop
26 Code 003D nop
27 Code 003E end

Chapter 3, SID64K Commands

3-40

Execution Example

ASM

DASM [∆ exp] ↵

exp : [address] [∆ option ∆ option]
: [[address ∆ address]] [∆ option ∆ option]

option : /NC
: /NL

The DASM command disassembles the contents of code memory and
displays the results on the console.

The address is an expression that evaluates within code memory’s
maximum address range. It indicates an address of code memory (☞1).

Note that if disassembly is set to begin on the second or third byte of a 2-
byte or 3-byte instruction, then disassembly might not be performed correctly. If
disassembly is set to end on the first byte of a 2-byte instruction, or the first or
second byte of a 3-byte instruction, then disassembly will be forcibly performed
to the end of that instruction.

The output to the console corresponds to the input parameters as
explained below.

(1) No options specified

1. Address specification is omitted

Disassembles and displays the 15 lines following the last address
disassembled by the previous DASM command. After the debugger is
initialized, or after the emulator’s reset switch is pressed, the 15 lines
from address 0 will be displayed when this command is first input. If an
address exceeds the maximum address of the appropriate MSM64153
family microcontroller, then disassembly will return to address 0.

2. An address is input

Disassembles and displays the 15 lines following the specified address.
If an address exceeds the maximum address of the appropriate
MSM64153 family microcontroller, then disassembly will return to
address 0.

3. An [address_address] is input

Disassembles and displays from the first address to the second address.

3-41

Chapter 3, SID64K Commands

DASM

DASM

Input Format

Description

(2) Options are specified

Specification of options can add the following functions to the input
methods of (1) above.

1. /NC option

By specifying this option, object code will not be displayed.

2. /NL option

By specifying this option, addresses (LOC=xxxx) will not be displayed.

Example use of options:

Use the LIST command to send console output to a file,
executed the DASM command with the /NL and /NC options
appended, and then close the file with the NLST command. By
editing this file with an editor, one can easily create a source file.

• Labels and statements cannot be displayed on the same line.

Example:

64153> DASM [LOOP LOOP+3] /NC /NL
LOOP: ——— Label displayed on one line

LAI 0
LMAD 0C
SMBD 7C,0

• Comments coded with the ASM command cannot be output by
the DASM command.

• Only the first 10 characters of symbols longer than 10
characters will be displayed.

• If multiple symbols with identical values exist, then expected
symbols might not be displayed, but there is no problem with
the contents of code memory.

• Symbol information is displayed as comments.

64153> DASM [200 . 205] /NC /NL
LAMD P2 ; 02H
LMA+
LAMD P6D ; 06H
LMA+

Refer to each MSM64153 family microcontroller's User's Manual,
regarding the range of input addresses.

Chapter 3, SID64K Commands

3-42

DASM

!

Symbol information
displayed as comments

☞ 1

64153S> LOD INT2
HEX File Loading...
Load Completed address [002C - 0288]

64153S> DASM 100

LOC=0100 90 LAI 0H
LOC=0101 50 3E LHLI IRQ2 ;3EH
LOC=0103 6F LMA
LOC=0104 50 3F LHLI IRQ3 ;3FH
LOC=0106 6F LMA
LOC=0107 50 7C LHLI MIEF ;7CH
LOC=0109 6F LMA
LOC=010A 50 0E LHLI P6CON ;EH
LOC=010C 91 LAI 1H
LOC=010D 6F LMA
LOC=010E 50 0A LHLI P21E ;AH
LOC=0110 93 LAI P3 ;3H
LOC=0111 6F LMA
LOC=0112 50 39 LHLI IE1 ;39H
LOC=0114 90 LAI 0H

64153S> DASM [103 111]

LOC=0103 6F LMA
LOC=0104 50 3F LHLI IRQ3 ;3FH
LOC=0106 6F LMA
LOC=0107 50 7C LHLI MIEF ;7CH
LOC=0109 6F LMA
LOC=010A 50 0E LHLI P6CON ;EH
LOC=010C 91 LAI 1H
LOC=010D 6F LMA
LOC=010E 50 0A LHLI P21E ;AH
LOC=0110 93 LAI P3 ;3H
LOC=0111 6F LMA

3-43

Chapter 3, SID64K Commands

Execution Example

DASM

64153S> DASM [103 111] /NC

LOC=0103 LMA
LOC=0104 LHLI IRQ3 ;3FH
LOC=0106 LMA
LOC=0107 LHLI MIEF ;7CH
LOC=0109 LMA
LOC=010A LHLI P6CON ;EH
LOC=010C LAI 1H
LOC=010D LMA
LOC=010E LHLI P21E ;AH
LOC=0110 LAI P3 ;3H
LOC=0111 LMA

64153S> DASM [103 111] /NL

6F LMA
50 3F LHLI IRQ3 ;3FH
6F LMA
50 7C LHLI MIEF ;7CH
6F LMA
50 0E LHLI P6CON ;EH
91 LAI 1H
6F LMA
50 0A LHLI P21E ;AH
93 LAI P3 ;3H
6F LMA

Chapter 3, SID64K Commands

3-44

DASM

Execution Example

3-45

Chapter 3, SID64K Commands

3.1.1.3

Data Memory Commands

3.1.1.3.1 Displaying/Changing Data Memory

DDM

3.1.1.3.2 Moving Between Data Memory

CDM

MDM

3.1.1.3.1 Displaying/Changing Data Memory

DDM ∆ parm1 [∆ parm1 ∆ parm1] ↵
DDM ∆ * ↵

parm1 : address
[address ∆ address]

CDM ∆ parm2 [∆ parm2 ∆ parm2] ↵
CDM ∆ * ↵

parm2 : address [= data]
[address ∆ address] = data

The DDM command displays the contents of data memory as specified
by parm1.

The address is an expression that evaluates within data memory’s
maximum address range. It indicates an address of data memory (☞1). An
[address ∆ address] indicates a range between two addresses. A ‘*’ indicates
the entire data memory area. If multiple parameters are input, then
display/change will be performed for each parameter, even if their address areas
overlap.

The CDM command changes the contents of data memory as specified
by parm2.

The address is an expression that evaluates within data memory’s
maximum address range. It indicates an address of data memory (☞1). An
[address ∆ address] indicates a range between two addresses. A ‘*’ indicates
the entire data memory area, excluding the SFR area. If ‘*’ is input and data is
omitted, then the entire area will be set to ‘0.’

The data is an expression that must evaluate in the range 0H to 0FFH. If
data is omitted, then the emulator outputs the following message and waits for
data to be input.

Chapter 3, SID64K Commands

3-46

DDM, CDM

DDM, CDM

Input Format

Description

LOC = address old-data _

Here address expresses the address in data memory that is to have its
current contents changed. The old-data will be the current contents. At this
point the operator enters new data (data) and inputs a carriage return.

When the carriage return is input, processing moves to the next
parameter. If there is no next parameter, then the CDM command terminates.

When the emulator is waiting for input data for a change, the following
three key inputs are valid in addition to data.

∆ ↵ (space followed by carriage return) Move processing to the
next parameter without changing the current data. If there is no
next parameter, then the C command terminates.

- ↵ (minus followed by a carriage return) Move processing to the
previous parameter without changing the current data.

↵ (input carriage return only) The C command terminates.

Refer to each MSM64153 family microcontroller's User's Manual,
regarding the range of input addresses.

When the SFR area is displayed with the DDM command, bits in
each SFR that do not exist will be displayed as “1” data. For
example, after RST E is executed, the Halt Mode Register at
address 7DH will be displayed with the value 0E.

To change data memory at 0H-7DH (the SFR area) with the CDM
command, input one address at a time. The SFR area cannot be
changed if an address range is input. Addresses 7DH cannot be
changed with CDM (HALT mode will be forcibly released when
emulation is not executed), but must be changed as SP with the C
command.

The maximum number of individual addresses that can be input
interactively is 200.

3-47

Chapter 3, SID64K Commands

LOC = address old-data data NEW
LOC = address old-data _ input data for next

parameter

☞ 1

!

!

!

DDM, CDM

64153>
64153> CDM [760 7FF]=0
64153> DDM [760 7FF]

F E D C B A 9 8 7 6 5 4 3 2 1 0

LOC = 0760 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0770 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0780 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0790 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 07A0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 07B0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 07C0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 07D0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F E D C B A 9 8 7 6 5 4 3 2 1 0

LOC = 07E0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 07F0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

64153> CDM [765 789]=5
64153> DDM [760 7FF]

F E D C B A 9 8 7 6 5 4 3 2 1 0

LOC = 0760 5 5 5 5 5 5 5 5 5 5 5 0 0 0 0 0
LOC = 0770 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
LOC = 0780 0 0 0 0 0 0 5 5 5 5 5 5 5 5 5 5
LOC = 0790 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 07A0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 07B0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 07C0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 07D0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F E D C B A 9 8 7 6 5 4 3 2 1 0

LOC = 07E0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 07F0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 3, SID64K Commands

3-48

Execution Example

DDM, CDM

64153> DDM 777
LOC = 0777 5

64153> CDM 780
LOC = 0780 5 -----> 0 New
LOC = 0781 5 -----> 1 New
LOC = 0782 5 -----> 2 New
LOC = 0783 5 -----> 3 New
LOC = 0784 5 -----> 4 New
LOC = 0785 5 -----> 5 New
LOC = 0786 5 -----> Not change
LOC = 0787 5 -----> -
LOC = 0786 5 -----> -
LOC = 0785 5 -----> 7 New
LOC = 0786 5 -----> 6 New
LOC = 0787 5 -----> 5 New
LOC = 0788 5 -----> -
LOC = 0787 5 -----> Not change
LOC = 0788 5 ----->

64153> DDM [780 788]

F E D C B A 9 8 7 6 5 4 3 2 1 0

LOC = 0780 0 0 0 0 0 0 5 5 5 6 7 4 3 2 1 0
64153> CDM 788=9 790=2 7A0=4
64153> CDM 767 782 7AD

LOC = 0767 5 -----> 0 New
LOC = 0768 5 -----> 2 New
LOC = 0769 5 -----> Not change
LOC = 076A 5 -----> 9 New
LOC = 076B 5 -----> 3 New
LOC = 076C 5 -----> Not change
LOC = 076D 5 -----> Not change
LOC = 076E 5 -----> 4 New
LOC = 076F 5 -----> 3 New
LOC = 0770 5 -----> -
LOC = 076F 3 -----> 2 New
LOC = 0770 5 ----->
LOC = 0782 2 ----->
LOC = 07AD 0 ----->

3-49

Chapter 3, SID64K Commands

DDM, CDM

Execution Example

3.1.1.3.2 Moving Between Data Memory

MDM ∆ parm ↵

parm : [address ∆ address] ∆ address

The MDM command moves the contents of data memory specified by
[address_address] (excluding the SFR area) to the area following address
(excluding the SFR area).

Each address is an expression that evaluates within data memory’s
maximum address range. It indicates an address of data memory. However, it
cannot be in the SFR area of data memory (☞1).

Refer to each MSM64153 family microcontroller's User's Manual,
regarding the range of input addresses.

Data cannot be transferred to or from the SFR area.

Chapter 3, SID64K Commands

3-50

MDM

MDM

Input Format

Description

☞ 1

!

!

Inaccessible

Area

An address range that extends
across this inaccessible area
cannot be input.

MSM64153

7FF

760

7F

0

64153> CDM [760 7FF]=0FH
64153> CDM [780 788]=05H
64153> DDM [771 798]

F E D C B A 9 8 7 6 5 4 3 2 1 0

LOC = 0770 F F F F F F F F F F F F F F F F
LOC = 0780 F F F F F F F 5 5 5 5 5 5 5 5 5
LOC = 0790 F F F F F F F F F F F F F F F F

64153> MDM [780 788] 794
Data Memory Copy End.
Last Data Memory Address = 0788

64153> DDM [771 798]

F E D C B A 9 8 7 6 5 4 3 2 1 0

LOC = 0770 F F F F F F F F F F F F F F F F
LOC = 0780 F F F F F F F 5 5 5 5 5 5 5 5 5
LOC = 0790 F F F 5 5 5 5 5 5 5 5 5 F F F F

3-51

Chapter 3, SID64K Commands

Execution Example

MDM

Chapter 3, SID64K Commands

3-52

3-53

Chapter 3, SID64K Commands

3.1.1.4

Emulation Commands

3.1.1.4.1 Step Commands

STP

3.1.1.4.2 Realtime Emulation Commands

3.1.1.4.3 Commands Usable During Emulation

SSF

G

DCT

DTT

D

ESC

3.1.1.4.1 Step Commands

STP [∆ address] [, count] ↵

The STP command executes a user program in code memory one
instruction at a time.

The address is an expression that evaluates within data memory’s
maximum address range. It indicates the first address at which step execution is
to begin (☞1). If address is omitted, then step execution will begin from the
address indicated by the current program counter (PC).

The count is a decimal value from 1 to 65535. It indicates the number of
steps to be executed. If count is omitted, then step execution will be performed
for just one instruction and the command will terminate.

The STP command stops user program execution after each instruction.
At each stop, it displays the address and mnemonic of the executed instruction,
and then displays the states of the registers and ports after execution. The
display format is specified with the SSF command.

The STP command does not display instructions that are skipped with a
skip instruction. When the conditions for skipping an instruction are fulfilled
(accumulate instruction, increment instruction, etc.) then the next instruction is
skipped and one step ends.

The STP command preserves the value of the time-base counters
between each step. Although, operation of timers and counters
that are synchronized to microcontroller internal clocks is
guaranteed, operation synchronized to external clocks is not.

Refer to each MSM64153 family microcontroller's User's Manual,
regarding the range of input addresses.

Chapter 3, SID64K Commands

3-54

STP

STP

Input Format

!

☞ 1

64153> ASM 100
line Segment Location Source Statement

1 Code 0100 start:
2 Code 0100 lbs0i 0
3 Code 0102 smbd 0eh, 0
4 Code 0104 lai 0
5 Code 0105 sub:
6 Code 0105 lba
7 Code 0107 nop
8 Code 0108 loop:
9 Code 0108 ina
10 Code 0109 nop
11 Code 010A jp loop
12 Code 010C end

64153> STP START, 3
LOC=0100 LBS0I 0H

------------------< Registers >------------------
A:0 B:0 H:0 L:0

LOC=0102 SMBD EH, 0H
------------------< Registers >------------------
A:0 B:0 H:0 L:0

LOC=0104 LAI 0H
------------------< Registers >------------------
A:0 B:0 H:0 L:0

64153> STP

LOC=0105 LBA
------------------< Registers >------------------
A:0 B:0 H:0 L:0

3-55

Chapter 3, SID64K Commands

Execution Example

STP

SSF [∆ parm 1..... ∆ parm 1] ↵
SSF ∆ parm 2 ↵

parm1 : [˜] mnemonic1
parm 2 : [˜] mnemonic2

The SSF command determines display format during STP command
execution through each mnemonic. The following can be entered for mnemonic.

mnemonic1:
INS Instruction
INSC Instruction code
SFR-mnemonic Refer to Table 3-2
A A register
B B register
H H register
L L register
X X register
Y Y register
SP Stack pointer
C Carry flag
INT Flag showing interrupt operation (☞2)
SKIP Flag showing skip execution (☞2)

mnemonic2:
RAM ∆ parm [∆ parm ∆ parm]

parm : address , [address ∆ address]
DEF Initial state, showing LOC, INS, A, B, H, L

“RAM” displays the contents of data memory specified by parm. Up
to 10 parms can be input at a time. Each address is an expression that
evaluates within data memory’s maximum address range. It indicates an
address in data memory (☞1).

If a ‘~’ (tilde) is input before mnemonic, then its setting can be
canceled. To cancel the addresses set with RAM, input the same address that
has been set with RAM, or the address range including addresses to be
canceled for mnemonic. If mnemonic is omitted, then the currently set format
will be displayed.

Chapter 3, SID64K Commands

3-56

SSF

SSF

Input Format

Description

~DEF cannot be input.

Refer to each MSM64153 family microcontroller's User's Manual,
regarding the range of input addresses.

Example:

3-57

Chapter 3, SID64K Commands

SSF

!

☞ 1

☞ 2

In this program, if step execution of the
instructions from “LAI 1” until “LMAD 7C” is
performed, then the skipped “LAI 2,” “LAI 3,”
and “LAI 4” will not be displayed during step
execution, and “LMAD 7C” will be displayed
after execution of “LAI 1” just like it has been
executed after "LAI 1."

:
LAI 1
LAI 2
LAI 3
LAI 4
LMAD 7C

:

64153> SSF DEF
64153> STP START,3

LOC=0100 LBS0I 0H
------------------< Registers >------------------
A:0 B:0 H:0 L:0

LOC=0102 SMBD EH, 0H
------------------< Registers >------------------
A:0 B:0 H:0 L:0

LOC=0104 LAI 0H
------------------< Registers >------------------
A:0 B:0 H:0 L:0

64153> SSF X Y C
64153> STP

LOC=0105 LBA
------------------< Registers >------------------
A:0 B:0 H:0 L:0 X:0 Y:0 C:0

64153> SSF ~H ~L
64153> STP

LOC=0107 NOP
------------------< Registers >------------------
A:0 B:0 X:0 Y:0 C:0

Chapter 3, SID64K Commands

3-58

SSF

Execution Example

3.1.1.4.2 Realtime Emulation Commands

G [∆ Emu_start_addr] [, Break_parm] ↵

Emu_start_addr : Start address for realtime emulation

Break_parm : address [∆ address ∆ address]
: [address ∆ address]
: address [count]
: / address / address [/ address]
: mnem [&mask] = data
: mnem [&mask] = data [count]
: mnem [&mask] = data [∆ /address [∆ address]]
: mnem [&mask] = data [count] [∆ /address [∆ address]]
: mnem [&mask] = data [/ [address ∆ address]]
: mnem [&mask] = data [count] [/ [address ∆ address]]

Mnem : PRB (Probe)

: RAM [∆ ram_addr]

The G command performs realtime emulation (continuous execution) of
a user program within code memory.

The Emu_start_addr is an expression that evaluates within code
memory’s maximum address range. It indicates the address at which the user
program is to begin realtime emulation (☞1). If Emu_start_addr is omitted, then
realtime emulation will start as the address indicated by the current program
counter (PC).

There are 10 possible break conditions. The condition that will break
realtime emulation is entered in Break_parm. If Break_parm is omitted, then
realtime emulation will continue to execute until a break on a break condition
(☞2) or a break from an ESC command.

The mnem within Break_parm is entered with a data match break
on the probe pins or a RAM address. These are input as “PRB”
and “RAM ram_addr” respectively (“ram_addr” can be omitted).

To have a break condition based on the result of masking mnem,
enter mnem & mask. The value entered for mask should be 0–0FH
when mnem is “RAM,” and should be 0–0FFH when mnem is
“PRB.” Set mask to 0 to invalidate the corresponding bit, 1 to
validate it (if omitted, the value will be FH or FFH).

Example: If “RAM 100H & 1000B = 0FH” is specified, then a break
will occur when RAM address 100H is 3H, 7H, BH, or FH.

Each address is an expression that evaluates within code memory’s
maximum address range. However, be sure to input the address of
the first byte of an instruction in the code memory area. No break
will occur if any other addresses are entered.

3-59

Chapter 3, SID64K Commands

G

G

Input Format

Description

!

!

!

If a start address for realtime emulation is input, then the trace
pointer will be cleared. If a start address is not input, then the trace
pointer will increment from its previous value.

When the URST command is set ON, reset input from the user
cable’s USER•RESET pin is permitted. However, this reset input is
only allowed during realtime emulation from the G command.

If a break condition is satisfied during a skip, then the break will be
held off until after the skip ends. In this case, the break condition
will be "No Breakstatus."

Example:

If a break condition is satisfied during an interrupt transferring cycle,
then the break will occur under "No Breakstatus."

If a break condition is satisfied when an interrupt is generated, then
the break will be held off until after the interrupt operation ends. In
this case, the break status will be "No Breakstatus."

The values of time-base counters will be preserved after a break
occurs until execution is started again. Although, operation of
timers and counters that are synchronized to microcontroller internal
clocks is guaranteed, operation synchronized to external clocks is
not.

Refer to each MSM64153 family microcontroller's User's Manual
regarding the range of input addresses.

Refer to Section 3-1-1-5, “Break Commands,” regarding break
conditions.

Chapter 3, SID64K Commands

3-60

!

!

!

!

!

In this program, if a breakpoint bit break is
set at the location of the “LAI 3” instruction,
and continuous execution is started from
the “LAI 1” instruction, then the break will
not occur at the “LAI 3” instruction, which
comes during the skip, but instead will
occur just before the “LMAD 7C”
instruction.

:
LAI 1
LAI 2
LAI 3
LAI 4
LMAD 7C

:

☞ 1

☞ 2

G

!

Description of Break_parm

(1) Address break (specified as individual addresses)

A break will occur when an instruction at any of the addresses specified by address is executed.
A maximum of 20 addresses can be entered at one time.

(2) Address break (specified as a range)

A break will occur when an instruction at any address within the specified range is executed.

(3) Address pass count break

A break will occur when the instruction at the address specified by address is executed count
times. The count is a decimal value 1–65535.

(4) Address pass break

When execution proceeds in the sequence of each slash-delimited (/) address from the left, then
a break will occur after the instruction at the last specified address is executed.

(5) Data match break

A break will occur when the value of data matches the contents of mnem, or the contents of
mnem masked.

(6) Data match break with count

A break will occur when the value of data matches the contents of mnem, or the contents of
mnem masked, for the number of times specified by count. The count is a decimal value
1–65535.

3-61

Chapter 3, SID64K Commands

G

address [∆ address ∆ address]

[address ∆ address]

address [count]

/ address / address [/ address]

mnem [&mask] = data

mnem [&mask] = data [count]

(7) Data match break at address

A break will occur when both the value of data matches the contents of mnem, or the contents of
mnem masked, and the PC is at a specified address. A maximum of 20 addresses can be
entered at one time.

(8) Data match break at address with count.

A break will occur when both the value of data matches the contents of mnem, or the contents of
mnem masked, and the PC is at a specified address, for the number of times specified by count.
A maximum of 20 addresses can be entered at one time. The count is a decimal value 1–65535.

When the data match break at address with count is executed under the following condition,
the break will occur at a different number of times that is specified by count.

64153 > ASM0
1 Code 0000 LBS01 7
2 Code 0002 LHLI 60
3 Code 0004 LMA
4 Code 0005 LMA
5 Code 0006 LMA
6 Code 0007 END

64153 >

(9) Data match break in address range

A break will occur when both the value of data matches the contents of mnem, or the contents of
mnem masked, and the PC is in the specified address range.

(10) Data match break in address range with count

A break will occur when both the value of data matches the contents of mnem, or the contents of
mnem masked, and the PC is in the specified address range, for the number of times specified
by count. The count is a decimal value 1–65535.

Chapter 3, SID64K Commands

3-62

G

mnem [&mask] = data [∆ address [∆ / address •••]]

mnem [&mask] = data [count] [∆ / address [∆ address •••]]

mnem [&mask] = data [/ [address , address]]

mnem [&mask] = data [count] [/ [address , address]]

!
For example as shown at the left, when writing
instruction into data memory (LMA) is repeated, and if
address is set to 5 or 6, then the break will occur at a
different number of times specified by count.

If the trace trigger has been set (STT command) to trace after data match (AD) or trace
before data match (BD), and the G command break condition is set to a PRB or RAM data
match break, then the the trace trigger condition will be changed to free-run trace (ALL). In
other words, the trace trigger condition will not be effective, while the break condition will be
effective. Afterwards the trace trigger condition will remain as free-run trace (ALL) until it is
set again with the STT command.

The timing of data match breaks using RAM addresses is such that a break will occur after
execution of the next instruction following the instruction that satisfied the break condition.

When realtime emulation is started, the message “***** Emulation Go *****” will be displayed, and
the prompt will change as follows.

When a break on some condition occurs during continuous execution, the following type of
message will be displayed.

The Break Status is one of the break conditions.

DBS command

The Break-address is the address of the user program where the realtime emulation break
occurred. The Next-address is the first address of the instruction that is to be executed after the Break-
address. The Trace-Pointer is the trace pointer value at the point the break occurred.

The Break-address and Next-address are an hexadecimal data that evaluate within code
memory’s maximum address range. The Trace-Pointer is decimal data.

3-63

Chapter 3, SID64K Commands

G

!

!

Go>>

***** Break Status *****

Break PC = [Break-address], Next PC = [Next-address], TP = [Trace-Pointer]

SEE

64153> LOD INT1
HEX File Loading...
Load Completed address [002C - 0288]

64153> G 100,114
Reset Trace Pointer

***** Emulation Go *****
GO >>

***** Address Break *****
Break PC =[0114], Next PC =[0115], TP =[0015]

64153> G , 120

***** Emulation Go *****
GO >>

***** Address Break *****
Break PC =[0120], Next PC =[0121], TP =[0024]

64153> G 100,126[3]
Reset Trace Pointer

***** Emulation Go *****
GO >>

***** Address Pass Count Break *****
Break PC =[0126], Next PC =[003B], TP =[0082]

64153> G 100,/106/114/126
Reset Trace Pointer

***** Emulation Go *****
GO >>

***** Address Pass Break *****
Break PC =[0126], Next PC =[00FF], TP =[0029]

64153> G 100,[114 126]
Reset Trace Pointer

***** Emulation Go *****
GO >>

***** Address Break *****
Break PC =[0114], Next PC =[0115], TP =[0015]

64153> G 100,109 107 10C 111
Reset Trace Pointer

***** Emulation Go *****
Go>>

***** Address Break *****
Break PC =[0107], Next PC =[0109], TP =[0006]

Chapter 3, SID64K Commands

3-64

G

Execution Example

3.1.1.4.3 Commands Usable During Emulation

ESC ↵

The ESC command forcibly breaks realtime emulation. During realtime
emulation the following prompt is displayed.

Go>>

If the ESC command is input while this prompt is displayed, then the
following message will be output and realtime emulation will break.

Go>>

***** ESC Break *****

Break PC = [Break-address], Next PC = [Next-address], TP = [Trace-
Pointer]

The Break-address is the address of the user program where the
realtime emulation break occurred. The Next-address is the first address of the
instruction that is to be executed after the Break-address. The Trace-Pointer is
the trace pointer value at the point the break occurred.

The Break-address and Next-address are an hexadecimal data that
evaluate within code memory’s maximum address range. The Trace-Pointer is
decimal data.

64153> RST E

***** EVA CHIP RESET *****

64153> G 100
Reset Trace Pointer

***** Emulation Go *****
Go >> ESC

Go >>

***** ESC Break *****
Break PC =[0245], Next PC =[0247], TP =[5005]

3-65

Chapter 3, SID64K Commands

ESC

ESC

Input Format

Description

Execution Example

DCT ↵

The EASE64158 can display the contents of its cycle counter trigger (start/stop
addresses) during realtime emulation. For details on the DCT command, refer to
“Execution Time Rules” of Section 3.1.1.8.1.

Refer to Section 3.1.1.8.1, “DCT command.”

Chapter 3, SID64K Commands

3-66

DCT

DCT

Input Format

Description

Execution Example

DTT ↵

The EASE64158 can display the contents of its trace trigger setting during
realtime emulation. For details on the DTT command, refer to
“Setting/Displaying the Trace Trigger” of Section 3.1.1.6.3.

Refer to Section 3.1.1.6.3, “DTT command.”

3-67

Chapter 3, SID64K Commands

DTT

DTT

Input Format

Description

Execution Example

D [∆ mnemonic ∆ mnemonic]

mnemonic : A, B, X,Y, H, L, PC, BSR0, BSR1, BCF, BEF, C

The EASE64158 can display the contents of the registers specified by mnemonic
during realtime emulation. However, the XY or HL register must be set with the
CTO command.

Refer to Section 3.1.1.1.1, “D command.”

Chapter 3, SID64K Commands

3-68

D

D

Input Format

Description

Execution Example

3-69

Chapter 3, SID64K Commands

3.1.1.5

Break Commands

3.1.1.5.1 Setting Break Conditions

SBC

DBC

3.1.1.5.3 Displaying Break Results

DBP

CBP

DBS

3.1.1.5.2 Setting Breaks on Executed Addresses

3.1.1.5.1 Setting Break Conditions

SBC [∆ parm ∆ parm] ↵

DBC ↵

parm : [~] mnemonic

The SBC command sets the break conditions specified by mnemonic.
These are separate from the break conditions specified by G command
parameters.

If a mnemonic is prefixed by a ‘~’ (tilde), then its setting will be cancelled.

One of the following can be entered for mnemonic.

BP Breakpoint bit break
CC Cycle counter overflow break
TF Trace full break
AP Address pass count overflow break
PD Power down break
XP External probe break

If parm is omitted, then the emulator will enter interactive input mode for
each break condition.

Here mnemonic indicates one of the above break conditions. The
operator then sets or cancels each break condition by inputting at the
underscore.

Chapter 3, SID64K Commands

3-70

SBC, DBC

SBC, DBC

Input Format

Description

mnemonic Condition SET? (Y/N) Y
mnemonic Condition SET? (Y/N) Input for next parameter

mnemonic Condition SET? (Y/N) _

The following four key inputs are valid while the emulator is waiting for input.

Y ↵ Sets the break condition indicated by
mnemonic.

N ↵ Cancels the break condition indicated by
mnemonic.

∆ ↵ (space followed by carriage return) Without changing data, moves to process next
mnemonic. If there is no next mnemonic, then
the SBC command terminates.

↵ (carriage return only) Terminates the SBC command.

The DBC command displays the currently set break conditions.

The mnemonic indicates the set break condition.

3-71

Chapter 3, SID64K Commands

SBC, DBC

Break Condition mnemonic

64153> SBC
BP Condition SET? (Y/N) Not change
CC Condition SET? (Y/N) Not change
TF Condition SET? (Y/N) Y
AP Condition SET? (Y/N) N
PD Condition SET? (Y/N) Y
XP Condition SET? (Y/N) N

64153> DBC
Break Condition -----> TF PD

64153> SBC ~TF ~PD
64153> DBC

Break Condition -----> Not instituted
64153>

Chapter 3, SID64K Commands

3-72

Execution Example

SBC, DBC

3.1.1.5.2 Setting Breaks on Executed Addresses

DBP ∆ parm1 [∆ parm1 ∆ parm1] ↵
DBP ∆ * ↵

parm1 : address
: [address ∆ address]

CBP ∆ parm2 [∆ parm2 ∆ parm2] ↵
CBP ∆ * [= data] ↵

parm2 : address = data
: [address ∆ address] = data

data : 0,1

The DBP command displays the contents of the breakpoint bits (☞1).

Each address is an expression that evaluates within code memory’s
maximum address range. It indicates an address of breakpoint bit memory
(☞2).

Display contents are one of the following, depending on input format.

address Displays the contents on one address.
[address ∆ address] Displays the range enclosed in [].
* Displays the entire area of breakpoint bit

memory.

When multiple parameters are specified, each will be displayed even if
their address areas overlap.

Each address with its breakpoint bit set to “1” will have its breakpoint bit
break enabled. Each one set to “0” will have its breakpoint bit break disabled.

3-73

Chapter 3, SID64K Commands

DBP , CBP

DBP, CBP

Input Format

Description

The CBP command changes the contents of breakpoint bit memory.

The address is an expression that evaluates within code memory’s maximum address range. It
indicates an address of breakpoint bit memory (☞2).

The data is a value of “0” or “1,” indicating the changed breakpoint bit value. Contents are
changed in the order of the input parameters. If ‘*’ is input and data is omitted, then the entire area will be
set to ‘0.’

The area changed is one of the following, depending on input format.

address Changes the contents on one address.
[address ∆ address] Changes the range enclosed in [].
* Changes the entire area of breakpoint bit memory.

When multiple parameters are specified, each will be changed even if their address areas
overlap.

Breakpoint bits correspond one-for-one with addresses in code memory. They are used to
cause breaks at specified locations in a user program when executed with the G command.

A breakpoint bit break is enabled when the breakpoint bit is “1.” However, the only
breakpoint bits that can generate breaks are those corresponding to the address of the first
byte of an instruction code in the user program.

Breakpoint bits are enabled as realtime emulation break conditions only when set as a break
condition with BP.

When an object file is loaded by the LOD command with /B option, the breakpoint bits
corresponding to the loaded addresses will all be set to “0.”

Refer to each MSM64153 family microcontroller's User's Manual, regarding address ranges.

Chapter 3, SID64K Commands

3-74

☞ 1

☞ 2

DBP , CBP

64153> DBP [100 190]

0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC = 0100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0160 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0170 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC = 0180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0190 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

64153> DBP 300
LOC = 0300 0

64153> DBP 120 203 340 450 678 924
LOC = 0120 0
LOC = 0203 0
LOC = 0340 0
LOC = 0450 0
LOC = 0678 0
LOC = 0924 0

3-75

Chapter 3, SID64K Commands

DBP , CBP

Execution Example

64153> CBP [23 45]=1
64153> DBP [20 60]

0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC = 0020 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
LOC = 0030 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LOC = 0040 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
LOC = 0050 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0060 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

64153> CBP 53=1 57=1 5A=1 5D=1 60=1 62=1 66=1 6F=1
64153> DBP [20 56]

0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC = 0020 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
LOC = 0030 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LOC = 0040 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
LOC = 0050 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0

64153> CBP *

Chapter 3, SID64K Commands

3-76

DBP , CBP

Execution Example

3-77

Chapter 3, SID64K Commands

3.1.1.5.3 Displaying Break Results

DBS ↵

The DBS command displays the break conditions from realtime emulation in the
following format.

One of the following break conditions is entered for Break-Condition.

Address Break Break on a G command break address.

Breakpoint Break Break on a breakpoint bit.

Address Pass Break Break on the parameters from the G command.

(Address Pass Break)

Address Pass Count Break Break on the parameters from the G command.

(Address Pass Count Break)

RAM Data Match Break Break on the parameters from the G command.

(Data Match Break, ☞1)

Probe Data Match Break Break on the parameters from the G command.

(Data Match Break)

Cycle Counter Overflow Break Break on cycle counter overflow.

Trace Full Break Break on trace pointer overflow.

Step Break Break on step execution.

ESC Break Break on an ESC command.
Address Pass Counter Overflow Break Break on address pass counter overflow.
Power down break Break when the MSM64E153 evaluation chip enters

halt mode.
External Break Break on an external break signal (☞2).
RAM Address Break Break on access to non-existent RAM.
N Area Break Break on execution of non-existent code memory area.
NO Break Status Indicates no break conditions.

The timing of a RAM Data Match Break is such that the break will occur after
execution of the next instruction following the instruction that satisfied the break
condition.

A break will occur when the input signal on the probe cable’s external break pin
transitions from “L” to “H."

The break status will be "No Breakstatus" when the emulator is turned on.

DBS

Input Format

Description

STATUS = Break-Condition

☞ 1

☞ 2

DBS

!

Chapter 3, SID64K Commands

3-78

64153> CBP 3FH=1
64153> G 0,55

Reset Trace Pointer

***** Emulation Go *****
GO >>

***** Address Break *****
Break PC =[0055], Next PC =[0056], TP=[0086]

64153> DBS

***** Address Break *****
64153> CBP [0 0BFFH]=0

** Error 103: Input data out of range.
64153> G 0,55

Reset Trace Pointer

***** Emulation Go *****
GO >>

***** Address Break *****
Break PC =[0055], Next PC =[0056], TP=[0086]

64153> DBS

***** Address Break *****

DBS

Execution Example

3-79

Chapter 3, SID64K Commands

3.1.1.6

Trace Commands

3.1.1.6.1 Displaying Trace Memory

DTM

STF

3.1.1.6.2 Displaying/Changing Trace Contents

3.1.1.6.3 Setting/Displaying Trace Triggers

3.1.1.6.4 Displaying/Changing Trace Enable Bits

3.1.1.6.5 Displaying/Changing the Trace Pointer

CTO

DTO

DTR

CTR

STT

DTT

DTP

RTP

S

3.1.1.6.6 Searching Trace Memory

3.1.1.6.1 Displaying Trace Memory

DTM ∆ parm ↵

parm : - number-step ∆ numberstep
: numberTp ∆ numberstep
: *

The DTM command displays the contents of trace memory as specified
by parm. Trace memory is an 8192 x 64-bit RAM area (☞1).

The number-step indicates a number of steps back from the current trace

pointer value (called TP below). The numberstep indicates the number of steps

to display as a decimal number 1–8192. The numberTp indicates the TP value at

which to start the trace display as a decimal number 0–8191 (☞2). The *
indicates that the contents of TP to TP-1 should be displayed if the trace pointer
has overflowed, or the contents of 0 to TP-1 should be displayed if it has not.

Trace memory stores various information from realtime emulation. An
operator can debug more efficiently by viewing this information.

As shown below, trace memory is configured as a ring, so during
realtime emulation trace memory will be overwritten in order from the oldest
contents first.

Figure 3-1. Trace Pointer Example

Chapter 3, SID64K Commands

3-80

DTM

DTM

Input Format

Description

8191
0
1
2 TP

Trace Memory

Direction of
Trace Pointer

The following examples show the difference between input of -number-step
numberstep and numberTp numberstep. Assume that the current TP is 50.

DTM -30 10

DTM 30 10

3-81

Chapter 3, SID64K Commands

DTM

Example

Example

0

20

30

50 (current TP)

Trace Memory

Displayed Area 10

30

0

30

40

50 (current TP)

Trace Memory

Displayed Area 10

Input TP

After the parameters are correctly input and a carriage return is pressed,
a header in the format below will be displayed, followed by the trace memory
contents for each trace pointer value.

LOC MNEMONIC SP P2 P6D A B H L TP

The header is displayed every 8 steps. Trace data is shown as numbers
only where it changes. It is displayed as '.' where it has not changed from the
previous step. However, the trace data immediately after a header is always
displayed as numbers.

The above header is the initial display state.

The trace contents displayed and the corresponding headers are shown
below.

LOC Program counter
Code Executed instruction code
MNEMONIC Executed instruction (☞ 3)
RAM Data memory address, data
RAMA Data memory address
RAMD Data memory data
C Carry flag
MI Master interrupt flag
INT Interrupt operation flag (☞ 6)
SKIP Skip execution flag (☞ 7)
A A register
B B register
H H register (specified with CTO command)
L L register (specified with CTO command)
X X register (specified with CTO command)
Y Y register (specified with CTO command)
SP Stack pointer
P0, P1, P2,P3, Port data (specified with CTO command)
P4D, P5D, P6D, P7D (☞ 4)
TP Trace pointer (☞ 5)

Which data in trace memory will be displayed is set by the STF
command.

Chapter 3, SID64K Commands

3-82

DTM

The EASE64158 control system's trace memory has a maximum
area of 8192 x 64 bits, but the EASE64158 only uses 8192 x 63 bits
of that.

Keep in mind the following points when displaying the contents of
trace memory.

• If trace memory has not overflowed, then trace data will only
be stored in trace memory from 0 to the current TP-1. Accordingly, if
the input TP is greater than the current TP, then an error will result.
If the number of back steps is greater than the current TP, then trace
memory from 0 will be displayed.

• If trace memory has overflowed, then trace data will be stored
in the entire trace memory (0–8191), regardless of the current TP.
Accordingly, if the number of back steps is greater than the current
TP, then data before a TP of 0 (8191, 8190, 8189, ...) will be
displayed.

The following mnemonics set by the STF command correspond to
the (header) trace contents displayed by the DTM command.

INS MNEMONIC
INSC MNEMONIC, Code

Available ports differ for each MSM64153 family microcontroller. For
details, refer to each microcontroller's User's Manual.

The TP is always displayed. (It cannot be set with the STF
command.)

Trace data display will be delayed by one instruction except for INT
and SKIP.

The INT flag indicates an interrupt operation, which will be set to "1"
at the instruction in which the interrupt is executed.

The SKIP flag indicates skip execution of instructions, which will be
set to "1" at the instruction in which skip execution is executed.

3-83

Chapter 3, SID64K Commands

☞ 1

☞ 2

☞ 3

☞ 4

DTM

☞ 5

!

☞ 6

☞ 7

64153> LOD INT1
HEX File Loading...
Load Completed address[002C - 0288]

64153> DASM 100

LOC=0100 START:
LOC=0100 90 LAI 0H
LOC=0101 50 3F LHLI IRQ2 ;3EH
LOC=0103 6F LMA
LOC=0104 50 3F LHLI IRQ3 ;3FH
LOC=0106 6F LMA
LOC=0107 50 7C LHLI MIEF ;7CH
LOC=0109 6F LMA
LOC=010A 50 0E LHLI P6CON ;EH
LOC=010C 91 LAI 1H
LOC=010D 6F LMA
LOC=010E 50 0F LHLI P7CON ;FH
LOC=0110 91 LAI 1H
LOC=0111 6F LMA
LOC=0112 50 0A LHLI P21E ;AH
LOC=0114 93 LAI P3 ;3H

64153> G 100,200
Reset Trace Pointer

***** Emulation Go *****
GO >>

***** Address Break *****
Break PC =[0200], Next PC =[0202], TP=[0061]

Chapter 3, SID64K Commands

3-84

Execution Example

DTM

64153> DTM 10 10

LOC MNEMONIC SP P2 P6D A B H L TP
LOC=010E LHLI FH FF 0 0 1 0 0 E 0010
LOC=0110 LAI 1H F 0011
LOC=0111 LMA 0012
LOC=0112 LHLI AH 0013
LOC=0114 LAI 3H A 0014
LOC=0115 LMA 3 . . . 0015
LOC=0116 LHLI 39H 0016
LOC=0118 LAI 1H 3 9 0017

LOC MNEMONIC SP P2 P6D A B H L TP
LOC=0119 LMA FF 0 0 1 0 3 9 0018
LOC=011A LHLI 3AH 0019

64153> DTM -30 10

LOC MNEMONIC SP P2 P6D A B H L TP
LOC=0101 LHLI 3EH F7 0 0 0 0 7 C 0031
LOC=0103 LMA 3 E 0032
LOC=0104 LHLI 3FH 0033
LOC=0106 LMA F 0034
LOC=0107 LHLI 7CH 0035
LOC=0109 LMA 7 C 0036
LOC=010A LHLI EH 0037
LOC=010C LAI 1H 0 E 0038

LOC MNEMONIC SP P2 P6D A B H L TP
LOC=010D LMA F7 0 0 1 0 0 E 0039
LOC=010E LHLI FH 0040

3-85

Chapter 3, SID64K Commands

Execution Example

DTM

STF [∆ parm ∆ parm] ↵
STF [~] ALL ↵

parm : [~] mnemonic

The STF command changes the trace mnemonics displayed by the DTM
command. One of the following is entered for mnemonic.

If a mnemonic is prefixed by a '~' (tilde), then its setting will be cancelled.
If parm is omitted, then the currently set display format will be displayed.

mnemonic:
INS Executed instruction
INSC Executed instruction code
LOC Executed address
RAM Data memory address, data
RAMA Data memory address
RAMD Data memory data
C Carry flag
MI Master interrupt flag
INT Interrupt operation flag
SKIP Skip execution flag
A A register
B B register
H H register (specified with CTO command) (☞ 1)
L L register (specified with CTO command) (☞ 1)
X X register (specified with CTO command) (☞ 1)
Y Y register (specified with CTO command) (☞ 1)
SP Stack pointer
P0, P1, P2, P3, Port data (specified with CTO command) (☞ 2)
P4D, P5D,
P6D, P7D

ALL: Sets LOC, INS, SP, P2, P6D, A, B, H, L (☞ 3)

When a new port or a register is set with the CTO command, the
ports or registers set with a previous STF command will be
cancelled. Thus, trace ports will need to be set again with the STF
command.

Available ports differ for each MSM64153 family microcontroller. For
details, refer to each microcontroller's User's Manual.

If ~ALL is input, then only the executed address (LOC) and
instruction (INS) will be set.

C, MI, INT, and SKIP cannot be set when EXPAND is ON.

Chapter 3, SID64K Commands

3-86

STF

STF

Input Format

Description

☞ 1

☞ 2

☞ 3

!

64153> DTM 0 8

LOC MNEMONIC SP P2 P6D A B H L TP
LOC=0100 LAI 0H FF 0 0 0 0 0 0 0000
LOC=0101 LHLI 3EH 0001
LOC=0103 LMA 3 E 0002
LOC=0104 LHLI 3FH 0003
LOC=0106 LMA F 0004
LOC=0107 LHLI 7CH 0005
LOC=0109 LMA 7 C 0006
LOC=010A LHLI EH 0007

64153> STF
LOC MNEMONIC SP P2 P6D A B H L TP
64153> DTO

Set Trace Object = P2 P6D HL

3-87

Chapter 3, SID64K Commands

Execution Example

STF

64153> DTM 0 8

LOC MNEMONIC SP P2 P6D A B H L C INT TP
LOC=0100 LAI 0H FF 0 0 0 0 0 0 0 0 0000
LOC=0101 LHLI 3EH 0001
LOC=0103 LMA 3 E . . 0002
LOC=0104 LHLI 3FH 0003
LOC=0106 LMA F . . 0004
LOC=0107 LHLI 7CH 0005
LOC=0109 LMA 7 C . . 0006
LOC=010A LHLI EH 0007

64153> EXPAND ON

CODE Memory has been expanded 32K byte.
***** EVA CHIP RESET *****

64153S> STF C
** Error 158: Illegal parameter. (Can't use in EXPAND mode)

64153S> DTM 0 3

LOC MNEMONIC SP P2 P6D A B H L TP
LOC=0100 LAI 0H FF 0 0 0 0 0 0 0000
LOC=0101 LHLI 3EH 0001
LOC=0103 LMA 3 E 0002

64153S> EXPAND OFF

Expanded CODE Memory allocation was released.
***** EVA CHIP RESET *****

Chapter 3, SID64K Commands

3-88

STF

Execution Example

3.1.1.6.2 Displaying/Changing Trace Contents

DTO ↵

CTO ∆ parm [∆ parm [∆ parm]] ↵
parm : mnemonic

EASE64158 trace memory has an area for storing port data trace results
for two ports. The operator can select any two of the eight ports to trace with the
CTO command.

Also, trace memory has an area for storing register trace results for four
registers. Of these four, two are fixed for the A and B registers. The remaining
two can be selected with the CTO command as either the HL registers or the XY
registers.

Thus, up to two ports and one register can be set (☞ 1).

The DTO command displays the settings of the CTO command.

3-89

Chapter 3, SID64K Commands

DTO, CTO

DTO, CTO

Input Format

Description

P0

P1

P2

P3

P4D

P5D

P6D

P7D

H register L register

X register Y register

4 bits

Ports

CTO Command Selection

Trace

Selector

for a port

for a port

4 bits

for a register

for a register

Fixed

TP 0 8191

Trace Memory

8 bits

Registers

CTO Command Selection

Trace

Selector

A register

B register

The following can be input for mnemonic (☞ 2).

P0 Port 0
P1 Port 1
P2 Port 2
P3 Port 3
P4D Port 4
P5D Port 5
P6D Port 6
P7D Port 7
HL HL register
XY XY register

When power is turned on, the default settings will be the HL register and
ports corresponding to the appropriate MSM64153 family device (☞ 3).

When the traced ports are changed with the CTO command, the trace
pointer is cleared to 0.

When a new port is set with the CTO command, the ports set with a
previous STF command will be cancelled. Thus, to display ports
with the DTM command, trace ports will need to be set again with
the STF command.

The available ports differ depending on the particular MSM64153
family microcontroller. For details, refer to the user's manual of the
appropriate microcontroller.

The default ports when power is turned on are as follows.

Chapter 3, SID64K Commands

3-90

☞ 1

☞ 2

☞ 3
Chip Mode Default Ports

MSM64152 P2, P6D

MSM64153 P2, P6D

DTO, CTO

MSM64155 P2, P6D

MSM64158 P2, P6D

64153> DTO
Set Trace Object = P2 P6D HL

64153> STF
LOC MNEMONIC SP P2 P6D A B H L TP
64153> CTO P3 P7D XY

Trace Pointer Cleared
64153> DTO

Set Trace Object = P3 P7D XY
64153> STF
LOC MNEMONIC SP A B TP
64153> STF P3 P7D X Y
64153> STF
LOC MNEMONIC SP P3 P7D A B X Y TP
64153> DTM 0 3

LOC MNEMONIC SP P3 P7D A B X Y TP
LOC=0100 LAI 0H FF 0 0 0 0 0 0 0000
LOC=0101 LHLI 3EH 0001
LOC=0103 LMA 3 E 0002

3-91

Chapter 3, SID64K Commands

Execution Example

DTO, CTO

3.1.1.6.3 Setting/Displaying the Trace Trigger

STT ∆ mnemonic1 ↵

STT ∆ mnemonic2 [/ [parm1] / [parm2]] ↵

parm1, parm2 : address
: [address ∆ address]
: .

STT ∆ mnemonic3 trc_mnem [&mask] = data ↵
trc_mnem : PRB (Probe) ↵

: RAM [∆ ram_addr]

The STT command sets the conditions for tracing (trace trigger).

One of the following is input for mnemonic.

<mnemonic1>

ALL Trace all addresses in code memory during realtime emulation
(free-running trace).

TR Trace only addresses with their trace enable bits set during
realtime emulation (trace enable bit trace).

DIS Do not trace during realtime emulation (trace disable).

<mnemonic2>

SS Start tracing at the address specified by parm1, and stop tracing
at the address specified by parm2.

The parm1 indicates the trace start address. The start condition is one
of the following, depending on input format.

address Start tracing when the specified program
address is executed.

[address ∆ address] Start tracing when any program address in the
specified range is executed.

. Start tracing when G command execution
begins.

No input Start tracing when the program address
specified by the previous STT command is
executed.

Chapter 3, SID64K Commands

3-92

STT, DTT

STT

Input Format

Description

The parm2 indicates the trace stop address. The stop condition is one of
the following, depending on input format (☞1).

address Stop tracing when the specified program
address is executed.

[address ∆ address] Stop tracing when any program address in the
specified range is executed.

. Trace continuously through G command
execution (☞2).

No input Stop tracing when the program address
specified by the previous STT command is
executed.

If the parameters are omitted, then the emulator will display the following
message and wait for input.

START -----> st-parm

Here the operator should input the trace start address for st-parm shown
above.

The operator can also input one of the following keys instead of a start
address.

. ↵ Start incrementing the trace trigger when G command execution
begins.

- ↵ Re-enter the input.

∆↵ Do not change the current setting.

↵ Do not change the current setting, and terminate the STT
command.

3-93

Chapter 3, SID64K Commands

STT, DTT

After st-parm has been input, the emulator will display the following
message and wait for stop address input.

STOP ----> stp-parm

Here the operator should input the trace stop address for stp-parm
shown above.

The operator can also input one of the following keys instead of a stop
address.

. ↵ Start incrementing the trace trigger when G command execution
begins.

- ↵ Re-enter the input.

∆↵ Do not change the current setting.

↵ Do not change the current setting, and terminate the STT
command.

The debugger actually sets these two parameters when input is finished.

The trace pointer will not be incremented at the stop address
specified by parm2.

If '.' is specified for parm2, then break addresses will also be traced.

Chapter 3, SID64K Commands

3-94

☞ 1

☞ 2

STT, DTT

<mnemonic3>

AD Start tracing when the value of data matches the contents of
trc_mnem, or the masked contents of trc_mnem (trace after data
match).

BD Stop tracing when the value of data matches the contents of
trc_mnem, or the masked contents of trc_mnem (trace before
data match).

The data match can be with either the probe pins or RAM for trc_mnem.
These are specified by "PRB" or "RAM [ram_addr]. The ram_addr indicates
address in the RAM, and can be omitted. The mask can have a value of 0–0FH
for "RAM" and 0–0FFH for "PRB." The bits where the mask is "1" are ignored.

When EASE64158 power is turned on, the trace trigger is initialized to
ALL.

DTR, CTR

If the trace trigger has been set to trace after data match (AD) or
trace before data match (BD), and the G command break condition
is set to a PRB or RAM data match break, then the trace trigger
condition will be changed to free-run trace (ALL). In other words,
the trace trigger condition will not be effective, while the break
condition will be effective. Afterwards the trace trigger condition will
remain as free-run trace (ALL) until it is set again with the STT
command.

Refer to the DTT command.

3-95

Chapter 3, SID64K Commands

STT, DTT

SEE

!

Execution Example

DTT ↵

The DTT command displays the current trace trigger set by the STT command.

64153> STT ALL
64153> DTT

Current Trace Trigger : ALL
64153> STT SS

Current Trace Trigger : ALL

START ---> 10

END ---> 20

64153> DTT
Current Trace Trigger : SS
START ADDRESS : 0010
STOP ADDRESS : 0020

Chapter 3, SID64K Commands

3-96

STT, DTT

DTT

Input Format

Description

Execution Example

3.1.1.6.4 Displaying/Changing Trace Enable Bits

DTR ∆ parm [∆ parm ∆ parm] ↵

DTR ∆ * ↵

parm : address
: [address ∆ address]

The DTM command displays the contents of trace enable bits.

The address is an expression that evaluates within code memory's
maximum address range. It indicates an address of code memory to be
displayed (☞ 1).

Display contents are one of the following, depending on input format.

address Displays the contents on one address.

[address ∆ address] Displays the range enclosed in [].

* Displays the entire area of trace enable bits.

When multiple parameters are specified, each will be displayed even if
their address areas overlap.

Trace enable bits correspond one-for-one with the program memory
area. The user can control trace execution by manipulating these bits.

When TR has been set with the STT command and the EASE64158 is
executing a user program, the emulator examines the trace enable bit at the
each address of each executed instruction code. If a trace enable bit is "1," then
the trace information at that time will be written to trace memory. Thus, the user
can write only the trace information he needs into trace memory by setting the
appropriate trace enable bits to "1."

Only trace enable bits set at the first byte of an instruction code are
effective.

Addresses where the displayed contents are "1" indicate addresses to
be traced. Addresses where the displayed contents are "0" indicate addresses
not to be traced.

Refer to each MSM64153 family microcontroller's User's Manual,
regarding address ranges.

3-97

Chapter 3, SID64K Commands

DTR

DTR

Input Format

Description

☞ 1

64153> DTR [20 80]

0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC = 0020 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0030 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0050 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0060 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0070 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0080 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

64153> DTR 0B00H 0A34H
LOC = 0B00 0
LOC = 0A34 0

Chapter 3, SID64K Commands

3-98

DTR

CTR ∆ parm [∆ parm ∆ parm] ↵

CTR ∆ * [=data] ↵

parm : address = data
: [address ∆ address] = data

The CTR command changes the contents of trace enable bits.

The address is an expression that evaluates within code memory's
maximum address range. It indicates an address of code memory (☞ 1).

If '*' is input and data is omitted, then the entire area will be set to '0.'

Contents are changed in the order of the input parameters. The area
changed is one of the following, depending on input format.

address Changes the contents on one address.

[address ∆ address] Changes the range enclosed in [].

* Changes the entire area of code memory.

When multiple parameters are specified, each will be changed even if
their address areas overlap.

The data is the value of the change data. Its value is 0 or 1. Set
addresses to be traced to '1,' and addresses not to be traced to '0.'

Only trace enable bits set at the first byte of an instruction code are
effective.

Refer to each MSM64153 family microcontroller's User's Manual,
regarding address ranges.

3-99

Chapter 3, SID64K Commands

CTR

CTR

Input Format

Description

☞ 1

64153> DTR [0 45]

0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC = 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0020 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0030 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

64153> CTR [26 2B]=1
64153> DTR [0 45]

0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC = 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0020 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0
LOC = 0030 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

64153> STT TR
64153>

Chapter 3, SID64K Commands

3-100

CTR

Execution Example

3.1.1.6.5 Displaying/Clearing the Trace Pointer

DTP ↵ Display trace pointer

RTP ↵ Clear trace pointer

The DTP command displays the current trace pointer value and its
overflow state. The overflow state displays as '1' when the trace pointer has
overflowed, and '0' when it has not.

The displayed values are decimal data

The RTP command clears the trace pointer value to '0. ' The
EASE64158 initializes the trace pointer to '0';

• when power is turned on,
• when the CTO command is executed, and
• when start address is input with the G command.

64153> DTP
Trace Pointer -----> 0061 Overflow = 0

64153> RTP
Reset Trace Pointer

64153> DTP
Trace Pointer -----> 0000 Overflow = 0

3-101

Chapter 3, SID64K Commands

DTP, RTP

DTP, RTP

Input Format

Description

Execution Example

64153> G 100,240
Reset Trace Pointer

***** Emulation Go *****
Go >>

***** Address Break *****
Break PC =[0240], Next PC =[0241], TP=[0000]

64153> DTP
Trace Pointer -----> 0000 Overflow = 0

64153> RTP
Reset Trace Pointer

64153> DTP
Trace Pointer -----> 0000 Overflow = 0

64153>

Chapter 3, SID64K Commands

3-102

DTP, RTP

Execution Example

3.1.1.6.6 Searching Trace Memory

S [~] mnemonic = data [parm] ↵

parm : [count]
: [start_count ∆ end_count]

mnemonic : LOC Program counter
: RAMA Memory address
: RAMD Memory data
: C Carry flag
: MI Master interrupt flag
: INT Interrupt transfer flag
: SKIP Skip execution flag
: A A register
: B B register
: H H register
: L L register
: X X register
: Y Y register
: SP Stack pointer
: P0, P1, P2, P3, Port data

P4D, P5D, P6D, P7D (2 ports specified by the CTO
command)

data = search data (comparison data)
count = count for satisfying comparison criteria during searches
start_count = start count for satisfying comparison criteria during searches
end_count = end count for satisfying comparison criteria during searches

Available ports differ for each MSM64153 family microcontroller. For
details, refer to each microcontroller's User's Manual.

The S command searches trace data in trace memory. It searches for a
match between the data of the trace mnemonic specified by mnemonic and the
trace data specified by data, and then displays the trace information.

When a '~' (tilde) is input, the search is performed from the oldest trace
data to the newest. When a '~' is not input, the search is performed from the
newest data to the oldest.

3-103

Chapter 3, SID64K Commands

S

S

Input Format

R e g i s t e r s
specified by the
CTO command.

@@@@@@@@e?
@@@@@@@@e?
@@h?
@@h?
@@h?
@@h?
@@h?
@@h?

@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?
@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?

@@@@@@@@
@@@@@@@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

?@@
?@@
?@@
?@@
?@@
?@@

?@@@@@@@@
?@@@@@@@@

?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@
?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@

@@g
@@g
@@g
@@g
@@g
@@g
@@@@@@@@
@@@@@@@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

Description

☞ 1

The parm indicates a count for satisfying comparison criteria during
searches.

If count = 3 Displays the contents of trace memory at the TP
when the comparison criteria is satisfied the
third time.

If start_count = 1 Displays the contents of each trace memory at
and end_count = 3 the TP when the comparison criteria is satisfied

the first, second, and third times.

If parm is omitted, then the S command displays the contents of trace
memory at the TP when the comparison criteria is satisfied the first time. The
count, start_count, and end_count have decimal values of 1-8192.

The oldest and the newest trace data will be handled in the same
manner as the DTM command. Refer to ☞2 in DTM command.

64153> S B=5

LOC MNEMONIC SP P2 P6D A B H L TP
LOC=0002 LBA FF 0 0 6 5 5 5 3502

64153> S H=1

LOC MNEMONIC SP P2 P6D A B H L TP
LOC=0005 INH FF 0 0 2 2 1 1 0704

64153>

Chapter 3, SID64K Commands

3-104

S

Execution Example

!

3-105

Chapter 3, SID64K Commands

3.1.1.7

Reset Commands

RST

RST E

URST

RST ↵

The RST command resets the EASE64158 as follows.

64153> RST

***** SYSTEM RESET *****

SID64K Symbolic Debugger Ver.1.00b Jun 1993
Copyright (c) 1993. OKI Electric Ind. Co.,Ltd.

64153>

Refer to Table 2-6 of Chapter 2 for details on initialization by
applying power or pressing the reset switch of the EASE64158.

Chapter 3, SID64K Commands

3-106

RST

RST

Input Format

Description

Item Reset State

MSM64E153 evaluation chip

Resets to same as when a

reset is input to the appropriate

MSM64153 family member.

Break status Cleared to state of no breaks
generated.

Cycle counter Cleared to 0.

Address pass counters 0 - 3 Cleared to 0.

Execution Example

SEE

RST ∆ E ↵

The RST E command resets the EASE64158 as follows.

• Resets the MSM64E153 evaluation chip.

After this command is executed, the MSM64E153 evaluation chip will be
reset to the same state as the appropriate MSM64153 family microcontroller
(refer to the appropriate user's manual of the MSM64153 family microcontroller
for details about its state after reset).

64153> RST E

***** EVA CHIP RESET *****

64153>

3-107

Chapter 3, SID64K Commands

RST E

RST E

Input Format

Description

Execution Example

URST [∆ mnemonic]

The URST command sets whether the USER RESET pin (pin 43) input
of the user cable of user connector 2 is enabled or not.

One of the following parameters is entered for mnemonic.

ON : Reset inputs during realtime emulation are enabled.
OFF : Inputs from the USER•RESET pin are prohibited.

If mnemonic is omitted, then the current setting will be displayed.

64153> URST

User reset disable
64153> URST ON

64153> URST

User reset enable
64153> URST OFF

Chapter 3, SID64K Commands

3-108

URST

URST

Input Format

Description

Execution Example

3-109

Chapter 3, SID64K Commands

3.1.1.8

Performance / Coverage Commands

TIME

SCT

DCT

RCT

DIE

CIE

DCC

CCC

3.1.1.8.1 Measuring Execution Time

3.1.1.8.2 Monitoring Executed Code Memory

DAP

CAP

3.1.1.8.3 Counting Executed Addresses

3.1.1.8.1 Measuring Execution Time

DCC ↵

The DCC command displays information about the cycle counter.

The value is the cycle counter value. The time is value converted to a
time. Both are displayed as decimal numbers.

The data is '1' if the cycle counter has overflowed, or '0' if it has not.

The cycle counter is a 32-bit counter used for measuring program
execution time. Also, cycle counter overflow can be used as a break condition.

The cycle counter is incremented by 1 every single machine cycle.

64153> DCC
CURRENT STATUS -----> 4294967172 Time = 858993.4344m (sec)

Overflow = 0
64153>

Chapter 3, SID64K Commands

3-110

DCC

DCC

Input Format

Description

CURRENT STATUS value Time =time Overflow =data

Execution Example

!

CCC ∆ [-] data ↵

The CCC command changes the contents of the cycle counter to the
value specified by data. The data is a decimal number 0–4294967295. If -data
is input, then the cycle counter will be changed to the value of 4294967295-data.

Below are cycle counter overflow examples where the cycle counter is
set to data and -data.

Examples : CCC 4294967279 Overflow will occur when 16 cycles have
elapsed after the cycle counter is
started.

CCC -100 The cycle counter is set to 4294967195.
Overflow will occur when 101 cycles
have elapsed after the cycle counter is
started.

64153> DCC
CURRENT STATUS -----> 4294967172 Time = 858993.4344m (sec)

Overflow = 0
64153> CCC 100
64153> DCC
CURRENT STATUS -----> 100 Time = 20.0000u (sec) Overflow = 0

64153> CCC -123
64153> DCC
CURRENT STATUS -----> 4294967172 Time = 858993.4344m (sec)

Overflow = 0
64153>

3-111

Chapter 3, SID64K Commands

CCC

CCC

Input Format

Description

Execution Example

TIME [∆ exp] ↵

exp : data

The TIME command sets the time of a single machine cycle for the time
display of the DCC command.

Input the time of a single machine cycle (µs) for data. Up to five places
after the decimal point are valid, with the fifth position being rounded up or down.
Values are input in microseconds (µs), but are displayed after a unit conversion
in milliseconds (ms), microseconds (µs), or nanoseconds (ns).

If data is omitted, the current time setting will be displayed.

The default value sets one cycle's operating time as 91.0 µs, assuming
that the MSM64153 family's operating frequency is 36.768 kHz.

The value input with the TIME command only affects displays of
execution time with the DCC command. It does not affect emulation
execution time in any way.

64153> TIME
Time = 0.2000u (sec)

64153> TIME 1000
64153> TIME

Time = 1.0000m (sec)
64153> TIME 10.234
64153> TIME

Time = 10.2340u (sec)
64153> TIME 0.2
64153> TIME

Time = 0.2000u (sec)
64153>

Chapter 3, SID64K Commands

3-112

TIME

TIME

Input Format

Description

!
Execution Example

SCT [∆ / [parm1] / [parm2] ↵

parm1, parm2 : address
: [start_address ∆ end_address]
: .

The SCT command sets that starting and stopping addresses for
incrementing the cycle counter. This command allows the cycle counter to be
incremented during G command execution.

The parm1 indicates the cycle counter increment start address. The
start condition is one of the following, depending on input format.

address Start incrementing when the specified program
address is executed.

[address ∆ address] Start incrementing when any program address
in the specified range is executed.

. Start incrementing when G command execution
begins.

No input Start incrementing when the program address
specified by the previous SCT command is
executed.

The parm2 indicates the cycle counter increment stop address. The stop
condition is one of the following, depending on input format (☞1).

address Stop incrementing when the specified program
address is executed.

[address ∆ address] Stop incrementing when any program address in
the specified range is executed.

. Increment continuously through G command
execution (☞2).

No input Stop incrementing when the program address
specified by the previous SCT command is
executed.

If parm1 is omitted, then the emulator will display the following message
and wait for input.

3-113

Chapter 3, SID64K Commands

SCT

SCT

Input Format

Description

START status st-parm

Here status indicates the current setting of the start address. The
operator should input the cycle counter increment start address for st-parm. The
operator can also input one of the following keys instead of a start address.

. ↵ Start incrementing the cycle counter when G command
execution begins.

- ↵ Re-enter the input.

_ ↵ Do not change the current setting.

↵ Do not change the current setting, and terminate the SCT
command.

If parm2 is omitted, then the emulator will display the following message
and wait for input.

Here status indicates the current setting of the stop address. The
operator should input the cycle counter increment stop address for stp-parm.
The operator can also input one of the following keys instead of a stop address.

. ↵ Stop incrementing the cycle counter when G command
execution ends.

- ↵ Re-enter the input from the start.

_ ↵ Do not change the current setting.

↵ Do not change the current setting, and terminate the SCT
command.

The debugger actually sets these two parameters when input is finished.

The cycle counter will not be incremented at the increment stop
address specified by parm2.

If parm2 is '.', then the cycle counter will also be incremented at the
address at which a break is occured.

Chapter 3, SID64K Commands

3-114

STOP status stp-parm

☞ 1

☞ 2

SCT

64153> DCT
START ADDRESS : FREE START
STOP ADDRESS : STOP FREE

64153> SCT
START ADDRESS : FREE START
STOP ADDRESS : STOP FREE

START ---> 100

END ---> 140

64153> DCT
START ADDRESS : 0100
STOP ADDRESS : 0140

64153> SCT /./.
64153> DCT

START ADDRESS : FREE START
STOP ADDRESS : STOP FREE

64153> SCT
START ADDRESS : FREE START
STOP ADDRESS : STOP FREE

START ---> 200

END ---> -

START ---> 210

END ---> 300

3-115

Chapter 3, SID64K Commands

SCT

Execution Example

DCT ↵

RCT ↵

The DCT command displays the currently set cycle counter triggers
(start/stop addresses). The display format is as follows.

The current start and stop addresses are displayed for st-status and stp-
status. Their display contents are as follows.

Hexadecimal address Indicates the currently set address.

FREE START Indicates that cycle counter incrementing will
start along with G command execution.

STOP FREE Indicates that cycle counter incrementing will
stop along with G command execution.

TRIGGER RESET Indicates that the cycle counter trigger has not
been set. If this setting is shown for st-status,
then the cycle counter will not start.

The RCT command clears the currently set cycle counter triggers. After
the RCT command is executed, the DCT and SCT commands will display
TRIGGER RESET.

Chapter 3, SID64K Commands

3-116

DCT, RCT

DCT, RCT

Input Format

Description

CycleCounter START : st-status STOP : stp-status

START ADDRESS : st-status
STOP ADDRESS : stp-status

64153> DCT
START ADDRESS : 0210
STOP ADDRESS : 0300

64153> SCT
START ADDRESS : 0210
STOP ADDRESS : 0300

START ---> 2AD

END ---> .

64153> DCT
START ADDRESS : 02AD
STOP ADDRESS : STOP FREE

64153> SCT
START ADDRESS : 02AD
STOP ADDRESS : STOP FREE

START ---> 0A00

END ---> 0B00

64153> DCT
START ADDRESS : 0A00
STOP ADDRESS : 0B00

64153> RCT
64153> DCT

START ADDRESS : TRIGGER RESET
STOP ADDRESS : TRIGGER RESET

64153>

3-117

Chapter 3, SID64K Commands

DCT, RCT

Execution Example

3.1.1.8.2 Monitoring Executed Code Memory

DIE ∆ parm [∆ parm ∆ parm] ↵

DIE ∆ * ↵
parm : address

: [address ∆ address]

The DIE command displays the contents of the instruction executed bit
memory.

The address is an expression that evaluates within code memory's
maximum address range. It indicates an address of instruction executed bit
memory to be displayed (☞ 1).

Display contents are one of the following, depending on input format.

address Displays the contents on one address.

[address ∆ address] Displays the range enclosed in [].

* Displays the entire area of instruction executed
bit memory.

When multiple parameters are specified, each will be displayed even if
their address areas overlap.

Refer to each MSM64153 family microcontroller's User's Manual,
regarding address ranges.

64153> DIE 100 110
LOC = 0100 1
LOC = 0110 0

64153>

Chapter 3, SID64K Commands

3-118

DIE

DIE

Input Format

Description

☞ 1

Execution Example

CIE ∆ parm [∆ parm ∆ parm] ↵

CIE ∆ * [=data]
parm : address = data

: [address ∆ address] = data

The CIE command changes the contents of instruction executed bit
memory.

The address is an expression that evaluates within code memory's
maximum address range. It indicates an address of instruction executed bit
memory (☞ 1).

The data is the value of the change data. Its value can be '0' or '1.'
Contents are changed in the order of the input parameters. The area changed is
one of the following, depending on input format. If '*' is input and data is omitted,
then the entire area will be set to '0.'

address Changes the contents on one address.

[address ∆ address] Changes the range enclosed in [].

* Changes the entire area of instruction executed
bit memory.

When multiple parameters are specified, each will be changed even if
their address areas overlap.

The CIE and DIE commands allow program execution flow to be
examined.

Refer to each MSM64153 family microcontroller's User's Manual,
regarding address ranges.

3-119

Chapter 3, SID64K Commands

CIE

CIE

Input Format

Description

☞ 1

64153> DIE 100 [200 220]
LOC = 0100 1

0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC = 0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0220 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

64153> DIE 234 345 56 989
LOC = 0234 0
LOC = 0345 0
LOC = 0056 0
LOC = 0989 0

64153> CIE *
64153> G 100,103

Reset Trace Pointer

***** Emulation Go *****
GO >>

***** Address Pass Counter Overflow Break *****
Break PC =[0100], Next PC =[0101], TP=[0000]

64153> DIE [100 113]

0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC = 0100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC = 0110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

64153>

Chapter 3, SID64K Commands

3-120

CIE

Execution Example

3.1.1.8.3 Counting Executed Addresses

DAP [mnemonic mnemonic] ↵

mnemonic : C0, C1, C2, C3

The DAP command displays the contents of the address pass counters
as set by the CAP command. The EASE64158 provides four address pass
counters: C0, C1, C2, and C3.

The display for each address pass counter is the number of times the
instruction at the address of that pass counter (set by the CAP command) was
executed during emulation execution.

If mnemonic is not input, then the contents of all address pass counters
will be displayed.

64153> CAP C0=128 200
64153> CAP C3=482
64153> CAP C2=100 0
64153> DAP

AP : ADDRESS COUNT OVERFLOW
------+--------------------------------
C0 : 0128 200 0
C1 : 0200 0 0
C2 : 0100 0 0
C3 : 0482 0 0

3-121

Chapter 3, SID64K Commands

DAP

DAP

Input Format

Execution Example

Execution Example

CAP mnemonic [= address] [∆ count]

mnemonic : C0, C1, C2, C3

The CAP command is provided for monitoring how often an instruction at
some address is executed. The EASE64158 provides four address pass
counters: C0, C1, C2, and C3.

The mnemonic specifies one of the four address pass counters, and the
address specifies the associated address for incrementing. If address is omitted,
then the address set with the previous CAP command will be used. The count is
in the range 0–65535. If count is omitted, then it will be set to 0.

The C0 address pass counter has an overflow break function. If the
SBC command has been set to AP (address pass counter overflow breaks), then
emulation execution will break and terminate at the point the counter value
exceeds 65535.

64153> SBC AP
64153> CAP C1=200
64153> CAP C0=100 65535
64153> DAP

AP : ADDRESS COUNT OVERFLOW
------+--------------------------------
C0 : 0100 65535 0
C1 : 0200 0 0
C2 : 0100 0 0
C3 : 0482 0 0

Chapter 3, SID64K Commands

3-122

CAP

CAP

Input Format

Description

Execution Example

3-123

Chapter 3, SID64K Commands

3.1.1.9

EPROM Programmer Commands

3.1.1.9.1 Setting EPROM Type

TYPE

3.1.1.9.2 Writing to EPROM

3.1.1.9.3 Reading from EPROM

3.1.1.9.4 Comparing EPROM and Program Memory

PPR

VPR

TPR

3.1.1.9.1 Setting EPROM Type

TYPE ∆ mnemonic ↵

The TYPE command specifies the type of EPROM that will be used in
the EPROM programmer. The mnemonic indicates the EPROM type.

Usable EPROM types can be classified into the following two broad
categories.

1. Intel products and other EPROMs that are written at high speed with
the Intelligent Programming method.

2. Fujitsu products and other EPROMs that are written at high
speed with the Fujitsu Programming method.

These two categories are distinguished by adding a prefix before the
EPROM name when entering mnemonic. Prefix an 'I' for the first category, and
'F' for the second.

The following can be input for mnemonic.

continued on next page

Chapter 3, SID64K Commands

3-124

TYPE

TYPE

Input Format

EPROM Type
mnemonic

Intel Fujitsu

2764 I2764 F2764

27C64 I27C64 F27C64

2764A I2764A –

27128 I27128 F27128

Products with an entry marked by "—" do not exist, so no mnemonic is provided.

If mnemonic is omitted, then the currently set EPROM type will be
displayed. The setting will be "I27512" after power is turned on.

64153> TYPE

EPROM TYPE----->I27512
64153> TYPE F27C256A

64153> TYPE

EPROM TYPE----->F27C256A
64153>

3-125

Chapter 3, SID64K Commands

EPROM Type
mnemonic

Intel Fujitsu

27C128 – F27C128

27128A I27128A –

27C128A I27C128A –

27256 I27256 F27256

27C256 I27C256 F27C256

27C256A – F27C256A

27512 I27512 –

27C512 – F27C512

Execution Example

TYPE

3.1.1.9.2 Writing to EPROM

PPR ∆ [address ∆ address] [∆ eprom-address] ↵

PPR ∆ * ↵

The PPR command writes the contents of the specified code memory
area to the specified EPROM address.

An address is an expression that evaluates within code memory's
maximum address range. It indicates an address of code memory (☞ 1). The
[address ∆ address] specifies the range of code memory to be written. If '*' is
input, then a range of code memory that corresponds to the EPROM type will be
set (☞ 2).

The eprom-address is the EPROM's starting address for writing. If this
address is omitted, then writing will start from EPROM address 0.

Input continues until a carriage return is entered. Then the following
message will be output.

EPROM TYPE ---> type
PROGRAMMING VOLTAGE = voltage
PROGRAMMING METHOD = method
START PROGRAMMING [Y/N] ---> _

Here type indicates the currently set EPROM type. The voltage is the
write voltage, while the method is the write method.

If the EPROM type displayed is the same as the EPROM type that the
user wants to write, then enter "Y↵ " at the underscore. If they are different, then
input "N↵ " and set the EPROM type again with the TYPE command.

When "Y↵ " is input, the EASE64158 "RUN" LED will light, and the data
write will start. If the data write completes normally, then the LED will go off, the
PPR command will terminate, and the emulator will wait for another command
input.

Refer to each MSM64153 family microcontroller's User's Manual,
regarding address ranges.

Note that the test data area in the program area (code memory) of
each MSM64153 family microcontroller cannot be used by the
emulator.

Chapter 3, SID64K Commands

3-126

PPR

PPR

Input Format

Description

☞ 1

!

The code memory range that will be written when '*" is input will be
as follows.

However, the maximum write address will evaluate within the maximum
address range of the code memory.

64153> TYPE F27C256A

64153> PPR [0 20]

EPROM TYPE----->F27C256A
PROGRAMMING VOLTAGE=12.5 V
FUJITSU QUICK PROGRAMMING
START PROGRAMMING [Y/N]----->Y

64153> PPR [100 135] 100

EPROM TYPE----->F27C256A
PROGRAMMING VOLTAGE=12.5 V
FUJITSU QUICK PROGRAMMING
START PROGRAMMING [Y/N]----->Y

64153> PPR [300 400] 500

EPROM TYPE----->F27C256A
PROGRAMMING VOLTAGE=12.5 V
FUJITSU QUICK PROGRAMMING
START PROGRAMMING [Y/N]----->N

64153>

3-127

Chapter 3, SID64K Commands

☞ 2

EPROM Type Address Range EPROM Type Address Range

2764 0 ~ 1FFFH 27256 0 ~ 7FFFH

27128 0 ~ 3FFFH 27512 0 ~ 7FFFH

Execution Example

PPR

3.1.1.9.3 Reading from EPROM

TPR ∆ [address ∆ address] [∆ CM-address] ↵

TPR ∆ * ↵

The TPR command reads the EPROM contents in the specified range
and transfers them to the specified code memory area.

Each address is an EPROM address. The [address ∆ address] specifies
the EPROM range to be read. If '*" is input, then the entire EPROM area
corresponding to the EPROM type will be set.

The CM-address is the code memory starting address for transferring. If
this address is omitted, then the transfer will start from code memory address 0.

Input continues until a carriage return is entered. Then the following
message will be output.

EPROM TYPE ---> type
START READING [Y/N] ---> _

The code memory range that will be read when '*" is input will be as
follows.

However, the maximum read address will evaluate within the maximum
address range of the code memory.

Refer to each MSM64153 family microcontroller's User's Manual,
regarding address ranges.

Note that the emulator handles the test data area in the program
area (code memory) of the MSM64153 family microcontrollers as an
unusable area.

Chapter 3, SID64K Commands

3-128

TPR

TPR

Input Format

Description

☞ 1

EPROM Type Address Range EPROM Type Address Range

2764 0 ~ 1FFFH 27256 0 ~ 7FFFH

27128 0 ~ 3FFFH 27512 0 ~ 7FFFH

☞ 2

!

Here type indicates the currently set EPROM type.

If the EPROM type displayed is the same as the EPROM type that the
user wants to read, then enter "Y↵ " at the underscore. If they are different, then
input "N↵ " and set the EPROM type again with the TYPE command.

When "Y↵ " is input, the EASE64158 "RUN" LED will light, and the data
transfer will start. If the data transfer completes normally, then the LED will go
off, the TPR command will terminate, and the emulator will wait for another
command input.

As shown in the following example, if the range of EPROM read, as
specified by [address ∆ address], exceeds the maximum address of code
memory, then the transfer will terminate at that point.

TPR [0 5FF] 900

64153> TPR [100 132]

EPROM TYPE----->F27C256A
START READING [Y/N]----->Y

64153> TPR [200 209] 100

EPROM TYPE----->F27C256A
START READING [Y/N]----->Y

64153> TPR [323 523] 512

EPROM TYPE----->F27C256A
START READING [Y/N]----->N

64153>

3-129

Chapter 3, SID64K Commands

Example

@@@@@@@@e?
@@@@@@@@e?
@@h?
@@h?
@@h?
@@h?
@@h?
@@h?

@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e
@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e

@@@@@@@@
@@@@@@@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

?@@
?@@
?@@
?@@
?@@
?@@

?@@@@@@@@
?@@@@@@@@

?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@
?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@e?@@@@@@@@?e@@@@@@@@

@@g
@@g
@@g
@@g
@@g
@@g
@@@@@@@@
@@@@@@@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

@@
@@
@@
@@
@@
@@
@@
@@

EPROM Code Memory

0

5FF

900

0

0BDF

Data will be transferred
from address 900 to
address 0BDF, and then
the transfer will terminate.

TPR

Execution Example

3.1.1.9.4 Comparing EPROM and Program Memory

VPR ∆ [address ∆ address] [∆ eprom-address] ↵

VPR ∆ * ↵

The VPR command compares the contents of the specified range of
code memory with the contents of the EPROM starting at the specified address,
and displays any differences on the console.

An address is an address of code memory. The [address ∆ address]
specifies the range of code memory to be compared (☞ 1). If '*' is input, then a
range of code memory that corresponds to the EPROM type will be set (☞ 2).

The eprom-address is the EPROM's starting address for comparison. If
this address is omitted, then comparison will start from EPROM address 0.

Input continues until a carriage return is entered. Then the following
message will be output.

EPROM TYPE ---> type
START READING [Y/N] ---> _

Here type indicates the currently set EPROM type.

If the EPROM type displayed is the same as the EPROM type that the
user wants to compare, then enter "Y↵ " at the underscore. If they are different,
then input "N↵ " and set the EPROM type again with the TYPE command.

When "Y↵ " is input, the EASE64158 "RUN" LED will light, and the data
comparison will start. If the data comparison completes normally, then the LED
will go off, the VPR command will terminate, and the emulator will wait for
another command input.

Whenever a comparison error occurs, the information will be displayed
on the console in the following format (☞ 3).

Refer to each MSM64153 family microcontroller's User's Manual,
regarding address ranges.

Chapter 3, SID64K Commands

3-130

VPR

VPR

Input Format

Description

U/M CM = X X X X X X PR = X X X X X X

Mismatch Code Code EPROM EPROM
display memory memory address data
marker address data

☞ 1

The code memory range that will be compared when '*" is input will
be as follows.

However, the maximum comparison address will evaluate within the
maximum address range of the code memory.

If the number of comparison error exceeds 100, the emulator
automatically ends verifying to return to the prompt.

64153> CCM *=0FFH

64153> VPR [20 54]

EPROM TYPE----->F27C256A
START READING [Y/N]----->Y

64153> VPR [733 766] 100

EPROM TYPE----->F27C256A
START READING [Y/N]----->Y

64153>

64153>

64153> CCM 0

LOC=0000 FF----->2 New
LOC=0001 FF----->4 New
LOC=0002 FF----->6 New
LOC=0003 FF----->

64153>

64153> VPR [0 19]

EPROM TYPE----->F27C256A
START READING [Y/N]----->Y
U/M CM=0000 2 PR=0000 FF
U/M CM=0001 4 PR=0001 FF
U/M CM=0002 6 PR=0002 FF

64153>

3-131

Chapter 3, SID64K Commands

☞ 2

EPROM Type Address Range EPROM Type Address Range

2764 0 ~ 1FFFH 27256 0 ~ 7FFFH

27128 0 ~ 3FFFH 27512 0 ~ 7FFFH

VPR

Execution Example

☞ 3

Chapter 3, SID64K Commands

3-132

3-133

Chapter 3, SID64K Commands

3.1.1.10

Commands for Automatic Command Execution

BATCH

PAUSE

BATCH ∆ fname ↵

fname : [Pathname] Filename [Extension]

The BATCH command automatically executes the file contents that is
specified by fname as emulator commands.

The input file name can have a path specification. If the path is omitted,
then the file will be taken in the current directory.

If the file extension is omitted, then a default extension (.CMD) will be
appended. To specify a file without an extension, append a period '.' after the
filename.

In addition to emulator commands, the batch file can also contain
assembler mnemonics input within the ASM command.

Automatic execution is performed until the end of the file. If the ESC key
is pressed during execution, then automatic execution will be suspended.

Only one batch file can be open. Therefore, even if a BATCH
command is included within a batch file, it will be ignored.

If the reset key is pressed during BATCH command execution, the
BATCH command will be terminated and the batch file will be
closed.

64153> BATCH BAT.TP

Batchfile : BAT.TP opened
64153> ASM 100
line Segment Location Source Statement

1 Code 0100 nop
2 Code 0101 lai 0
3 Code 0102 lhi 1
4 Code 0104 ina
5 Code 0105 nop
6 Code 0106 end

64153> D
A : 0 B : 0 H : 0 L : 0 X : 0
Y : 0 PC : 0000 BCF : 0 BEF : 0 BSR0 : 0
BSR1 : 0 C : 0

64153>
Batchfile: BAT.TP closed

64153>

Chapter 3, SID64K Commands

3-134

BATCH

BATCH

Input Format

Description

!

Execution Example

!

PAUSE ↵

The PAUSE command waits for keyboard input when executed. By
placing a PAUSE command in a batch file, automatic command execution can
be temporarily suspended. The input wait state will be released upon input from
the keyboard, or if the emulator reset switch is pressed.

64153> PAUSE

*** Hit Any Key ***
64153>

3-135

Chapter 3, SID64K Commands

PAUSE

PAUSE

Input Format

Description

Execution Example

Chapter 3, SID64K Commands

3-136

3-137

Chapter 3, SID64K Commands

3.1.1.11

Commands for Displaying / Changing / Removing Symbols

3.1.1.11.1 Displaying Symbols

DSYM

3.1.1.11.2 Changing Symbols

3.1.1.11.3 Removing Symbols

CSYM

RSYM

3.1.1.11.1 Displaying Symbols

DSYM ∆ string [∆ string ∆ string] ↵

DSYM ∆ * ↵

The DSYM command displays information about user symbols loaded
with the LOD command (with /S option) or defined by labels or assembler
directives (EQU, SET, CODE, DATA) within the ASM command.

A symbol name is entered for string. If only a '*' is input, then all
currently registered user symbols will be displayed. Input symbol names can use
wild cards like '*' and '?' in the same manner as MS-DOS and PC-DOS.

The displayed information will be as follows.

The "Atr" will be one of the following.

CODE Code address attribute

DATA Data address attribute

NUMBER Number attribute

Chapter 3, SID64K Commands

3-138

DSYM

DSYM

Input Format

Description

Symbol Value Atr

Symbol Symbol Symbol
Name Value Attribute

(Hexadecimal)

64153> DSYM *
Symbol Value Atr
AAA 0103 CODE
BBB 0103 CODE
ABC 0201 CODE
CCC 0200 CODE
ACD 0201 CODE
BCD 0204 CODE
START 0100 CODE
64153> DSYM A*
Symbol Value Atr
AAA 0103 CODE
ABC 0201 CODE
ACD 0201 CODE
64153> DSYM B??
Symbol Value Atr
BBB 0103 CODE
BCD 0204 CODE
64153> DSYM START
Symbol Value Atr
START 0100 CODE

3-139

Chapter 3, SID64K Commands

Execution Example

DSYM

3.1.1.11.2 Changing Symbols

CSYM ∆ parm [, parm , parm] ↵

parm : string [= data]

The CSYM command changes the values of user symbols loaded with
the LOD command (with /S option) or defined by labels or assembler directives
(EQU, SET, CODE, DATA) within the ASM command (☞ 1).

A symbol name is entered for string. The data to be changed is entered
for data.

If data is omitted, then the it will be entered for each input symbol as
follows.

The operator inputs the new data at the underscore. The old-data will be
the symbol's currently set value.

The symbol attribute (Atr) cannot be changed.

In addition to change data, the following input is also valid while the
emulator is waiting for input.

"∆↵ " Without changing the data, proceed to input data for the
next symbol. If there is no next symbol, then input
terminates.

"↵ " Terminates input.

A symbol name can contain wild cards, "*," or "?", as in MS-DOS or PC-
DOS.

Chapter 3, SID64K Commands

3-140

CSYM

CSYM

Input Format

Description

old [old-data] _

☞ 1

64153> DSYM *
Symbol Value Atr
AAA 0103 CODE
BBB 0103 CODE
ABC 0201 CODE
CCC 0200 CODE
ACD 0201 CODE
BCD 0204 CODE
START 0100 CODE
64153> CSYM B*
BBB old[0103] ----> 0AD New
BCD old[0204] ----> 7 New
64153> DSYM *
Symbol Value Atr
AAA 0103 CODE
BBB 00AD CODE
ABC 0201 CODE
CCC 0200 CODE
ACD 0201 CODE
BCD 0007 CODE
START 0100 CODE
64153> CSYM ??C
ABC old[0201] ----> 90A New
CCC old[0200] ----> CSYM ST??? ** Error 102: Illegal data input.
CCC old[0200] ----> 0B00 New
64153> DSYM *
Symbol Value Atr
AAA 0103 CODE
BBB 00AD CODE
ABC 090A CODE
CCC 0B00 CODE
ACD 0201 CODE
BCD 0007 CODE
START 0100 CODE

3-141

Chapter 3, SID64K Commands

CSYM

Execution Example

3.1.1.11.3 Removing Symbols

RSYM ∆ string [∆ string ∆ string] ↵

RSYM ∆ * ↵

The RSYM command removes user symbols loaded with the LOD
command (with /S option) or defined by labels or assembler directives (EQU,
SET, CODE, DATA) within the ASM command.

A symbol name is entered for string. If only a '*' is input, then all
currently registered user symbols will be removed. Input symbol names can use
wild cards like '*' and '?' in the same manner as MS-DOS and PC-DOS.

64153> DSYM *
Symbol Value Atr
AAA 0103 CODE
BBB 00AD CODE
ABC 090A CODE
CCC 0B00 CODE
ACD 0201 CODE
BCD 0007 CODE
START 0100 CODE
64153> RSYM AAA
64153> DSYM *
Symbol Value Atr
BBB 00AD CODE
ABC 090A CODE
CCC 0B00 CODE
ACD 0201 CODE
BCD 0007 CODE
START 0100 CODE
64153> RSYM B??
64153> DSYM *
Symbol Value Atr
ABC 090A CODE
CCC 0B00 CODE
ACD 0201 CODE
START 0100 CODE
64153> DSYM BBB
Symbol Value Atr
BBB

** Error 092: Symbol not found.

Chapter 3, SID64K Commands

3-142

RSYM

Input Format

Description

RSYM

Execution Example

3-143

Chapter 3, SID64K Commands

3.1.1.12

Other Commands

3.1.1.12.1 Saving CRT Contents

LIST

3.1.1.12.2 SH (Shell) Commands

3.1.1.12.3 Changing the Radix of Input Data

3.1.1.12.4 Command Registration / Execution

SH

MAC

RADIX

3.1.1.12.5 Terminating The SID64K Debugger

EXIT

NLST

3.1.1.12.1 Saving CRT Contents

LIST ∆ fname ↵

fname : [Pathname] Filename [Extension]

The LIST command stores the contents displayed to the console in the
specified file.

The input file name can have a path specification. If the path is omitted,
then the file will be taken in the current directory. If a file of the same name
exists in the specified directory, then that file will be deleted and a new file will be
created. If the specified file is write-protected, then the LIST command will be
forcibly terminated.

If the file extension is omitted, then a default extension (.LST) will be
appended.

While a file is being created by a LIST command, another LIST
command cannot be used (only one list file can be open).

The LIST command becomes valid immediately after it has been
input. When any of the following occurs, the LIST command
becomes invalid and the list file is closed.

• An NLST command is input.
• The SID64K symbolic debugger terminates.
• The EASE64158 base unit's reset switch is pressed.

64153> LIST SAMP.LST
64153> D

A : 0 B : 0 H : 0 L : 0 X : 0
Y : 0 PC : 0000 BCF : 0 BEF : 0 BSR0 : 0
BSR1 : 0 C : 0

64153> D PC

PC : 0000
64153> NLST

Chapter 3, SID64K Commands

3-144

LIST

LIST

Input Format

Description

!

Execution Example

NLST ↵

The NLST command terminates a previous LIST command. It will close
the list file opened by the LIST command.

Contents are stored in the list file until the NLST command.

64153> LIST SAMP.LST
64153> D

A : 0 B : 0 H : 0 L : 0 X : 0
Y : 0 PC : 0000 BCF : 0 BEF : 0 BSR0 : 0
BSR1 : 0 C : 0

64153> D PC

PC : 0000
64153> NLST

3-145

Chapter 3, SID64K Commands

NLST

NLST

Input Format

Description

Execution Example

3.1.1.12.2 SH (Shell) Command

SH ↵

The SH command invokes the DOS shell COMMAND.COM (command
interpreter) as a child process of the debugger. Thus, even if any environment
variables (PATH, COMSPEC, etc.) are set after the SH command invokes
COMMAND.COM, the settings will be lost when control is returned to the
debugger by entering EXIT . Accordingly, the path of the invoked
COMMAND.COM cannot be changed.

The procedure when the SH command invokes the child process
(COMMAND.COM) is explained below.

(1) The current directory is searched for COMMAND.COM, and if found it is
invoked. If not found, then the search moves to (2).

(2) The directories set in the PATH environment variable are searched in
order.

For example,

PATH = a:\,a:\bin,a:\uty,a:\SID64K

The directories are searched in the order "a:\", "a:\bin", "a:\uty", and
"a:\SID64K." The first COMMAND.COM found will be executed. If not found,
then the search moves to (3).

(3) The child process is invoked using the path name set in the COMSPEC
environment variable. Assuming COMMAND.COM exists in the root directory of
the A: drive, set the following before using the debugger.

COMSPEC = A:\COMMAND.COM (☞ 1)

When DOS terminates a child process (the debugger), it reloads
COMMAND.COM referring to the COMSPEC environment variable.
If the COMSPEC environment variable is set to something other
than COMMAND.COM, then DOS wil l attempt to reload
COMMAND.COM but will not be able to. The only way to release
this state is to reset or turn off the PC, so it is recommended that you
specify the full path name of the DOS shell (command interpreter) in
the COMSPEC environment variable (the path name is specified by
"path+fi lename+extension" and is distinct from the PATH
environment variable).

Chapter 3, SID64K Commands

3-146

SH

SH

Input Format

Description

☞ 1

In order to realize the shell function, the free area of the system being used must have
sufficient space for invoked programs. The resident portion of SID64K.EXE consumes
about 220K bytes. In addition, the symbol table consumes the following number of bytes.

Thus, for a program to be invoked after the SH command has been executed, it must
have fewer bytes than the original free area less the above byte count and less the size of
COMMAND.COM.

64153> SH
Command version 3.10

A>CD
\USR\TEST

A>EXIT

64153> NLST

3-147

Chapter 3, SID64K Commands

[total characters of all registered symbols] + [number of registered symbols] x [33 bytes]

Execution Example

SH

3.1.1.12.3 Changing the Radix of Input Data

RADIX ∆ mnemonic ↵

The RADIX command changes the radix for values input on SID64K

debugger command lines. The mnemonic can be one of the following.

D Input data will be recognized as radix 10 (decimal).
H Input data will be recognized as radix 16 (hexadecimal).
B Input data will be recognized as radix 2 (binary).
O Input data will be recognized as radix 8 (octal).

The following values will always be recognized as decimal when input,
regardless of the current radix setting.

• Delay count values
• Cycle count values
• Pass count values
• Trace pointer values
• Step counts

When EASE64158 power is turned on, the radix will be set to H
(hexadecimal) by default.

Values input in source statements of the ASM command are not
affected by the RADIX command setting.

When a hexadecimal number is input and it begins with A–F, it
needs to be prefixed with a '0' (zero).

64153> ; RADIX
64153> ;
64153>
64153> RADIX D
64153> DCM 10

LOC = 000A 00
64153> RADIX H
64153> DCM 10

LOC = 0010 00
64153> RADIX B
64153> DCM 10

LOC = 0002 00
64153> RADIX O
64153> DCM 10

LOC = 0008 00
64153>

Chapter 3, SID64K Commands

3-148

RADIX

RADIX

Input Format

Description

!
!

Execution Example

3.1.1.12.4 Registering/Executing Commands

MAC [∆ [~] macro_command] ↵

The MAC command allows many consecutive SID64K commands
(except for MAC) to be replaced as a single macro command and automatically
executed. When the same sequence of commands is often used during debug
operations, defining it as a macro with the MAC command can improve operating
efficiency.

Up to five macro commands can be registered.

• New registration of a macro command name and its command lines

Input the new command name for macro_command. Up to 8 characters
can be input.

If this name is not the same as an SID64K command, then the emulator
will output the following message and wait for input of one command line to be
registered.

1.

Up to 10 command lines can be registered. Up to 61 characters can be
input on one line. When a carriage return is input after a line, the emulator will
wait for input for the next line. To stop registration, input "↵ ."

After input of the tenth line ends, an "↵ " will be added automatically and
registration will terminate.

• Verifying/adding/removing a previously registered macro command's command
lines

Input the MAC command, followed by the registered command name
and a carriage return. Then the registered command lines will be displayed as
follows.

3-149

Chapter 3, SID64K Commands

MAC

MAC

Input Format

Description

64153> MAC DISP ↵

64153> MAC DISP ↵
1. -----> DCM [0 100]
2. -----> CCM [10 20] = 5 50 = 0A
3. -----> DCM [0 100]

ADD(+) or DEL(-) ==>

To simply verify the contents, input a carriage return and the "64153>"
prompt will return. To remove a command line, enter "- number ↵ ." The number
is the number of the command line to be removed.

To add a command line, enter "+ ↵ ." If fewer than 10 lines are
registered, then the emulator will wait for command line input. To add a
command line in between already registered command lines, input "+ number ↵ ."
The number is the sequence number to be given to the command line. The
sequence numbers of all command lines after the added one will be incremented
automatically.

When you are done registering, input "↵ ."

• Executing a registered macro command

To execute a registered macro command, input the command name
followed by a carriage return.

• Verifying/removing a registered macro command

To verify the registered macro commands, input the following.

To remove a registered macro command, input the following.

Chapter 3, SID64K Commands

3-150

64153> DISP ↵

64153> MAC ˜DISP ↵

64153> MAC ↵
1. DISP

MAC

64153> MAC DISP

1. -----> DCM [0 23]
2. -----> DCM 90
3. -----> CCM 30=1
4. -----> D

ADD(+) OR DEL(-) ==> DCM [0 23]

64153> DISP
MAC > DCM [0 23]

0 1 2 3 4 5 6 7 8 9 A B C D E F
--

LOC = 0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
LOC = 0010 00 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00

MAC > DCM 90
LOC = 0090 00

MAC > CCM 30=1

MAC > D
A : 0 B : 0 H : 0 L : 0 X : 0
Y : 0 PC : 0044 BCF : 0 BEF : 0 BSR0 : 0
BSR1 : 0 C : 0

3-151

Chapter 3, SID64K Commands

MAC

Execution Example

64153> MAC DISP

1. -----> DCM [0 23]
2. -----> DCM 90
3. -----> CCM 30=1
4. -----> D

ADD(+) OR DEL(-) ==> -5

64153> MAC TP

1. -----> D
2. -----> G 100,103
3. -----> DTM *

ADD(+) or DEL (-) ==> D

64153> TP
MAC > D

A : 0 B : 0 H : 0 L : 0 X : 0
Y : 0 PC : 0044 BCF : 0 BEF : 0 BSR0 : 0
BSR1 : 0 C : 0

MAC > G 100,103
Reset Trace Pointer

***** Emulation Go *****
GO >>

***** Address Break *****
Break PC =[0043], Next PC =[0044], TP=[0004]

MAC > DTM *

LOC MNEMONIC SP P3 P7D A B X Y TP
LOC=0040 NOP FF 0 0 0 0 0 0 0000
LOC=0041 NOP 0001
LOC=0042 NOP 0002
LOC=0043 NOP 0003

64153>

Chapter 3, SID64K Commands

3-152

MAC

Execution Example

3.1.1.12.5 Terminating the SID64K Debugger

EXIT ↵

The EXIT command terminates the SID64K debugger.

If a list file has been opened by the LIST command, then it will be closed
before the debugger terminates.

64153> EXIT
A>

When the SID64K symbolic debugger is restarted without turning off
its power after it has been terminated with the EXIT command, then
the message shown in (9) of Section 2.6, "Starting the EASE64158
Emulator," will be output. Afterwards, press the EASE64158 reset
switch to start.

3-153

Chapter 3, SID64K Commands

EXIT

EXIT

Input Format

Description

Execution Example

!

CCCChhhhaaaapppptttteeeerrrr 4444

DDDDeeeebbbbuuuuggggggggiiiinnnngggg NNNNooootttteeeessss

4-1

This chapter provides some notes about debugging with the
EASE64158 system.

Chapter 4, Debugging Notes

4-1. Debugging Notes

4-1-1. Tracing

The timing for writes to EASE64158 trace memory is as follows.

Executed address M1S1 & SYSCLK/

Trace pointer (TP) count (M1S2 & SYSCLK) + gate delay

Other (AR, BR, SP, etc.) (S3 & SYSCLK) + gate delay

As can be seen from this timing, the trace data displayed when a DTM command is executed will
lag the changes in trace data by one instruction except for SKIP flag and INT flag.

4-1-2. Resets

The USER•RESET pin (pin 43) of the user cables is effective only during POD64158 operation
under realtime emulation from the G command, and during POD64158 standalone operation (POD
mode). However, during realtime emulation this is further restricted to when the URST command setting
is on.

Refer to Figure 4-1 to see how the USER•RESET pin is used.

Chapter 4, Debugging Notes

4-2

S1 S2 S3 S1 S2 S3
Instruction Start

Operating clock

Executed address

Latch of executed address

Latch of other data

TP increment

Write to trace memory

Figure 4-1. Reset Circuit

• USER•RESET indicates the USER•RESET pin (pin 43) of the user cable.

• URST.ENA is a signal that becomes “H” when the URST ON command is executed.

• M. RESET is the reset signal output from the EASE64158 internal controller.

• RESET is connected to the reset pin of the MSM64E153 evaluation chip.

4-1-3. User Cables

VDD is not supplied from the user cables connected to the POD64158 and the user application
system. When connected to the user application system during debugging, supply VDD to the user
application system from a separate power supply.

4-1-4. Cycle Counter Overflow Breaks

When program execution breaks due to a cycle counter overflow break, the break will occur after
execution of the next instruction after the instruction at which the cycle counter overflowed. Accordingly,
the cycle counter value at the break will not be 0, but will be the cycle count value of the instruction that
generated the break.

4-3

Chapter 4, Debugging Notes

VDD

10 K

HC4066

VDD
HC4066

RESET

C

C

(to evaluation chip)

M•RESET

URST•ENA

USER•RESET

VSS1 or VSS2

(user cable)

10 K

4-1-5. EPROM Programmer

Always remove any EPROM in the EASE-LP2 EPROM programmer when the EASE64158 is
started. Mount EPROMs when the emulator is waiting for command input.

Appendix 9, “Mounting EASE-LP2 EPROMs.”

4-1-6. DASM Command

The instructions in each of the above instruction pairs have identical instruction codes. When the
SID64K disassembles using the DASM command, the mnemonics on the left side will be displayed.

4-1-7. Break

(1) When any break condition is satisfied during skip operation (stack instruction, etc.), the break will
occur after the completion of the ongoing skip operation (similar for step command). The break
condition for this case will be "No breakstatus." (In trace display, SKIP flag will be "1" during skip
operation.)

Example:

.

.

.
LAI 1
LAI 2
LAI 3
LAI 4
LMAD 7C
.
.
.

Chapter 4, Debugging Notes

4-4

SEE

NOP and AIS 0 (both codes 0H)

INA and AIS 1 (both codes 1H)

LAM and LAMM 0 (both codes 70H)

XAM and XAMM 0 (both codes 74H)

If the sample program shown at the left is executed continuously from LAI 1
with a break point bit break specified at the LAI 3 instruction, the break will
not occur at skip execution of LAI 3, but just before LMAD 7C instruction
instead.

In step operation, execution of LAI 1 makes skip operation continue to LAI 4
one by one, and LMAD 7C will also be executed.

(2) When any break condition is satisfied during interrupt transferring cycle, the break will occur after
the completion of interrupt transferring cycle execution. The interrupt vector address will be the
break PC for this case, and "No breakstatus" will be the break condition.

An instruction whose INT flag is "1" on trace display is actually not executed (a dummy trace
indicates that an interrupt transferring cycle is executed instead).

In step command, instruction itself will be executed as well as the interrupt transferring cycle
execution, and the break will occur after thier completion.

(3) When an interrupt is occur at the same time as setting master interrupt enable (MI) flag to "1," the
MI flag of trace display will not be "1."

4-1-8. Probe Cable

Probe cable can be used only when the MSM64E153 emulation chip operating voltage is 3.0 V.
It cannot be used when the voltage is 1.5 V.

4-1-9. Operating Clock

However the MSM64153 family microcontrollers MSM64155 and MSM64158 can select the CR
oscillation circuit as the clock generator by using mask option, the EASE64158 cannot select the CR
oscillation circuit as a clock generator. If this hinders your program development, please contact Oki
Electric's engineering department.

4-1-10. LCD Driver

Data transfer from display register to display F/F will forcibly be terminated when the LCD
assignment definition data contents is 0FFH. So, set the unused area of the LCD assignment definition
data other than 0FFH. For details, refer to each MSM64153 family microcontroller's User's Manual.

4-5

Chapter 4, Debugging Notes

Chapter 4, Debugging Notes

4-6

4-2. EASE64158 Timing

EASE64158 timing is shown on the next page. The entries on the timing chart are explained
below.

SYS•CLK System clock.

M1•S1 Start of instruction.

S2 Start of second machine cycle.

PC MSM64E153 evaluation chip address.

Cycle Counter Up Count timing of cycle counter.

Trace Latch 1 Trace latch timing for executed address during G command continuous
execution.

Trace Latch 2 Trace latch timing for everything but executed address (AR, BR, SP, ports,
RAM data) during G command continuous execution.

Trace Write Timing for writes of data latched with trace latch 1 or trace latch 2 timing to
trace data memory.

Trace Pointer Up Count timing of trace pointer.

Break Latch Break timing for address breaks, breakpoint breaks, trace full breaks, and cycle
counter overflow breaks.

SKIP Skip execution.

INT Interrupt transfer cycle flag.

4-7

Chapter 4, Debugging Notes

1-
m

ac
hi

ne
cy

cl
e

in
st

ru
ct

io
n

1-
m

ac
hi

ne
cy

cl
e

in
st

ru
ct

io
n

1-
m

ac
hi

ne
cy

cl
e

in
st

ru
ct

io
n

1-
m

ac
hi

ne
cy

cl
e

in
st

ru
ct

io
n

1-
m

ac
hi

ne
cy

cl
e

in
st

ru
ct

io
n

1-
m

ac
hi

ne
cy

cl
e

in
st

ru
ct

io
n

2-
m

ac
hi

ne
cy

cl
e

in
st

ru
ct

io
n

S
Y

S
•C

LK

M
1•

S
1

S
2

P
C

C
yc

le
C

ou
nt

er
 u

p

T
ra

ce
La

tc
h

1

T
ra

ce
La

tc
h

2

T
ra

ce
W

rit
e

T
ra

ce
P

oi
nt

er
 u

p

B
re

ak
La

tc
h

S
ki

p

IN
T

In
te

rr
up

t T
ra

ns
fe

r
C

yc
le

s

5-1

Chapter 5, Assemble Command

CCCChhhhaaaapppptttteeeerrrr 5555

AAAAsssssssseeeemmmmbbbblllleeee CCCCoooommmmmmmmaaaannnndddd

This chapter describes the assemble command in detail.

The assemble command (ASM command) is provided to enhance program debugging
effectiveness with the emulator. By using the assemble command, the user can rewrite code memory
using OLMS-64K mnemonics.

The assemble command supplied with SID64K performs symbol processing with a complete 2-
pass process. Thus it can make use of symbols loaded with the LOD command, as well as labels,
including forward references. Symbols defined within the assemble command can also be referenced by
other commands. In addition, the assemble command supports operators compatible with C language,
enabling addressing with complex expressions.

Furthermore, the assemble command supports code segments and data segments as logical
memory segments. This allows coding of memory allocations within data memory.

The explanations of this chapter assume the MSM64153 as an example. For other chips, refer
that chip’s corresponding user’s manual.

5-1. Address Space

The OLMS-64K series has two physically independent memories, code memory and data
memory. Each consists of contiguous addresses, and both are logically defined as independent logical
address spaces:

❏ Code address space
❏ Data address space

Code address space corresponds one-for-one with code memory, with addresses allocated in 1-
byte units. Data address space corresponds one-for-one with data memory, with addresses allocated in
4-bit units. In order to clearly separate these address spaces, a segment type attribute is assigned to
each.

When a symbol is defined at an address in one of these address spaces, the symbol is assigned
the value of that address value and the segment type of that address space.

The above explanation is summarized in Table 5-1.

Table 5-1. Address Spaces and Segment Types (example of MSM64153)

Chapter 5, Assemble Command

5-2

Address Space Corresponding Area Segment Type

Code address space Code memory area (0~BFFH) CODE

Data address space Internal RAM data area in
data space (0~760H)

DATA

5-2. Segments

The concept of segments is introduced with the ASM command. The ASM command allocates
segments to program memory. A segment, defined as an area that has contiguous addresses, is the
basic unit for constructing programs.

Segments are classified into the following two types, depending on which address spaces they
are allocated to.

CODE segment Code address space
DATA segment Data address space

Each segment has its own location counter. A location counter points to a location within its
segment. Location counters are managed by the ASM command. The range of locations for each
segment is shown below (an example of MSM64153).

Segment Location Range

CODE segment 0~0BFFH

DATA segment 0~0760H

Program coding within each segment reflects the features of the corresponding memories.
CODE segments are coded with mnemonics that generate machine language code, and with DB and DW
directives that perform memory initialization. DATA segments are coded with DS directives that reserve
areas for storage. Non-CODE segments cannot be coded to initialize memory contents. For either
segment, the location counter can be set to any value with the ORG directive.

The value of a segment’s location counter expresses a physical address. Segments are
initialized by placing CSEG and DSEG directives within a program.

5-3. Symbol Table

The ASM command has a data table for managing symbols. Generally called a symbol table, it
holds symbols expressed within a program and various information about them. The size of the symbol
table depends on the size of usable memory.

If the size of memory becomes insufficient for the table, then at that point in time the ASM
command will output an error message and terminate assembly.

5-3

Chapter 5, Assemble Command

5-4. Assembly Language Format

This section describes the rules of assembly language and the syntax of a source program.

5-4-1. Character Set

All 1-byte character codes can be used. Characters that require 2-byte codes (Japanese
characters) cannot be used.

5-4-2. Statement Format

The input of the assemble command is defined as a block of statements. A statement is a
character string of up to 56 characters, ending with a carriage return key input.

Statements are broadly divided into instruction statements and directive statements. Instruction
statements are statements that will be translated into machine language code for OLMS-64K series
microcomputers. Directive statements are statements for controlling the assemble command; they are
not translated into machine language code.

Statements are constructed from four fields: label, instruction, operand, and comment. They are
generally coded as follows.

LOOP1: ADC @XY ;Comment
label instruction operand comment

These four fields are not necessarily required to code statements of actual source programs.
Only the needed fields have to be coded. As a special case, blank lines (lines with just a carriage return
key input) are recognized as statements.

The order of the fields cannot be altered even if one or more is omitted in the statement.
Between the instruction field and operand field one or more spaces or tabs are required. Other fields can
be delimited by any number of spaces or tabs (including zero, where two fields are coded with no
separation). The maximum number of characters in one statement is 56.

Each field is defined as follows.

(1) Label field

A label field comprises a symbol followed by a colon (:). The colon is handled as the
termination code of the label field. Any number of blanks or tabs (including 0) can be placed
between the symbol and the colon. The symbol of a label field is assigned the value of the
location counter and the segment type of the segment that contains the label field’s
statement. The symbol of a label field can be referred to by any statement’s operand field.

(2) Instruction field

For an instruction statement, the instruction field codes a reserved word that corresponds to
machine language (these reserved words are referred to as “instruction mnemonics” or
simply “mnemonics” below). For a directive statement, the instruction field codes a reserved
word that corresponds to a directive.

Chapter 5, Assemble Command

5-4

(3) Operand field

An operand field codes the necessary number of operands for the instruction coded in the
instruction field. Depending on the instruction type, there may be no operand field.
Operands are delimited by commas (,). Any number of spaces or tabs can be placed before
and after a comma.

(4) Comment field

A comment field starts with a semicolon (;) and ends with a carriage return key. The contents
of a comment field are ignored during assembly processing, and have no effect on assembly.

5-4-3. Symbols

Symbols express numbers, addresses, registers, and flags. They can be broadly divided
between reserved symbols and user-defined symbols. Reserved symbols, such as SFR, are symbols
whose meanings and values are predefined. User-defined symbols are defined by the user within the
program. By using these symbols effectively, programs can be input more efficiently.

5-4-3-1. Reserved Symbols

The ASM command contains basic instructions, directives, control statements, special assembler
symbols, and operators as reserved words. There are also data address symbols, bit address symbols,
and code address symbols defined for SFR addresses.

These reserved words can be used, but not defined, in a user program. They can only be used
for their original purpose. In other words, reserved words are not permitted to be used as labels in a
program or to be newly defined with symbol definition directives.

(1) Special assembler symbols

Special assembler symbols are symbols used for certain register types that are required as
operands of certain instructions. The special assembler symbols and their corresponding
registers are shown below.

Special Assembler Symbol Register

BA BA register pair

BSR Bank specification register

HL HL register pair

@XY XY register pair (indirect addressing)

(2) Data address symbols

Data address symbols have as their values I/O data addresses allocated to SFR space (0H—
07FH of data address space). Such I/O addresses could by programmed directly as numeric
constants, but such programs are difficult to read. Thus, these addresses should be coded
using the predefined reserved words.

Because the OLMS-64K series is premised on ASIC expansion for I/O, the names and
addresses assigned to I/O will differ for each particular user. To handle this, the debugger
reads data address symbol definition files (DCL files) for each device when it initializes.

5-5

Chapter 5, Assemble Command

(3) Code address symbols

Code address symbols have particular code addresses as their values. For example, the
reset entry address, interrupt entry addresses, and other addresses fixed in advance will be
assigned to symbols. Code address symbols may also differ for different devices, so
similarly to data address symbols, this is handled by reading definition files.

5-4-3-2. User-Defined Symbols

Within a source program, symbols defined as labels and symbols defined with symbol definition
directives (EQU, CODE, DATA, SET) are called user-defined symbols. A user-defined symbols is given
a value and segment type in accordance with type of statement that defines the symbol and with the type
of segment that includes the statement.

Symbols follow the rules below.

(1) Usable character set for symbols

The following characters can be used for symbols.

However, in order to distinguish symbols from numeric constants, the first character of a
symbol must not be a numeric digit. Up to 50 characters may be used for a symbol. The
assemble command does not distinguish between upper-case and lower-case letters. For
example, “TELEX” and “telex” are handled as the same symbol. This feature enables long
symbols to be given readable names. For instance, the symbol

WATCHDOGTIMER

is more difficult to read than

WatchDogTimer.

The second symbol can be comprehended immediately.

In general, a symbol can be defined only once within a single module. The symbol defined
first will be valid. Definitions with the SET directive are an example of this.

5-4-3-3. Location Counter Symbol

The dollar sign ($) is allowed as a symbol indicating the value of the location counter. It indicates
the address holding the instruction that uses it. If that instruction is a 2-word instruction, then the location
counter value will be the address of the first word. Take the following instruction as an example.

JP $-5 ;Jump to the fifth address before the current location
counter

“$” may also be used within user-defined symbols. The “$” is handled as the location counter
symbol only when it is used alone. For example, $$ and A$ are handled as user-defined symbols.

Chapter 5, Assemble Command

5-6

A — Z a — z 0 — 9 ? _ $

!

5-4-4. Constants

5-4-4-1. Integer Constants

The assemble command handles strings that start with a digit 0 to 9 as integer constants.

Binary, octal, decimal, and hexadecimal numeric expressions are permitted as integer constants.
In order to distinguish between these expression radices, a type suffix is appended after the number. For
decimal constants only the type suffix “D” may be omitted. When a hexadecimal constant’s first character
would normally be a letter (A—F), a zero needs to be inserted as the first character to distinguish it from a
symbol.

Table 5-2. Integer Constant Expression Format

5-4-4-2. Character Constants

Character constants are characters and escape sequences enclosed in single quotation marks
(‘). If a character enclosed in single quotation marks is anything other than a backslash (\), then the
character constant will have that character’s ASCII code as its value. If the character after a single
quotation mark is a backslash (\), then the character constant will be given a value 00H—FFH in
accordance with the code following. The backslash (\) and its following code are called an escape
sequence.

❏ Escape sequences

\nnnEach ‘n’ is a digit 0—7. The ‘nnn’ is recognized as a three-digit octal number which will
be taken as the value of the character constant.

\xnn or \XnnEach ‘n’ is a hexadecimal digit (0—9, A—F). The ‘nn’ is recognized as a two-digit
hexadecimal number which will be taken as the value of the character constant.

\aThe ‘a’ can be any character other than ‘x’ or ‘X.’ The character constant is given the
ASCII code of ‘a’ as its value. This escape sequence is used to code a single quotation
mark or a backslash.

‘\’’ expresses a single quotation mark.
‘\\’ expresses the backslash.

1. Character constants are used to code byte values. They should evaluate to values within
the range 0H—0FFH. Accordingly, characters with 2-byte codes (Japanese characters)
cannot be used between single quotation marks. If an escape sequence evaluates to a
value larger than 0FFH, then an error will occur.

5-7

Chapter 5, Assemble Command

Number Type Characters Used Type Suffix Examples

Binary (radix 2) 0, 1 B
1010B, 01101101B,

1001_1001B

Octal (radix 8) 0–7 O, Q 271O, 514Q

Decimal (radix 10) 0–9 D 30D, 1263

Hexadecimal (radix 16) 0–9, A–F H 753H, 0C6E7H

!

2. The escape sequences described here are based on the escape sequences of C
language. However, such special C character codes as \t (tab), \b (backspace), and \n
(carriage return) are not permitted.

5-4-4-3. String Constants

String constants are strings of up to 50 characters enclosed in double quotation marks (“). They
are used only as operands of DB and DW directives. A string constant is given the string’s ASCII codes
as its value.

For example, the ASCII codes of ‘A,’ ‘B,’ and ‘C’ are 41H, 42H, and 43H respectively, so the code

DB “ABC”

will result in the same code as

DB 41H, 42H, 43H.

Furthermore, string constants can make use of the escape sequences described in section 5-4-4-
2. For example,

DB “Hello world”, 0DH, 0AH

can be coded as

DB “Hello world\x0d\x0a”.

1. Assembly languages in general do not distinguish between character constants and
string constants. Frequently both are expressed with single quotation marks. The
reason for distinguishing them here is to match the C language specifications for
operators and constant expressions in a unified manner.

2. (For programmers familiar with C language)
String constants of the assemble command are based on C language, but there is one
big difference. In C, a null (‘\0’) is automatically appended after the string, but the
assemble command does not add a null to string constants.

Chapter 5, Assemble Command

5-8

!

!

!

5-4-5. Expressions

5-4-5-1. General Format of Expressions

Expressions are coded in the operand field of instructions to provide values. Except for special
assembler symbols, all operands of instructions are expressions. Expressions are coded by joining
symbols (other than special assembler symbols), constants (except for string constants), and operators.
Any number of spaces or tabs may be placed between the symbols, constants, and operators that
comprise an expression.

Expressions are evaluated by applying the calculations indicated by the operators to the values of
the symbols and constants. The evaluation of an expression has both a value and a type. The value is
incorporated within the instruction code, while the type is matched against the type of the segment in
which the instruction lies. Single symbols and constants are also recognized as expressions (probably
most operands will be coded in this manner). Refer to section 5-4-5-2 regarding the operators used in
expressions, and section 5-4-5-3 regarding type evaluation methods.

During evaluation of expressions all values are handled as unsigned 32-bit data. If a calculation
result is negative, then it will become a 2’s complement expression. Overflows are ignored. An
instruction’s operands have an appropriate range of values for that instruction. When an expression is
coded as the operand of an instruction, overflows that occur during calculation are completely ignored,
and only the final result will be evaluated for its appropriateness to the instruction. For example, the
operand range of the jump instruction LJP is 0—0BFFH (the entire code segment area). However,

LJP 0FFFFFFFF + 1

will not result in an error. The value 0FFFFFFFFH clearly exceeds the operand range of the LJP
instruction, but by evaluating the expression with unsigned 32-bit calculations and ignoring overflows, the
result will be 0. The above instruction therefore does not become an error, but instead is translated into
machine language as

LJP 0

5-4-5-2. Operators

This section describes the operators that can be used within expressions.

5-4-5-2-1. Arithmetic Operators

5-9

Chapter 5, Assemble Command

Operators Function

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo operation (returns the remainder from dividing the left operand by the right
operand)

5-4-5-2-2. Bitwise Logical Operators

5-4-5-2-3. Relational Operators

The result of a calculation with a relational operator is boolean value, either TRUE or FALSE.
Here FALSE equals 0 and TRUE equals 1.

5-4-5-3. Operator Precedence

Operators are not evaluated in their order of appearance, but rather are evaluated in accordance
with some predetermined operator precedence. Table 5-3 shows the operator precedence. Operator
precedence of 1 is the highest, and successive numbers indicate lower precedence. Operators shown on
the same line have the same precedence.

Operators are evaluated in order of precedence, from high to low. Operators with the same
precedence are evaluated in order of appearance, from left to right.

Chapter 5, Assemble Command

5-10

Operator Function

& Bitwise logical AND of left and right operands.

| Bitwise logical OR of left and right operands.

^ Bitwise exclusive OR of left and right operands.

<< Bit shift left operand to the left by the value of the right operand.

>> Bit shift right operand to the right by the value of the right operand.

˜ Bitwise invert the right operand.

Operator Function

> Returns TRUE if the left operand is greater than the right operand.
Returns FALSE otherwise.

< Returns TRUE if the left operand is less than the right operand.
Returns FALSE otherwise.

== Returns TRUE if the left operand and the right operand are equal.
Returns FALSE otherwise.

Precedence Operators

1 ()

2 ˜

3 * / %

4 + -

5 << >>

6 < >

7 ==

8 &

9 ^

10 |

5-4-5-4. Segment Type Attributes For Expression Evaluation

The evaluated results for most expressions constructed using operators will have no segment
type attribute. However, in several cases they do have a segment type attribute. The rules for segment
types within expressions are given below.

(1) An expression that is only a symbol or constant that has no segment type will itself have
no segment type.

(2) An expression that is only a symbol that has a segment type will itself have that segment
type.

(3) The result of an expression evaluated with the operators +, -, and () may or may not
have a segment type. Table 5-4 shows the rules used to decide. In the table, the
symbols ‘S’ and ‘N’ indicate whether or not the expression result has a segment type.

S Value has a segment type.
N Value has no segment type.

(4) The result of an expression evaluated with any operators other than +, -, or () will not
have a segment type.

Table 5-4.

5-11

Chapter 5, Assemble Command

Operand Operator

()

+

-

N +

S +

S +

N -

S -

S -

Operand Result

S S

S S

S S

S S

N S

S N

S S

N S

S N

5-4-6. Addressing Modes

The ASM command has the following addressing modes.

1. HL indirect addressing mode
2. XY indirect addressing mode
3. Direct addressing mode
4. Stack pointer indirect addressing mode

For details on addressing modes, refer to the user’s manual for the particular microcomputer of
the MSM64153 series.

5-5. Basic Instructions

Basic instructions are instructions that correspond to OLMS-64K machine language. They are
translated from assembler commands, and after being converted to machine language instructions, they
are stored in code memory. For details, refer to the user’s manual for the particular microcomputer of the
MSM64153 series.

Chapter 5, Assemble Command

5-12

5-6. Directives

Directives are used to control the conditions of assembly, so except for the DB and DW
directives, they do not generate any code.

In general, directives can be coded anywhere within a program, with the following exception: DB
and DW directives cannot be coded within a code segment.

5-6-1. Symbol Definition Directives

Symbol definition directives allow the user to define symbols that express numbers and
addresses. Defined symbols can be referenced from anywhere within a program.

5-6-1-1. EQU

Format

symbol EQU constant expression
or symbol = constant expression

Description

The value given by the expression is assigned to the symbol. Symbols defined with this directive
are not given a segment type.

The expression must not include any forward references, and must evaluate to a value in the
range 0—0FFFFH (unsigned 16-bit). Symbols defined with this directive are not allowed to be redefined
at another location in the same module.

Example

ABC EQU 0BH
ZZZ = ABC+2
: : :

LAI ABC
: : :

LMI ZZZ

5-13

Chapter 5, Assemble Command

5-6-1-2. SET

Format

symbol SET constant expression

Description

The value given by the expression is assigned to the symbol. Symbols defined with this directive
are not given a segment type.

The expression must not include any forward references, and must evaluate to a value in the
range 0—0FFFFH (unsigned 16-bit). Symbols defined with this directive may be redefined any number of
times in the same program with additional SET directives.

Example

FLAG SET 1
:
LAI FLAG ;Value of flag is 1
:

FLAG SET 2
:
LMI FLAG ;Value of flag is 2

: : :

5-6-1-3. CODE

Format

symbol CODE constant expression

Description

The value given by the expression is assigned to the symbol. Symbols defined with this directive
are given the CSEG segment type.

The expression must not include any forward references, and must evaluate to a value in the
code address range (0—0BFFH). Symbols defined with this directive are not allowed to be redefined at
another location in the same module.

Example

CADR1 CODE 250H ;Assign code address 250H to CADR1
CADR2 CODE 500H ;Assign code address 500H to CADR2

Chapter 5, Assemble Command

5-14

5-6-1-4. DATA

Format

symbol DATA constant expression

Description

The value given by the expression is assigned to the symbol. Symbols defined with this directive
are given the DSEG segment type.

The expression must not include any forward references, and must evaluate to a value in the
data address range (0—760H). Symbols defined with this directive are not allowed to be redefined at
another location in the same module.

Example

DADR DATA 30H ;Assign data address 30H to DADR
BUFF DATA DADR ;Assign data address DADR to BUFF

5-15

Chapter 5, Assemble Command

5-6-2. Memory Segment Control Directives

Code and data definitions are placed in address spaces (segments) that should be defined. The
assemble command selects an address space with memory segment directives.

Each segment has its own independent location counter. The location counters are managed by
the assemble command itself. Location counter values correspond one-for-one with the addresses in
each segment.

The code segment’s location counter is initialized to a value given as an operand when the ASM
command is invoked. The data segment’s location counter is initialized to 0 when the assemble
command is invoked.

One segment can be split up into numerous instances within a program. In such cases, the
location counter of a newly selected segment will inherit the value held by the location counter of the
same segment when last selected.

One address segment can be selected at one time. A selected segment is effective until either a
new segment is selected or until an END directive is encountered. In other words, the termination of a
segment is not explicitly coded.

The code segment (CSEG) is selected when the assemble command is invoked. At this time the
location counter is initialized to 0.

5-6-2-1. CSEG

Format

CSEG

Description

This directive defines the start of the code segment. When CSEG is first defined the location
counter will have a value of 0. The location counter of the code segment takes values in the range 0—
0BFFH. The location counter is updated by ORG, DS, DB, and DW directives as well as instructions that
translate to machine language.

When CSEG is defined two or more times, its location counter value will start from the last
location counter value within the previous CSEG.

Example

ORG 100H
DS 10 ;100H
AIS 0FH ;10AH
DSEG
:
CSEG
DCM ;10BH
DW 123 ;10CH

Chapter 5, Assemble Command

5-16

5-6-2-2. DSEG

Format

DSEG

Description

This directive defines the start of the data segment. When DSEG is first defined the location
counter will have a value of 0. The location counter of the code segment takes values in the range 0—
0760H. The location counter is updated by ORG, and DS directives.

When DSEG is defined two or more times, its location counter value will start from the last
location counter value within the previous DSEG.

Example

DSEG
ORG 10H

DX1: DS 10 ;10H
CSEG
:
DSEG

DX2: DS 5 ;1AH
DX3: DS 2 ;1FH

:

5-17

Chapter 5, Assemble Command

5-6-3. Location Counter Directives

Location counter directives are used to change the location counter to any value.

5-6-3-1. ORG

Format

ORG constant expression

Description

This directive changes the location counter of the current segment to the value of the constant
expression.

The constant expression must not include forward references. Its value cannot exceed the range
for locations of the current segment. If the constant expression has a segment type, then it must be the
same as the current segment type.

If this directive increases the location counter from its current value, then the addresses in the
intervening space will reside in the currently selected segment.

Example

ORG 50H
LAM ;50H
AND @XY ;51H
INM ;53H
:
ORG 60H
LMI 5
XAM ;60H
: ;62H

Chapter 5, Assemble Command

5-18

5-6-3-2. DS

Format

[label:] DS constant expression

Description

This directive reserves an area with the number of bytes given by the expression and advances
the location counter. The assemble command does not generate and code in this area.

The DS directive cannot be used within a bit segment.

The constant expression must not include forward references.

This directive updates the location counter of the current segment by the value of the expression,
but it cannot exceed the range of that segment’s location.

Example

ORG 20H
DS 10 ;Reserves code memory

;for 10 bytes
LMI 0FH
DSEG
DS 50 ;Reserves code memory
: ;for 50 bytes
CSEG
NOP
:

5-19

Chapter 5, Assemble Command

5-6-3-3. NSE

Format

NSE

Description

This directive advances the location to a 16-byte boundary.

Example

JPL SUB_1 ;131H
NSE

TBL: DB 41H ;140H
DB 42H
:
:

Chapter 5, Assemble Command

5-20

5-6-4. Data Definition Directives

Data definition directives initialize code memory in 1-byte or 1-word units.

5-6-4-1. DB

Format

[label:] DB constant expression(s)

Description

This directive is used to initialize the contents of code memory in 1-byte units. Accordingly, it is
used only within the code segment. Each expression must evaluate in the range 0—0FFH.

String constants can be used as the constant expression. They will be recognized as a string of
data of the 1-byte ASCII codes of each character. When two or more expressions or string constants are
coded, they must be separated by commas.

Each item of data is allocated to memory in order starting from the current code address.

String constants can contain a maximum of 50 characters.

If the location symbol ($) is specified, then it will be recognized as the code address value at the
defined location.

Example

DB 0
DB 1, 2, 3
DB ‘A’

MSG: DB “string”

5-21

Chapter 5, Assemble Command

5-6-4-2. DW

Format

[label:] DW constant expression(s)

Description

This directive is used to initialize the contents of code memory in 1-word units. Accordingly, it is
used only within the code segment. Each expression must evaluate in the range 0—0FFFFH.

When two or more expressions are coded, they must be separated by commas. Each item of
data is allocated to memory in order starting from the current code address.

If the location symbol ($) is specified, then it will be recognized as the code address value at the
defined location.

Note: Unlike the DB directive, the DW directive cannot take string constants for operands.

Example

DW ‘A’ ;Allocate a 0
DW 1 ;to the upper byte
DW 12345
ORG 100H
DW $;Allocate
DW $-2 ;100H

Chapter 5, Assemble Command

5-22

5-6-5. Assembler Directives

Assembler directives add special checking functions during assembly and change the state of
assembly.

5-6-5-1. END

Format

END

Description

This directive indicates the end of a program. When the ASM command encounters an END
directive, it completes pass 1 processing and immediately enters pass 2 processing.

5-23

Chapter 5, Assemble Command

Chapter 5, Assemble Command

5-24

AAAAppppppppeeeennnnddddiiiixxxx

A-1

Appendix

A.1 User Cable Configuration
A.2 Pin Layout of User Cable Connectors
A.3 RS232C Cable Configuration
A.4 Emulator RS232C Interface Circuit
A.5 If EASE64158 Won’t Start
A.6 If POD64158 Isn’t Operating Correctly
A.7 User Cable Peripheral Circuit
A.8 Probe Cable Configuration
A.9 Mounting EASE-LP2 EPROMs
A.10 Mounting POD64158 EPROMs
A.11 Mounting the POD64158 Evaluation Chip
A.12 Error Messages

A-1. User Cable Configuration

(1) User Cable 1 Configuration

The diagram below shows the configuration of the accessory user cable 1 (one 64-pin cable).
The user cable 1 should be connected to USRCN1 connector.

Appendix

A-2

Pin 1

(2) User Cable 2 Configuration

The diagram below shows the configuration of the accessory user cable 2 (one 60-pin cable).
The user cable 2 should be connected to USRCN2 connector.

A-3

Appendix

Pin 1

A-2. Pin Layout of User Cable Connectors

(1) Pin Layout of User Cable Connector 1 (USRCN1)

User Connector 1 (USRCN1)

• As shown at left, user connector 1 is a 64-pin
connector with pin 1 at the upper right.

The user connector 1 (USRCN1) includes all segment pins available on the MSM64E153
evaluation chip. For details, refer to each MSM64153 family microcontroller's User's Manual.

Appendix

A-4

o o o

o o o

o o o

o o o

63PIN 1PIN

64PIN 2PIN

!

A-5

Appendix

Pin Number Signal Name Pin Number Signal Name

1 COM 2 33 SEG 29

2 1 34 28

3 4 35 31

4 3 36 30

5 SEG 1 37 33

6 0 38 32

7 3 39 35

8 2 40 34

9 5 41 37

10 4 42 36

11 7 43 39

12 6 44 38

13 9 45 41

14 8 46 40

15 11 47 43

16 10 48 42

17 13 49 45

18 12 50 44

19 15 51 47

20 14 52 46

25 21 57 53

26 20 58 52

27 23 59 55

28 22 60 54

29 25 61 57

30 24 62 56

31 27 63 59

32 26 64 58

21 17 53 49

22 16 54 48

23 19 55 51

24 18 56 50

User Connector 1 Pin List

(1) Pin Layout of User Cable Connector 2 (USRCN2)

User Connector 2 (USRCN2)

• As shown at left, user connector 2 is a 60-pin
connector with pin 1 at the upper right.

The user connector 2 (USRCN2) includes all of the pins other than segment pins available on
the MSM64E153 evaluation chip. For details, refer to each MSM64153 family
microcontroller's User's Manual.

The VIN pin and the VOUT pin can be used only with the MSM64153 family microcontrollers
that are equipped with the battery check circuit. For detils, refer to each microcontroller's
User's Manual.

The CLK•OUT pin provides the monitor output of the internal clock generated in the
POD64158 clock generator.

59th and 60th pins of the user connector 2 (USRCN2) will output Vss1 when the
MSM64E153 evaluation chip's operating voltage is 1.5 V, and will output Vss2 when the
voltage is 3.0 V.

Appendix

A-6

o o o

o o o

o o o

o o o

59PIN 1PIN

60PIN 2PIN

!

!

!

!

Note: NC indicates pin is not connected.

A-7

Appendix

Pin Number Signal Name Pin Number Signal Name

1 BD/ 31 P5. 0

2 BD 32 P4. 3

3 MD0/ 33 P5. 2

4 MD0 34 P5. 1

5 MD1/ 35 P6. 0

6 MD1 36 P5. 3

7 N.C. 37 P6. 2

8 N.C. 38 P6. 1

9 N.C. 39 P7. 0

10 N.C. 40 P6. 3

11 VIN 41 P7. 2

12 N.C. 42 P7. 1

13 P0. 0 43 USER • RESET

14 VOUT 44 P7. 3

15 P0. 2 45 N • C

16 P0. 1 46 EXT • CLK

17 P1. 0 47 CLK • OUT

18 P0. 3 48 N • C

19 P1. 2 49 N • C

20 P1. 1 50 N • C

25 P3. 0 55 N • C

26 P2. 3 56 N • C

27 P4. 0 57 N • C

28 P3. 1 58 N • C

29 P4. 2 59 Vss1 or Vss2

30 P4. 1 60 Vss1 or Vss2

21 P2. 0 51 N • C

22 P1. 3 52 N • C

23 P2. 2 53 N • C

24 P2. 1 54 N • C

User Connector 2 Pin List

A-3. RS232C Cable Configuration

(1) For NEC PC9801 series computers

Appendix

A-8

Emulator Serial Port Host Computer Serial Port

Signal name Terminal no. Terminal No. Signal name

CD 1 1 TxD
TxD 2 2
RxD 3 3 RxD
DSR 4 4 RTS
S. GND 5 5 CTS
DTR 6 6 DSR
CTS 7 7 S. GND
RTS 8 8 CD

9 .
.

20 DTR

(2) For IBM PC/AT computers

A-9

Appendix

Emulator Serial Port Host Computer Serial Port

Signal name Terminal no. Terminal No. Signal name

CD 1
TxD 2
RxD 3
DSR 4
S. GND 5
DTR 6
CTS 7
RTS 8

9

1 CD
2 RxD
3 TxD
4 DTR
5 S. GND
6 DSR
7 RTS
8 CTS
9

A-4. Emulator RS232C Interface Circuit

Appendix

A-10

8
2
C
5
1

RTS

DSR

CTS

RxD

TxD

DTR

RS232C
Connector

8

4

7

3

2

6

5

1

9

+5 V

MAX237

A-5. If EASE64158 Won’t Start

A-11

Appendix

Are you using MS-DOS
(PC-DOS) version 3.1

or higher?

Can the personal computer
that you are using access the RS232C port

through system calls to AUX?

Is the SID64K start-up
message displayed? (refer to item 9

of Section 2-2-6)

Start

Use MS-DOS (PC-DOS)
version 3.1 of higher

Switch to an appropriate
personal computer (for
example, NEC-PC9801)

The SID64K program fi le
(SID64K.EXE) might be
damaged. Contact the dealer
from whom you purchased the
system or OKI Electric's Sales
Department immediately.

Yes

Yes

To
next
page

No

No

No

Yes

Appendix

A-12

From
previous

page

Do the
interface method and data

transfer parameters (baud rate, data length,
etc.) match those of the host

computer?

Change the interface method and
transfer parameters to match.
(refer to Section 2-2-6,
"Starting EASE64158 Emulator")

Are the cables connected correctly? Connect the cables correctly.

Is the power
supply voltage correct

(AC100–240 V)?

Input the correct power supply
voltage.

Try starting the emulator from the beginning one
more time. If this still does not work, then the
EASE64158 could be damaged. Contact your Oki
Electric dealer.

YES

YES

YES

NO

NO

NO

A-6. If POD64158 Isn’t Operating Correctly

A-13

Appendix

Is the DC Power

Supply cable connected correctly

to the DC power jack?

Connect the DC power supply
cable correctly.

Are the dipswitches set correctly?
Set the dipswitches correctly.
(refer to Section 2-2-2,
"EASE64158 Switch Settings").

Mount the evaluation chip correctly.
(refer to Appendix 11, "Mounting
the POD64158 Evaluation Chip").

Mount the EPROM correctly.
(refer to Appendix 10, "Mounting
POD64158 EPROMs").

Are the user cables connected properly? Connect the user cables correctly.

YES

YES

YES

NO

NO

NO

NO

YES

NO

Start

Is the evaluation chip mounted
correctly?

Is the EPROM that contains
the user program mounted correctly?

To
next
page

YES

Appendix

A-14

Is the data in the EPROM corrupted?

Are the chip select
dipswitches set correctly?

From
previous

page

Mount an EPROM written with
correct data.

Set the chip select dipswitches
correctly (refer to Section 2-2-4,
“Changing the Chip Select
Dipswitches”).

Restart the system once more from the beginning.
If restarting does not work, then the POD64158
may be damaged. Contact your nearest Oki
Electric representative.

YES

NO

YES

NO

A-7. User Cable Peripheral Circuit

A-15

Appendix

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

COM2
1
4
3

SEG1
0
3
2
5
4
7
6
9
8

11
10
13
12
15
14
17
16
19
18
21
20
23
22
25
24
27
26
29
28
31
30
33
32
35
34
37
36
39
38
41
40
43
42
45
44
47
46
49
48
51
50
53
52
55
54
57
56
59
58

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
59
60

BD1
BD

MD0/
MD0
MD1/
MD1
N.C.
N.C.
N.C.
N.C.
VIN

N.C.
P0.0

VOUT
P0.2
P0.1
P1.0
P0.3
P1.2
P1.1
P2.0
P1.3
P2.2
P2.1
P3.0
P2.3
P4.0
P3.1
P4.2
P4.1
P5.0
P4.3
P5.2
P5.1
P6.0
P5.3
P6.2
P6.1
P7.0
P6.3
P7.2
P7.1

USER•RESET
P7.3
N.C.

EXT•CLK
CLK•OUT

N.C.
Vss1 or Vss2
Vss1 or Vss2

M
S
M
6
4
E
1
5
3

COM 1
2
3
4

SEG 1

SEG 59

P0.0
0.1
0.2
0.3
1.0
1.1
1.2
1.3

P2.0
2.1
2.2
2.3
3.0
3.1

P4.0
4.1
4.2
4.3
5.0
5.1
5.2
5.3

P6.0
6.1
6.2
6.3
7.0
7.1
7.2
7.3

I
N

O
U
T

I
N

O
U
T

I
N

O
U
T

I
N

O
U
T

I
N

O
U
T

I
N

O
U
T

I
N

O
U
T

I
N

O
U
T

P0.0
0.1
0.2
0.3

P1.0
1.1
1.2
1.3

P2.0
2.1
2.2
2.3

P3.0
3.1

P4.0
4.1
4.2
4.3

P5.0
5.1
5.2
5.3

P6.0
6.1
6.2
6.3

P7.0
7.1
7.2
7.3

P0.0
0.1
0.2
0.3

P1.0
1.1
1.2
1.3

P2.0
2.1
2.2
2.3

P3.0
3.1

P4.0
4.1
4.2
4.3

P5.0
5.1
5.2
5.3

P6.0
6.1
6.2
6.3

P7.0
7.1
7.2
7.3

BD/
BD
MD0/
MD0
MD1/
MD1
VIN
VOUT
RESET
OSC1

Vss1

Vss2

to trace
circuit

User Connector 2
60 pin

User Connector 1
64 pin

SN74S1057

SN74S1057

SN74S1057

SN74S1057

TLC374

TLC374

TLC374

TLC374

TLC374

TLC374

TLC374

TLC374

A-8. Probe Cable Configuration

The connector on the right side of the emulation kit marked “PROBE” is for the probe cable. The
probe cable configuration is shown below.

(P1) (P2) (P3) (P4) (P5) (P6) (P7) (P8) (P9)
Black Brown Red Orange Yellow Green Blue Purple Gray

Appendix

A-16

Polarity mark

Heat-shrink
tube

The probe cable pins are described next.

The table below shows the probe connector color, the heat shrink tube color, and the cable color
for each pin.

The function of each pin is shown below.

P-1 Probe input bit 0

P-2 Probe input bit 1

P-3 Probe input bit 2

P-4 Probe input bit 3

P-5 Probe input bit 4

P-6 Probe input bit 5

P-7 Probe input bit 6

P-8 Probe input bit 7

P-9 External break signal input

A-17

Appendix

Probe connector

Heat-shrink tube

Cable

Pin number P-2

Brown

Gray

Gray,
Brown

P-3

Red

Gray

Gray,
Red

P-4

Orange

Gray

Gray,
Orange

P-5

Gray

Gray,
Yellow

P-6

Green

Gray

Gray,
Green

P-7

Blue

Gray

Gray,
Blue

P-8

Purple

Gray

Gray,
Purple

P-9

Gray

Gray

Gray,
Pink

Probe connector color

Heat shrink tube color

Cable color

P-1

Black

Gray

Gray,
Black

Yellow

A-9. Mounting EASE-LP2 EPROMs

Follow the procedure below to insert an EPROM into the EASE-LP2’s EPROM programmer.

(1) Release the EPROM locking lever on the top surface of the EASE-LP2, as shown below.

Appendix

A-18

OKIEASE-LP2

PIN 1

PIN 1

(2) Place the EPROM to be read or written in the EPROM socket, as shown below.

To set the EPROM, insert the EPROM in the EPROM socket while the EPROM locking lever is
up, and then flip the EPROM locking lever to the horizontal position.

The following types of EPROMs can be written using the EPROM programmer:

2764, 27128, 27256, 27512, 27C64, 27C128, 27C256, 27C512

A-19

Appendix

PIN 1

EPROM Socket

EPROM Locking Lever

A-10. Mounting POD64158 EPROMs

Follow the procedure below to insert an EPROM into the POD64158’s EPROM socket.

(1) Release the EPROM locking lever on the top surface of the POD64158, as shown
below.

Appendix

A-20

PIN 1
POD64158

OKI

PIN 1

EPROM Socket

(2) Place the EPROM containing the user program in the EPROM socket, as shown below.

To set the EPROM, insert the EPROM in the EPROM socket while the EPROM locking lever is up, and
then flip the EPROM locking lever to the horizontal position.

The following types of EPROMs can be be placed in the EPROM socket:

2764, 27128, 27256, 27512, 27C64, 27C128, 27C256, 27C512

The user program write area for each type is shown below.

User Program Write Areas
User program is written into shaded portions.

2764 27128 27256 27512

A-21

Appendix

PIN 1

EPROM Socket

EPROM Locking Lever

0000H 0000H 0000H 0000H

1FFFH

3FFFH

7FFFH

FFFFH

7FFFH

A-11. Mounting the POD64158 Evaluation Chip

Follow the procedure below to insert an evaluation chip into the POD64158’s EVA socket.

(1) Release the EVA socket locking lever on the top surface of the POD64158, as shown
below.

Be sure that the positions of the pin 1 markings on the evaluation chip and the POD64158
match.

The evaluation chip with an operating voltage of 1.5 V is marked MSM64E153-1.5V. The
evaluation chip with an operating voltage of 3.0 V is marked MSM64E153-3.0V.

Appendix

A-22

PIN 1

POD64158

OKI

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii ii
ii
ii
ii
ii
ii
ii
ii
ii
ii

Evaluation Chip

!

!

MSM64E153 - 1.5V

Evaluation Chip
Pin 1 Marking

(2) Place the evaluation chip in the EVA socket and then set the locking lever, as shown
below.

ALWAYS TURN OFF THE POWER SUPPLY BEFORE INSERTING OR REMOVING THE
EVALUATION CHIP.

If the evaluation chip is not set in the EVA socket correctly, then it may not operate properly.

When changing to an evaluation chip with a different operating voltage, the POD64158’s
dipswitch SW1-2 must be switched. For details, refer to Section 2-2-2, “EASE64158 Switch
Settings.”

A-23

Appendix

i i i i i i i i i i i i i i i i i i i i

EVA Socket

EVA Locking Lever

!

!

!

A-12. Error Messages

Error 002: Emulation busy.

A command that cannot be executed during emulation was entered.

Error 003: Data read error.

Data could not be read from code memory, data memory, or attribute memory. The hardware
might be damaged.

Error 004: Data write error.

Data could not be written into code memory, data memory or attribute memory. The hardware
might be damaged.

Error 006: Data verify error.

An error occurred during data verify.

Error 007: Data address error.

The input address was not an allowable value.

Error 011: Read only error.

An attempt was made to write data to write-disabled SFR.

Error 012: Write only error.

An attempt was made to read data from read-disabled SFR.

Error 013: No support command.

This command cannot be used on the current version.

Error 016: Data error.

The input data value was not an allowable value.

Error 017: Evachip powerdown.

The evaluation chip is currently powered down. To release power-down mode, input a reset
command or press the reset switch.

Error 018: Cancel due to N area accessed.

An unused code memory area was accessed.

Appendix

A-24

Error 019: Evachip may be faulty.

An evaluation chip might operate abnormally. The hardware might be damaged. Contact with Oki
Electric or sales agent as soon as possible.

Error 022: Mnemonic error.

Any error in the mnemonic specified for ICE.

Error 023: Search data not found.

The data searched for by a search command does not exist.

Error 025: Function not ready.

An attempt was made to use functions that are not supported in the current version. Contact with
Oki Electric or sales agent as soon as possible.

Error 028: Trace data not ready.

An attempt was made to access trace memory that contains no traced data.

Error 031: Machine trouble.

Any trouble in ICE. Contact with Oki Electric or sales agent as soon as possible.

Error 032: Resource number not defined.

Specified resource number cannot be recognized by ICE.

Error 035: Illegal parameter.

Incorrect parameter is specified for ICE.

Error 036: Trigger mode cancelled.

Trigger mode setting has been cancelled.

Error 051: Timeout Error.

This error message is displayed when the communication port of the host computer remains busy
for a fixed time, or when the emulator does not receive any reply from the host computer for a
fixed time. ICE abandons the communication for the current block data.

Error 052: Communication Error.

This error message is displayed when the data sent from the host computer is out of the specified
format, or when it includes an illegal code. The communication line might be in error.

Error 053: Memory insufficient error.

Any error caused by insufficient memory of the host computer.

A-25

Appendix

Error 054: Fatal error.

A fatal error occurred in communication control. Contact with Oki Electric or sales agent as soon
as possible.

Error 055: Communication buffer overflow.

This error message is displayed when the received data exceeds receive buffer capacity. Busy
control setting for the emulator might differ for the host computer.

Error 056: RS232C Transmitter busy.

Data could not be sent to the host computer.

Error 057: SOH Received.

This error message is displayed when both of the emulator and the host computer sent data
simultaneously. In this case, the host computer abandons data send and receives data from ICE.

Error 058: Illegal character.

An illegal code is included in received data.

Error 059: RS232C Transmitter empty.

Data could not be received from the host computer.

Error 080: Illegal character.

An illegal character is coded in a symbol.

Error 081: Item too long.

Input character string exceeds allowable number (130 characters).

Error 082: Illegal string constant.

Format of the character string is illegal.

Error 083: Missing terminater of string.

A terminator (“) is not found in a character string.

Error 084: Illegal character constant.

Format of character constant specification is illegal.

Error 085: Illegal hexadecimal character.

Any illegal hexadecimal expression.

Error 086: Illegal decimal character.

Any illegal decimal expression.

Appendix

A-26

Error 087: Illegal octal character.

Any illegal octal expression.

Error 088: Illegal binary character.

Any illegal binary expression.

Error 089: Too many parameters.

Number of input parameter exceeds allowable number.

Error 090: Illegal syntax.

Command expression is incorrect.

Error 091: Operation stack over flow.

The operator stack overflowed during expression analysis.

Error 092: Symbol not found.

Input symbol is undefined.

Error 093: Illegal expression.

There is an error in an expression.

Error 094: Symbol multi-definition.

Specified symbol already defined.

Error 095: Illegal label.

Any illegal character in a label.

Error 096: Reserved symbol.

A reserved word was specified.

Error 097: Special reserved word found in expression.

A special assembler symbol was coded within an expression.

Error 098: Illegal Record.

Any abnormality in Intel HEX file record information.

Error 100: Command not found.

The command does not exist.

A-27

Appendix

Error 101: Illegal address input.

The starting address is greater than the ending address.

Error 102: Illegal data input.

The input data value was not an allowable value.

Error 103: Input data out of range.

The input data value exceeded the allowable range.

Error 104: Illegal filename.

The path name or file name contains an error.

Error 105: File open error.

The specified file cannot be opened.
This error message is displayed when the specified file does not exist, or when the file is a write-
only file.

Error 106: File read error.

The file could not be read correctly.

Error 107: File close Failure.

The file could not be closed correctly.

Error 108: File write error.

The file cannot be written correctly. The file might be a read-only file.

Error 109: List file already opened.

An attempt was made to open the already opened list file.

Error 110: List file not opened.

An attempt was made to close a list file that has not been opened.

Error 111: List file close failure.

The list file could not be closed correctly.

Error 112: Batch file already opened.

An attempt was made to open the already opened batch file.

Error 113: Batch file close failure.

The batch file cannot be closed correctly.

Appendix

A-28

Error 114: Checksum error.

A checksum error found during file loading.

Error 115: Memory alloc insufficient.

The necessary memory area could not be reserved for continuing execution. This error message
is also displayed when the necessary memory area cannot be reserved for symbol storing.

Error 116: Symbol defined more than once.

An attempt was made to redifine the already defined symbol.

Error 117: Illegal symbol name.

Specified symbol name contains error.

Error 120: Register read error.

A failure occurred in reading register contents.

Error 121: Option error.

Any illegal option specification in LOD, SAV, or VER command.

Error 122: Illegal filename.

Any illegal character found in the input filename.

Error 123: Target address range over.

The specified address exceeds the EPROM address range.

Error 124: DCL file not found.

The DCL file was not found.

Error 125: Macro Command name too long.

Input macro command name could not be defined, because the name is longer than 8 characters.

Error 126: Illegal macro name.

Illegal macro command name was input.

Error 127: Macro buffer overflow.

An attempt was made to define 10 lines or more of command as a macro.

Error 128: This command is not allowed in MAC.

An attempt was made to define unallowed command in a macro.

A-29

Appendix

Error 129: Maximum number of mnemonic is Port:2, Register:1.

Number of trace object exceeds the allowable range. Two ports and one register in maximum
can be specified as trace object.

Error 132: Instruction error in DCL file.

The #INSTRUCTION of the DCL file contains any assembler instruction that cannot be used for
MSM64153 family.

Error 133: Forwarding address out of range.

The destination address for MOV command exceeds the allowable range.

Error 134: Illegal TP input.

Input TP for DTM command contains any error.

Error 135: Trace object error.

An undefined trace object was specified for a mnemonic of STF command or S command. Use
CTO command to define it.

Error 136: Trace trigger mnemonic error.

The mnemonic of the specified trace trigger contains any error.

Error 137: Too many number of trigger address.

Number of specified trigger address exceeds allowable range.

Error 151: Connected ICE cannot be used. (May be Custom ICE)

Currently connected ICE cannot be used. It might be a custom ICE.

Error 156: This command is not allowed in emulation.

Any command that cannot be used in emulation mode was input.

Error 157: COMMAND.COM could not execute.

Child process (COMMAND.COM) could not be invoked in SH command execution.

Error 158: Illegal parameter. (Can't use in EXPAND mode)

Any parameter that cannot be used in EXPAND mode was input.

Appendix

A-30

	NOTICE
	TABLE OF CONTENTS
	EASE-LP2 External Views
	POD64158 External Views
	Chapter0 Before Starting
	Confirm Shipping Contents (1)
	Confirm Shipping Contents (2)
	Confirm Floppy Disk Contents
	Host Computer
	Operating System
	Floppy Disk Contents

	Chapter1 Overview
	EASE64158 Emulator Configuration
	Control System (EASE-LP2)
	POD64158 Evaluation Module
	ASM64K Cross-Assembler
	SID64K Symbolic Debugger
	System Configuration

	EASE64158 Parts and Functions
	Control System (EASE-LP2)
	POD64158 Evaluation Module

	Program Development With EASE64158
	General Program Development and EASE64158
	From Source File To Object File
	Files Usable With the EASE64158 Emulator

	Chapter2 EASE64158 Emulator
	EASE64158 Functions
	Overview
	Changing the Target Chip
	Data Memory Space
	Code Memory (Program Memory) Space
	Emulation Functions
	Realtime Trace Functions
	Break Functions
	Performance/Coverage Functions
	Probe Cable Functions
	EPROM Programmer
	Symbolic Debugging Functions
	Assemble Command and Disassemble Command

	EASE64158 Emulator Initialization
	Setting Operating Frequency
	EASE64158 Switch Settings
	Confirming EASE-LP2 Power Supply Voltage
	Changing the Chip Select Dipswitches
	A/D Board
	Starting the EASE64158 Emulator
	Starting the EASE64158 in EASE-LP2 mode
	Starting the POD64158 in POD mode

	SID64K Debugger Commands
	Debugger Command Syntax
	Character Set
	Command Format
	Command Summary

	Symbolic Input (Definition of Expressions)
	History Function
	Special Keys For Raising Command Input Efficiency

	Chapter3 SID64K Commands
	SID64K Commands
	Command Details
	Evaluation Chip Access Commands
	Displaying/Changing Registers and SFR
	Display Registration of Registers and SFR
	Displaying/Changing the PC (Program Counter)

	Code Memory Commands
	Displaying/Changing Code Memory Data
	Expanding the Memory Area
	Moving Code Memory
	Load/Save/Verify
	Assemble/Disassemble Commands

	Data Memory Commands
	Displaying/Changing Data Memory
	Moving Between Data Memory

	Emulation Commands
	Step Commands
	Realtime Emulation Commands
	Commands Usable During Emulation

	Break Commands
	Setting Break Conditions
	Setting Breaks on Executed Addresses
	Displaying Break Results

	Trace Commands
	Displaying Trace Memory
	Displaying/Changing Trace Contents
	Setting/Displaying the Trace Trigger
	Displaying/Changing Trace Enable Bits
	Displaying/Clearing the Trace Pointer
	Searching Trace Memory

	Reset Commands
	Performance/Coverage Commands
	Measuring Execution Time
	Monitoring Executed Code Memory
	Counting Executed Addresses

	EPROM Programmer Commands
	Setting EPROM Type
	Writing to EPROM
	Reading from EPROM
	Comparing EPROM and Program Memory

	Command for Automatic Command Execution
	Commands for Displaying/Changing/Removing Symbols
	Displaying Symbols
	Changing Symbols
	Removing Symbols

	Other Commands
	Saving CRT Contents
	SH (Shell) Command
	Changing the Radix of Input Data
	Registering/Executing Commands
	Terminating the SID64K Debugger

	Chapter4 Debugging Notes
	Debugging Notes
	Tracing
	Resets
	User Cables
	Cycle Counter Overflow Breaks
	EPROM Programmer
	DASM Command
	Break
	Probe Cable
	Operating Clock
	LCD Driver

	EASE64158 Timing

	Chapter5 Assemble Command
	Address Space
	Segments
	Symbol Table
	Assembly Language Format
	Character Set
	Statement Format
	Symbols
	Reserved Symbols
	User-Defined Symbols
	Location Counter Symbol

	Constants
	Intefer Constants
	Character Constants
	String Constants

	Expressions
	General Format of Expressions
	Operators
	Arithmetic Operators
	Bitwise Logical Operators
	Retational Operators

	Operator Precedence
	Segment Type Attributes For Expression Evaluation

	Addressing Modes

	Basic Instructions
	Directives
	Symbol Definition Directives
	EQU
	SET
	CODE
	DATA

	Memory Segment Control Directives
	CSEG
	DSEG

	Location Counter Directives
	ORG
	DS
	NSE

	Data Definition Directives
	DB
	DW

	Assembler Directives
	END

	Appendix
	User Cable Configuration
	Pin Layout of User Cable Connectors
	RS232C Cable Configuration
	For NEC PC9801 series computers
	For IBM PC/AT computers

	Emulator RS232C Interface Circuit
	If EASE64158 Wont't Start
	If POD64158 Isn't Operating Correctly
	User Cable Peripheral Circuit
	Probe Cable Configuration
	Mounting EASE-LP2 EPROMs
	Mounting POD64158 EPROMs
	Mounting the POD64158 Evaluation Chip
	Error Messages

