
EEEEAAAASSSSEEEE66664444111166662222 ////111166664444
Program Development Support System for the MSM64162 /MSM64164

User's Manual
Rev. 2.00

JAN. 1995

OKI

NOTICE

1. The information contained herein can change without notice owing to product and/or technical
improvements. Before using the product, please make sure that the information being referred to is up-
to-date.

2. The outline of action and examples of application circuits described herein have been chosen as an
explanation of the standard action and performance of the product. When planning to use the product,
please ensure that external conditions are reflected in the actual circuit and assembling designs.

3. When developing and evaluating your product, please use our product below the specified maximum
ratings and within the specified operating ranges including, but not not limited to, operating voltage,
power dissipation, and operating temperature.

4. OKI assumes no responsibility or liability whatsoever for any failure or unusual or unexpected
operation resulting from misuse, neglect, improper installation, repair, alteration or accident,
improper handling, or unusual physical or electrical stress including, but not limited to, exposure
to parameters beyond the specified maximum ratings or operation outside the specified operating
range.

5. Neither indemnity against nor license of a third party’s industrial and intellectual property right, etc. is
granted by us in connection with the use of the product and/or the information and drawings contained
herein. No responsibility is assumed by us for any infringement of a third party’s right which may result
from the use thereof.

6. The product listed in this documents are intended only for use in development and evaluation of control
programs for equipment and systems. These products are not authorized for other use (as an embedded
device and a peripheral device).

7. Certain products in this document may need government approval before they can be exposed to
particular countries. The purchaser assumes the responsibility of determining the legality of export of
these products and will take appropriate and necessary steps at their own expense for theses.

8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

9. MS-DOS is a registered trademark of Microsoft Corporation.

Copyright 1997 OKI ELECTRIC INDUSTRY CO., LTD.

i

PREFACE

This manual explains the operation of the EASE64162/164 in-circuit emulator for the MSM64162,
MSM64162D, and MSM64164 micro-controllers built on Oki Electric's nX-4/20 CMOS 4-bit core.

For customers who use the EASE64162/164 as an emulator for the MSM64162D, please substitute all
references in this manual to the MSM64162 with MSM64162D.

The following are related manuals.

• MSM64162 User’s Manual
- MSM64162 hardware description

• MSM64162D User’s Manual
- MSM64162D hardware description

• MSM64164 User’s Manual
- MSM64164 hardware description

• nX-4/20, 4/30 Core Instruction Manual
- OLMS 64K series instruction set description

• ASM64K Cross Assembler User’s Manual
- ASM64K assembler operation description
- ASM64K assembly language description

• MASK162 User’s Manual
- MASK162 (MSM64162 mask option generator) operation description

• MASK164 User’s Manual
- MASK164 (MSM64164 mask option generator) operation description

ii

TABLE OF CONTENTS

Chapter 1. Before Starting ...1-1
1.1 Confirm Shipping Contents ...1-3
1.2 Confirm Floppy Disk Contents...1-8

1.2.1 Host Computer ...1-8
1.2.2 Operating System...1-8
1.2.3 Floppy Disk Contents ...1-9

Chapter 2. Overview ..2-1
2.1 EASE64162/164 Emulator Configuration..2-2

2.1.1 EASE64162/164 Evaluation Kit..2-2
2.1.2 ASM64K Cross-Assembler...2-3
2.1.3 EASE64X Debugger...2-3
2.1.4 MASK162/ MASK164 Mask Option Generators...2-3
2.1.5 System Configuration ...2-4

2.2 Program Development with EASE64162/164 ...2-5
2.2.1. General Program Development and EASE64162/164...................................2-5
2.2.2. From Source File to Object File..2-6
2.2.3. Generating Mask Option Files..2-7
2.2.4. Files Usable with the EASE64162/164 Emulator ...2-8

Chapter 3. EASE64162/164 Emulator ...3-1
3.1 EASE64162/164 Functions ...3-3

3.1.1 Overview ..3-3
3.1.2 Changing Target Chips ...3-5
3.1.3 Emulation Functions...3-6
3.1.4 Realtime Trace Functions ..3-7
3.1.5 Break Functions ...3-9
3.1.6 Performance/Coverage Functions..3-12
3.1.7 EPROM Programmer ...3-13
3.1.8 Indicators..3-14

3.2 EASE64162/164 Emulator Initialization...3-15
3.2.1 Setting Operating Frequency ...3-15
3.2.2 EASE64162/164 Switch Settings ...3-20
3.2.3 Connecting the MSM64162/164 ADC POD ...3-22
3.2.4 Confirming EASE64162/164 Power Supply Voltage......................................3-23
3.2.5 Starting the EASE64162/164 Emulator ..3-24

3.3 EASE64X Debugger Commands ..3-30
3.3.1 Debugger Command Syntax ..3-30

3.3.1.1 Character Set ...3-32
3.3.1.2 Command Format ..3-33
3.3.1.3 Command Summary ..3-34

3.3.2 History Functions..3-52
3.3.3 Special Keys For Raising Command Input Efficiency3-54
3.3.4 Command Details...3-59

3.3.4.1 Evaluation Board Access Commands ..3-60
3.3.4.1.1. Displaying/Changing Target Chip ...3-61
3.3.4.1.2. Displaying/Changing Target Chip Registers3-62
3.3.4.1.3. Displaying/Changing Display Registers ..3-67

3.3.4.2 Code Memory Commands ...3-70
3.3.4.2.1. Displaying/Changing Code Memory ..3-71
3.3.4.2.2. Load/Save/Verify ..3-77
3.3.4.2.3. Assemble/Disassemble Commands...3-82

iii

3.3.4.3 Data Memory Commands ..3-86
3.3.4.3.1 Displaying/Changing Data Memory...3-87

3.3.4.4 Emulation Commands ..3-93
3.3.4.4.1 Step Commands..3-94
3.3.4.4.2 Realtime Emulation Commands...3-97

3.3.4.5 Break Commands ..3-102
3.3.4.5.1 Setting Break Conditions..3-103
3.3.4.5.2 Setting Breaks on Executed Addresses...3-105
3.3.4.5.3 Displaying Break Results ...3-109

3.3.4.6 Trace Commands ...3-111
3.3.4.6.1 Displaying Trace Memory ..3-112
3.3.4.6.2 Displaying/Changing Trace Contents...3-117
3.3.4.6.3 Displaying/Changing Trace Triggers..3-120
3.3.4.6.4 Displaying/Changing Trace Enable Bits...3-124
3.3.4.6.5 Displaying/Changing the Trace Pointer..3-128

3.3.4.7 Reset Commands ...3-129
3.3.4.8 Performance/Coverage Commands ..3-133

3.3.4.8.1 Measuring Execution Time...3-134
3.3.4.8.2 Monitoring Executed Program Memory Areas3-139

3.3.4.9 EPROM Programmer Commands ...3-141
3.3.4.9.1 Setting EPROM Type...3-142
3.3.4.9.2 Writing to EPROM..3-143
3.3.4.9.3 Reading from EPROM ...3-145
3.3.4.9.4 Comparing EPROM with Code Memory3-147

3.3.4.10 Mask Option File Commands ...3-149
3.3.4.10.1 Loading Mask Option File ..3-150
3.3.4.10.2 Verifying Mask Option File ...3-151
3.3.4.10.3 Writing Mask Option Data to EPROM..3-153
3.3.4.10.4 Reading Mask Option Data from EPROM....................................3-154
3.3.4.10.5 Comparing Mask Option Data with EPROM3-155

3.3.4.11 Commands for Automatic Command Execution................................3-157
3.3.4.12 Other Commands ..3-160

3.3.4.12.1 Saving CRT Contents ..3-161
3.3.4.12.2 Shell Command..3-163
3.3.4.12.3 Displaying/Changing the Clock ..3-164
3.3.4.12.4 Displaying/Changing Interface Power Supply3-165
3.3.4.12.5 Changing Code Memory Area..3-166
3.3.4.12.6 Terminating the EASE64X Debugger ..3-168

Chapter 4. Debugging Notes...4-1
4.1 Debugging Notes...4-2

4.1.1 Ports ...4-2
4.1.2 LCD Drivers..4-5
4.1.3 Stack Pointer ..4-10
4.1.4 HALT Pin ..4-10
4.1.5 XT and OSC1 Pins ...4-10
4.1.6 ADC POD...4-11
4.1.7 DASM Commands..4-11
4.1.8 Breaks ..4-12
4.1.9 MSM64162D ..4-12

iv

Appendix
A.1 EASE64162/164 External Views...A-2
A.2 User Cable Configuration..A-5
A.3 Pin Layout of User Connectors ...A-6
A.4 RS232C Cable Configuration..A-11
A.5 Emulator RS232C Interface Circuit ...A-13
A.6 If EASE64162/164 Won’t Start ..A-14
A.7 Mounting EPROMs..A-16
A.8 Error Messages...A-18
A.9 Command Summary ...A-21

v

Explanation of Symbols

Indicates a supplemental explanation of particular importance that relates to the topic of the
current text.

Indicates a specific example of the topic of the current text.

Indicates a section number or page number to reference for related information on the topic of
the current text.

Indicates the number of a footnote with a supplemental explanation of particular words in the
current text.

Indicates a footnote with a supplemental explanation of words marked with the above-described
symbol. The numbers following each symbol correspond to each other.

vi

!

Example

SEE

(☞ x)

☞ 1X

Chapter 1, Before Starting

1-1Read This First

This chapter describes procedures to follow after receiving delivery of an
EASE64162/164 program development support system. It is recommended
that this chapter be read before supplying power to the emulator.

CCCChhhhaaaapppptttteeeerrrr 1111

BBBBeeeeffffoooorrrreeee SSSSttttaaaarrrr tttt iiiinnnngggg

Thank you for buying Oki Electric’s EASE64162/164 program development support system. When your
system was shipped we made every effort to ensure that it would not be damaged or mispacked, but we
recommend that you confirm once more that this did not occur following the explanations in this chapter.

The RS232C cable, floppy disks, or other items may differ depending on the model of host computer that
you will use. Use with a different model could cause damage to the hardware, so please take particular
care to avoid this. If the system shipped to you was damaged, if any components were missing, or if your
host computer model is different, then please contact the dealer from whom you purchased the system or
Oki Electric’s sales department.

Chapter 1, Before Starting

1-2 Read This First

Chapter 1, Before Starting

1-3Read This First

1.1. Confirm Shipping Contents

OKI

Software

2 Floppy Disks

Documentation

Customer
Registration
Postcard Test Results Charts

EASE64162/164 Parts List

EASE64162 Contents

Hardware

Accessories

Power CableADC POD
(2 types)

CROSC Boad

RS232C Cable

ASM64K EASE64162/164

ASM64K Cross
Assembler
User's Manual

ASM64K Cross Assembler
User's Manual
EASE64162/164 User's Manual
MASK162 User's Manual
MASK164 User's Manual

4 Manuals

ASM64K EASE64162/164

User application system
interface cables

40 Pin40 Pin

EASE64162/164

EASE64162/164

EASE64162/164
User's Manual

MASK162
User's Manual

MASK164
User's Manual

Chapter 1, Before Starting

Read This First

Your purchase of the EASE64162/164 will be followed by delivery of the necessary hardware, software,
and manuals in the shipping box illustrated in the upper left of page 1-3. After taking delivery, open the
box and confirm that it contains all the contents illustrated on page 1-3.

Each component is described below. Note that those marked with ☞ will differ depending on the model
of host computer.

1-4

Documents

Customer Registration Postcard

EASE64162/164 Components

Test Results Charts

Hardware

EASE64162/164

Oki Electric uses this to record you in our
customer list in order to inform you of product
maintenance and version upgrades. Please fill
out the requested items and send the postcard in
as soon as possible. If you do not send in the
registration postcard, it will it more difficult to
provide you with maintenance and version
upgrade service.

This is a list of the items shipped.

This chart shows that the EASE64162/164
passed all tests before shipping.

This is the EASE64162/164 emulation kit. It
contains hardware for host computer
communications, EPROM programming, and
emulation of MSM64162/MSM64164 operation.

Read This First

Available floppy disk formats

MS-DOS format
(1) 3.5-inch 2HD (1.21 Mbytes)
(2) 5.25-inch 2HD (1.21 Mbytes)

PC-DOS format (for IBM PC/AT personal computers)
(1) 3.5-inch 2HD (1.44 Mbytes)
(2) 5.25-inch 2HD (1.232 Mbytes)

Chapter 1, Before Starting

1-5

☞ 1

Software

Floppy Disk: ASM64K

Floppy Disk: EASE64162/164

ASM64K Cross-Assembler

User's Manual

EASE64162/164 User's Manual

☞ 1

☞ 1

This disk contains the ASM64K executable files.
It can be supplied in the formats described below.
Floppy disk contents are explained in Section 1.2.

This disk contains the executable files for
EASE64X, MASK162 and MASK164. It can be
supplied in the formats described below. Floppy
disk contents are explained in Section 1.2.

This is the user's manual for the ASM64K cross-
assembler.

This is the user's manual (this manual) for the
EASE64162/164.

MASK162 User's Manual

MASK164 User's Manual

This is the MASK162 user's manual for the
MSM64162 Mask Option Generator.

This is the MASK164 user's manual for the
MSM64164 Mask Option Generator.

The oscillation characteristics of the CR oscillator for AD conversion differ for the 1.5V and
3.0V versions of MSM64162 and MSM64164. Select the ADC POD that matches your
version. A label on the board identifies the ADC POD as 1.5V or 3.0V.

The oscillation characteristics of the CR oscillator for the high-speed clock differ for the 1.5V
and 3.0V versions of MSM64162 and MSM64164. Select the CROSC board that matches
your version. A label on the board identifies theCROSC board as 1.5V or 3.0V. The 3.0V
CROSC board is mounted in the EASE64162/164 when it is shipped.

Unless specified before the EASE64162/164 is shipped, a cable for the NEC-PC9801 series
will be shipped. If you will use an Oki if800 series computer, then you can also use this cable.
If you will use an IBM-PC, then please tell the responsible salesperson before your system is
shipped so that a special-purpose cable will be included. If you forget to specify the personal
computer that you will be using, then please contact the responsible salesperson to exchange
cables.

Chapter 1, Before Starting

1-6 Read This First

☞ 2

☞ 3

Accessories

M64162/164 ADC POD (1.5V)

M64162/164 ADC POD (3.0V)

M64162/164 CROSC Board (1.5V)

☞ 2

☞ 3

This is the MSM64162 and MSM64164's 1.5V ADC
POD, used as the interface with EASE64162/164.
The CR oscillator for MSM64162 and MSM64164
A/D conversion is removed from the ADC POD, so
the capacitor and resistor for oscillation must be
added.

This is the MSM64162 and MSM64164's 3.0V ADC
POD, used as the interface with EASE64162/164.

This is the MSM64162 and MSM64164's 1.5V
CROSC board. The CR oscil lator for the
MSM64162 and MSM64164 high-speed clock is
removed from the CROSC board, so the resistor for
oscillation must be added.

This cable connects to the power supply connector.

This cable connects the EASE64162/164 with a
host computer. There are two types: one for NEC-
PC9801 and Oki if800 series computers, and one
for IBM-PC/AT computers.

These cables connect the EASE6464162/164 to the
user's application system. Two cables are supplied:
two 40-pin flat cables.

Power Supply Cable

RS232C Cable

User Application System

Interface Cables

☞ 4

☞ 5

☞ 2

☞ 4

To identify which type of cable was shipped to you, please refer to the features listed below.

(1) NEC-PC9801 series Cable has a 25-pin male connector and 25-pin male connector.

(2) IBM-PC/AT Cable has a 25-pin male connector and 9-pin female connector.

If you will be using a host computer other than an NEC-PC9801 series, Oki if800 series, or IBM PC/AT,
then the connectors and their cable connections may have to be changed. Refer to Appendix 4 and 5 to
change the connectors or cable connections to match the host computer you will use.

The user application system interface cables are used for the following applications.

40-pin flat cable

The cable connects the user application system with the EASE64162/164's USER connector.
The voltage level of the USER connector's interface power supply is set by the CIPS
command to an internal voltage (5V) or an external voltage (3V~5V).

CIPS command

40-pin flat cable

The cable connects the user application system with the EASE64162/164 LCD connector or
LED connector.

The LCD and LED connectors correspond to pins L0~L33 of the MSM64162/MSM64164.
LCD drive signals (0V~4.5V) are output from the LCD connector. LED drive signals (0V~5V)
are output from the LED connector.

Chapter 1, Before Starting

1-7Read This First

SEE

☞ 5

1.2. Confirm Floppy Disk Contents

1.2.1. Host Computer

EASE64X, the debugger for EASE64162/164, has been confirmed to operate with the following computer
models.

All of the above models must have at least 640 Kbytes of memory.

Oki Electric has not confirmed direct operation with computers other than those listed above.

Before purchasing the EASE64162/164, your sales dealer or the Oki Electric sales department should
verify the computer model that you will use. However, if after buying the system you want to consider a
model other than those listed above, then please consult with Oki Electric’s application engineering
section.

1.2.2. Operating System

The operating system of computers other than IBM-PCs should be Japanese MS-DOS version 3.1 or
later. For IBM-PCs, it should be PC-DOS version 3.1 or higher.

Chapter 1, Before Starting

1-8 Read This First

OKI Electric if800RX120

if800EX120

NEC PC9801RA

EPSON PC386LS

IBM PC/AT

PC386LSR

PC9801T

PC9801RX

98noteSX

1.2.3. Floppy Disk Contents

If the conditions described in Sections 1.2.1 and 1.2.2 are satisfied, then there will be no problem with
your host computer model. Next, check the contents of the floppy disks.

(1) ASM64K floppy disk contents

As shown below, the label pasted on the floppy disk will differ for the PC9801/if800 series and the IBM-
PC/AT.

For PC9801/if800 Series For IBM-PC/AT

If you use the floppy disk for the wrong type of computer, then it will not be able to read the floppy disk
contents, so check whether or not the correct disk is inserted. Each file included on the floppy disk and a
brief explanation is given below.

Executable file for ASM64K cross-assembler

DCL files for ASM64K. ☞ 1

Chapter 1, Before Starting

1-9Read This First

ASM64K

Floppy Disk Contents

ASM64K.EXE

M64162.DCL

OKI OKIASM64K Cross Assembler
for MS-DOS

ASM64K Cross Assembler
for PC-DOS

M64164.DCL

M64162D.DCL

The DCL file for ASM64K includes the following definitions for MSM64162, MSM64162D
and MSM64164.

a. SFR (Special Function Register) address and access attributes
b. Code memory (program memory) address range
c. Data memory address range

The following DCL files are provided for the MSM64162, MSM64162D, and MSM64164. (The floppy
disk contains DCL files for all the devices supported by ASM64K.)

For MSM64162: M64162.DCL
For MSM64162D: M64162D.DCL
For MSM64164: M64164.DCL

(2) EASE64162/164 Floppy Disk Contents

As shown below, the label pasted on the floppy disk will differ for the PC9801/if800 series and the IBM-
PC/AT.

For PC9801/if800 Series For IBM-PC/AT

Chapter 1, Before Starting

1-10 Read This First

☞ 1

OKI OKIEASE64162/164
for MS-DOS

EASE64162/164
for PC-DOS

If you use the floppy disk for the wrong type of computer, then it will not be able to read the floppy disk
contents, so check whether or not the correct disk is inserted. Each file included on the floppy disk and a
brief explanation is given below.

Executable file for EASE64X debugger.

Executable file for MASK162 mask option generator.

Executable file for MASK164 mask option generator.

Program for RS232C control
(included on IBM-PC disks only).

Chapter 1, Before Starting

1-11Read This First

EASE64162/164

Floppy Disk Contents

EASE64X.EXE

MASK162.EXE

MASK164.EXE

INT232C.COM

Chapter 2, Overview

2-1

CCCChhhhaaaapppptttteeeerrrr 2222

OOOOvvvveeeerrrrvvvviiiieeeewwww

This chapter provides an overview of EASE64162/164 system configuration,
describes the program development procedure with the EASE64162/164 system.

2.1. EASE64162/164 Emulator Configuration

2.1.1. EASE64162/164 Emulation Kit

The EASE64162/164 is a general-purpose control system for in-circuit emulators for Oki Electric’s
MSM64162 and MSM64164 CMOS 4-bit microcontrollers.

The internal configuration of the EASE64162/164 is as follows.

• System controller MC68000
☞1 • Code memory 8192 x 8 bits
☞2 • Data memory 256 x 4 bits
☞1 • Trace memory 8192 steps x 64 bits
☞1 • Attribute memory 8192 x 8 bits

• Instruction executed bit memory 8192 x 1 bit
• EPROM programmer For 2764/128/256/512
• RS232C ports 1 channel

☞3 • Evaluation board For MSM64162 and MSM64164
• System power supplies 1

The maximum address of code memory, attribute memory, and instruction executed memory
is 0FDFH, but in MSM64162 mode addresses to 7DFH are valid, and in MSM64164 mode
addresses to 0FDFH are valid. The maximum address can be extended up to 1FFFH with
the EXPAND command.

Data memory size is 128x4 bits (data memory addresses 780H~7FFH) in MSM64162 mode,
and 256x4 bits (data memory addresses 700H~7FFH) in MSM64614 mode.

The evaluation board emulates the functions of the MSM64162 and MSM64164. It is internal
to the EASE64162/164.

The evaluation board consists of an MSM64E900 evaluation chip with an nX-4/20 core that
matches the MSM64162 and MSM64164 CPU core, hardware that matches the I/O portion of
the MSM64162 and MSM64164 (excluding the CR oscillator for A/D conversion), and
hardware that matches the MSM64162 and MSM64164's LCD drivers.

The I/O hardware is constructed from ordinary discrete components, so the electrical
characteristics of the ports will differ from those of the MSM64162 and MSM64164.

The emulator uses special hardware to allocate the mask option registers of the LCD drivers,
so display timing will differ from the MSM64162 and MSM64164.

The CR oscillator for the MSM64162 and MSM64164 A/D converter is added to the optional
M64162/164 ADC POD. An MSM64164 is mounted in the M64162/614 ADC POD, so CR
oscillation will be with the same electrical characteristics as the MSM64164. The CR
oscillation clock is input to the EASE64162/164 and performs A/D conversions.

Chapter 2, Overview

2-2

☞ 1

☞ 2

☞ 3

2.1.2. ASM64K Cross-Assembler

ASM64K is a cross-assembler developed for the OLMS-64K series. It is stored on a floppy disk that
comes with the purchase of an EASE64162/164 development support system.

Source files constructed from OLMS-64K series instruction mnemonics and directives are converted to
Intel HEX formal object files with ASM64K. Object files (machine language files) generated this way are
read and executed by EASE64X, explained in the next section.

ASM64K can be used with host computers that satisfy the following conditions.

• The operating system is MS-DOS or PC-DOS version 3.1 or higher.
• There is a free area of at least 128K bytes in main memory.

For details about ASM64K, refer to the ASM64K Cross-Assembler User’s Manual.

2.1.3. EASE64X Debugger

The EASE64X debugger is software that supports debugging.

EASE64X is stored on a floppy disk that comes with the purchase of an EASE64162/164 development
support system.

EASE64X can be used with host computers that satisfy the following conditions.

• The operating system is MS-DOS or PC-DOS version 3.1 or higher.
• There is a free area of at least 100K bytes in main memory.
• A channel for an RS232C interface.

2.1.4. MASK162/MASK164 Mask Option Generators

The MASK162 and MASK164 mask option generators allow an operator to input the MSM64162 and
MSM64164 mask option settings shown below, and convert the input data to mask option files in Intel
HEX format.

- LCD driver duty value
- Assignment of segment pins (L0~L33) to ports, commons, and segments
- Assignment of segment pins to display registers
- Operating power supply voltage
- Presence of capacitor for Crystal oscillator

The mask option files generated by MASK64162 and MASK64164 are used to create the mask needed to
manufacture the MSM64162 or MSM64164.

The EASE64X debugger reads the mask option files so the EASE64162/164 can determine the above
settings (except for operating power supply voltage and presence of capacitor for Crystal oscillator).

Chapter 2, Overview

2-3

2.1.5. System Configuration

The system is used in the following configuration.

System Configuration Diagram

Chapter 2, Overview

2-4

Host Computer
(MS-DOS/PC-DOS)

RS232C Cable

User Application System

ADC POD for M64162/164

EASE64162/164

EASE64162/164

ASM64K
EASE 64X
MASK162
MASK164

2.2. Program Development With EASE64162/164

2.2.1. General Program Development and EASE64162/164

Figure 2-1 shows the general flow of program development (☞1).

First, one decides on the functions of the product to be developed,
and evaluates which hardware and software should be designed
to implement them. Specific considerations include which MPU to
use, how to allocate MPU interrupts, how much ROM and RAM to
add, etc. This is called the functional design process.

Next is the specification design process. Here the functions to be
implemented are evaluated in detail, and the methods to use
those functions in the final product are decided. Specifically,
commands are decided upon and a command input specification
is written. The specification generated by this process is usually
called the functional specification.

The process of creating a program based on the functional
specification is called the program design process. Algorithms,
flowcharts, and a program specification are created. This process
can also include coding (source program creation) and assembly.
In other words, ASM64K is used in this process. This process
also includes the creation of a mask option file with MASK162 or
MASK164.

Next is the debug process. This is the process in which the
EASE64162/164 especially excels (☞2). An object file and a
mask option file created in the program design process is
downloaded to the EASE64162/164, and by using the various
functions of the EASE64162/164 emulator, program bug analysis,
fixing, and testing are performed.

The last position of the overall program development process is
occupied by the testing process. The complete program from the
debug process is operated in the actual product, and operation
according to the functional specification is verified with test
programs, etc. If there are bugs in the operation, then the flow
from the program design process on is repeated until there are no
more bugs.

Chapter 2, Overview

2-5

Development
Start

Development
End

Functional
Design

Specification
Design

Program
Design

Debug

Testing

Are there
bugs?

YES

NO

Figure 2-1. General Flow of Program
Development

The general flow and terminology given here are generally used, but other documents and
manuals may have different expressions.

Refer to Chapter 3, “EASE64162/164 Emulator,” for details about the various function of the
EASE64162/164 emulator.

2.2.2. From Source File To Object File

In order to perform debugging with the EASE64162/164 emulator, an object file for downloaded to the
EASE64162/164 must be generated (☞ 3, 4).

Figure 2-2 shows the process of generating an object file from a source program file coded in assembly
language (hereafter called a source file).

Figure 2-2. Process of Generating Object Files From Source Files

In the above figure, circles indicate operation of the ASM64K cross-assembler program, while cylinders
indicate files generated by programs.

Object files that the EASE64162/164 emulator can handle are Intel HEX format object files that include
symbol information, as shown in Figure 2-2.

Downloading means storing the contents of an object file in EASE64162/164 code memory
with the EASE64X LOD command. Refer to Section 3.3.4.2.2, “Load/Save/Verify
Commands,” for details on the LOD command.

Object files in this document refer to Intel HEX format object files that not include symbol
information which the EASE64162/164 emulator can handle.

Chapter 2, Overview

2-6

☞ 1

☞ 2

☞ 3

☞ 4

.ASM .HEXASM64K

Source Files Intel HEX
Object Files

2.2.3. Generating Mask Option Files

To perform debugging with the EASE64162/164 emulator, MSM64162 or MSM64164 mask option files
must be created in addition to the object file described in the previous sections.

Figure 2-3 shows the process for generating mask option files.

Figure 2-3. Process For Generating Mask Option Files

In the above figure, circles indicate operation of the MASK162 and MASK164 programs, while cylinders
indicate files generated by the programs.

Based on mask option settings input by the operator, MASK162 and MASK164 outputs the fifteen files
shown in Figure 2-3. The EASE64162/164 emulator can handle mask option files in Intel HEX format.

Chapter 2, Overview

2-7

DUTY16X
.XXX

DN16X_1
.XXX

DN16X_2
.XXX

DN16X_3
.XXX

DN16X_4
.XXX

SS16X
.XXX

SD16X_1
.XXX

SD16X_2
.XXX

SD16X_3
.XXX

SD16X_4
.XXX

CS16X_1
.XXX

CS16X_2
.XXX

OP16X
.XXX

SEG6416X

.XXX
M16X-XXX

.HEX

MASK162
MASK164

Intel HEX format
Mask Option Files

2.2.4. Files Usable with the EASE64162/164 Emulator

The files usable with the EASE64162/164 emulator are described in the sections about files created by
ASM64K and MASK162/MASK164. As described in those sections, there are two types of files that can
be handled by the EASE64162/164 emulator. These are explained.

(1) Intel HEX files generated by ASM64K

These are object files generated by ASM64K from source files that consist of OLMS-64K
mnemonics and various directives. Object files are read into code memory using the LOD
command.

(2) Intel HEX files generated by MASK162/MASK164

These are mask option files generated by MASK162 and MASK164 from MSM64162 and
MSM64164 mask option settings. Mask option files are read into the system memory of the
EASE64162/164's MC68000 system controller using the LODM command.

If the "/S" option is added when the ASM64K assembler is executed, then the generated
object file will include symbol information. However, EASE64162/164 cannot handle object
files that include symbol information.

!

Chapter 2, Overview

2-8

3-1

Chapter 3, EASE64162/164 Emulator

CCCChhhhaaaapppptttteeeerrrr 3333

EEEEAAAASSSSEEEE66664444111166662222////111166664444 EEEEmmmmuuuullllaaaattttoooorrrr

This chapter explains the actual use of the EASE64162/164
emulation kit and the EASE64X debugger in detail.

Section 3.4 explains each debugger command in detail.

Sections 3.3.3 and 3.3.4 explain the history function and special-
purpose keys respectively. These are provided to support efficient input
of debugger commands.

Section 3.3.1 describes the general input format of debugger
commands and lists all debugger commands by function. This list also
gives a reference page for each command, so it is convenient for use as
a command index.

Section 3.3 explains in detail the actual use of EASE64X debugger commands
with the EASE64162/164.

Section 3.2 explains how to start the EASE64162/164. EASE64162/164
dipswitch settings (to set the communications mode with the host computer,
etc.) are also explained in this section.

Section 3.1 gives an overview of each group of functions that can be used with
the EASE64162/164 emulation kit and the EASE64X debugger

Chapter 3, EASE64162/164 Emulator

3-2

In this chapter...

3.1. EASE64162/164 Functions

3.1.1. Overview

Section 2.2 explained the program development process with the MSM64162 and MSM64164
microcontroller. This section gives an overview of the actual emulator functions used to debug prototype
programs created by that process.

The most basic function of the emulator is to read and execute a user-created program (an Intel
HEX format file generated by ASM64K). Here "execute" means to execute a program at the same speed
(realtime) as the volume-production MSM64162 and MSM64164 with internal mask ROM. This is known
as emulation, as distinguished from program simulation with large computers.

Figure 3-1

3-3

Chapter 3, EASE64162/164 Emulator

EASE64162/164

MSM64162, MSM64164
Evaluation Board

MSM64162/164
ADC POD

Code Memory
Application system that
use an MSM64162 and
MSM64164

User Cables

This portion operates the same as the MSM64162
and MSM64164

The volume-production MSM64162 and MSM64164 microcontroller has mask ROM on-chip, but
once mask ROM has been written it cannot be changed. However, program during the development
stage is difficult to debug unless it is stored in rewritable memory (RAM).

Thus the EASE64162/164 has in internal 8K bytes program storage RAM. This RAM is called
code memory . Refer to Figure 3-1 on the previous page.

EASE64162/164 executes programs in this code memory instead of mask ROM. When the user
application system is being produced in volume, it will be mounted with an MSM64162 or MSM64164
microcontroller, but at the debug stage it is replaced with a connector in the user application system. This
connector is attached to an EASE64162/164 user cable (Refer to Figure 3-1).

Within the EASE64162/164 is an internal evaluation board for emulating the functions of the
MSM64162 and MSM64164. This evaluation board has the same CPU circuit and the same external pins
as the MSM64162 and MSM64164 However, the CR oscillator for the A/D converter is implemented in
the M64162/164 ADC POD.(☞1).

The main feature of the evaluation board is that it has no internal mask ROM, but it does have
some special control circuitry and control pins. These additional circuits and pins are used to control
execution of programs and reading of internal memory, registers, and flags.

Also, the contents of code memory instead of mask ROM are read and executed.

The evaluation board's external pins include the same pins as the volume-production chip
(MSM64162, MSM64164). These are connected to the corresponding pins in the user application system
through the user cables and pins for the CR oscillator of the A/D converter are provided on the
M64162/164 ADC POD.

As a result, when viewed from the user application system, the pins on the user cable and
M64162/164 ADC POD appears identical to the MSM64162 and MSM64164 (Refer to Figure 3-1).

The CPU circuit of the evaluation board is constructed from ordinary discrete components, so
the electrical characteristics of the ports will differ from those of the MSM64162 and
MSM64164.

The CR oscillator of the MSM64162 and MSM64164 A/D converter is assigned to the
M64162/164 ADC POD. The CR oscillator of the MSM64164 mounted in the M641642/164
ADC POD has the same electrical characteristics as an MSM64164. The CR oscillation
clock is input to the EASE64162/164 to perform A/D conversion.

The emulator operates with special hardware for the LCD drivers on the evaluation board
in order to change the register assignments by the mask options. Therefore the display
timing will differ from the MSM64162 and MSM64164.

That the basic function of the emulator is to read and execute programs was already explained,
but effective debugging is not possible with just simple execution. For example, one must be able to start
and stop program execution at specified addresses. One needs to display and change the states of data
memory (internal RAM), registers, and flags after execution. Furthermore, instead of just stopping
execution at a specified address, one needs the ability to set complex conditions for stopping after a
specified time has elapsed or some address has been passed a specified number of times (pass count).
To meet these needs, EASE64162/164 has many functions beyond its basic one. These features are
explained one by one in the following sections.

Chapter 3, EASE64162/164 Emulator

3-4

☞ 1

3.1.2. Changing Target Chips

The EASE64162/164 is an emulation kit designed for the MSM64162 and MSM64164. It operates in
MSM64164 mode by default when started, but the target chip can be changed with the CHIP command.
(☞1)

❏ Setting chip mode with the CHIP command

One of the EASE64X debugger commands, the CHIP command, changes the target chip. The
EASE64162/164 chip mode can be changed with this command.

CHIP

The chip modes specified by the CHIP command set the EASE64162/164 as follows. (☞2)

Item MSM64162 Mode MSM64164 Mode

Code memory addresses 000~7DFH 000~0FDFH

Attribute memory addresses 000~7DFH 000~0FDFH

Instruction executed memory addresses 000~7DFH 000~0FDFH

Data memory 128 x 4 bits 256 x 4 bits

Port 4 data register (P4D) Invalid Valid

Port 40 control register (P40CON) Invalid Valid

Port 41 control register (P41CON) Invalid Valid

Port 42 control register (P42CON) Invalid Valid

Port 43 control register (P43CON) Invalid Valid

Serial port control register (SCON) Invalid Valid

Serial port buffer register (SBUF) Invalid Valid

Backup control register (BUPCON) Bits 0~2 valid Bit 0 valid

Buzzer frequency control register (BFCON) Bit 0 valid Bits 0~3 valid

Interrupt enable register 0 (IE0) Bits 0, 2, 3 valid Bits 0~3 valid

Interrupt request register 0 (IRQ0) Bits 0, 2, 3 valid Bits 0~3 valid

Time base counter interrupts 1 Hz, 4 Hz, 16 Hz, 32 Hz 0.1 Hz, 1 Hz, 16 Hz
256 Hz 32 Hz, 256 Hz

LCD drivers L0~L23 L0~L33

When evaluating an MSM64162D with EASE64162/164, set the chip mode to MSM64162
mode. However, do not use functions that do not exist in the MSM64162D (high-speed
clock, A/D converter CROSC1 oscillation mode, IN1 external clock input mode).

Refer to user's manual of your chip for details about each register.

3-5

Chapter 3, EASE64162/164 Emulator

SEE

☞ 1

☞ 2

3.1.3. Emulation Functions

The EASE64162/164 has two modes for its emulation functions (program execution functions).

(1) Single-step mode (STP command)

In this mode, program execution stops after each step (one instruction) is executed. After each
instruction is executed, the state of the evaluation chip is read and displayed on the CRT. Single-
step mode is realized with the STP command.

STP

(2) Realtime emulation mode (G command)

In this mode, program execution will continue until some specified break condition is satisfied or
an ESC key is input. Realtime emulation mode is realized with the G command.

G

❏ Operating Clock

The EASE64162/164 operates using a clock supplied from an internal oscillation circuit. Its operating
frequency is set to 32.768 KHz in low-speed mode and 400 KHz in high-speed mode. To use other
frequencies, replace the crystal on the crystal board or the resistor for CR oscillation on the CROSC
board in the emulator.

For details, refer to Section 3.2.1, "Setting Operating Frequency."

• The allowable operating frequencies for the EASE64162/164 are 32.768 KHz~500 KHz.

• Depending on the manufacturer and frequency of the crystal, the capacitors and resistor
for oscillation may also need to be changed.

Chapter 3, EASE64162/164 Emulator

3-6

SEE

SEE

!

3.1.4. Realtime Trace Functions

One EASE64162/164’s principal functions is realtime tracing. Realtime tracing occurs during
program execution under realtime emulation mode. It stores the executed addresses, the data and
addresses in data memory used, and the states of evaluation chip port pins, registers, and flags in
memory provided for tracing. The memory provided for tracing is called trace memory.

The EASE64162/164 has trace memory for 8192 steps. It traces the following items.

Trace Contents
Executed address

State of all ports

A register and B register values

Data memory contents at specified address (☞1)

Stack pointer (SP) value

H register and L register values

Carry flag (C) value

Port 2 value

Port 3 value

Port 4 value (☞2)

Port 0 value (☞2)

Port 1 value (☞2)

Bank select register 0 (BSR0) value (☞2)

Bank select register 1 (BSR1) value (☞2)

The data memory contents at the one address specified by the CTDM command will be
traced.

Tracing of port 4, port 0, port 1, bank select register 0, and bank select register 1 is selected
by the CTO command.

FTR, ETR, RTR, DTR, STT, RTT, DTT, DTM, CTO, DTO, CTDM, DTDM

3-7

Chapter 3, EASE64162/164 Emulator

SEE

☞ 1

☞ 2

Chapter 3, EASE64162/164 Emulator

3-8

❏ Controlling trace execution

Realtime tracing can always be performed during program execution, but you may want to see trace
contents for just a particular part of a program. EASE64162/164 provides two ways to specify the trace
area.

(1) Specify trace area with trace enable bits.
(2) Specify a triggers with trace start/stop bits.

Details of each method are explained in the command details section 3-3. The following are related
commands.

DTR, ETR, RTR, FTR, STT, RTT, DTT

The trace pointer controls the address in trace memory to which data will be written. The trace pointer is
actually a 13-bit counter which increments every time an instruction is executed under the conditions
described in (1) and (2) above (refer to Figure 3-2).

Figure 3-2. Trace Control Conceptual Diagram

SEE

Address Port Data Registers RAM SP Flags Instruction Code

0

1

2

3

4

5

6

7

8

9

8190

8191

Trace Control Circuit

Trace Data

Pulse signal indicating
start of instruction

Output when tracing is called
for based on the control methods,
(1) and (2) mentioned above.

12 11 10 9 8 7 6 5 4 3 2 1 0

Trace pointer
(13-bit binary counter)

Trace Memory

The trace pointer’s value indicates the address in trace memory to which data will be written. The
trace pointer is incremented at the start of each instruction while the conditions of the previously
described control methods are satisfied. As a result, while trace conditions are satisfied, the trace
memory addresses written are updated one by one as trace data is stored at each.

The trace pointer is a 13-bit counter, so its value will be between 0 and 1FFFH (in decimal, 0 and
8191). When the trace pointer exceeds 1FFFH and the next trace data arrives, the trace pointer
overflows and becomes 0. In other words, when traced data exceeds 8192 steps, it will be overwritten in
order from the oldest data in trace memory.

3.1.5. Break Functions

The following methods for breaking program execution are available with the EASE64162/164.

(a) Breakpoint bit breaks

The EASE64162/164 has a 1-bit wide memory that corresponds 1-for-1 with the entire program memory
address space (0-1FFFH). This memory is called breakpoint bits memory or breakpoint bits.

Figure 3-3. Breakpoint Bits Conceptual Diagram

Breakpoint bits can be set to 1 or 0 with the FBP (Fill BreakPoint) command, EBP (Enable
BreakPoint) command, and RBP (Reset BreakPoint) command. During emulation execution, the
breakpoint bit corresponding to each executed address is referenced, and if “1,” a break request signal is
output (refer to Figure 3-3).

By using breakpoint bits, breakpoints can be set throughout the entire address space without a
limit to their number. (In this manual breaks generated by breakpoint bits are called breakpoint bit breaks
to clearly distinguish them from address breaks, which are generated by break addresses specified as
break parameters of the G command.)

DBP, FBP, EBP, RBP, SBC, DBC

3-9

Chapter 3, EASE64162/164 Emulator

0000
0001
0002
0003
0004
0005
0006
0007

1FFC
1FFD
1FFE
1FFF

1-bit wide

PC (Program Counter)

Break Request Signal

SEE

(b) Trace pointer overflow breaks

The EASE64162/164 can cause a break using overflow of the trace pointer. The trace pointer is
a 13-bit counter that represents a location in trace memory. When the trace pointer exceeds 1FFFH
(8192 steps), it overflows. The overflow of the trace pointer can be used as a break condition.

DTR, FTR, ETR, RTR, STT, RTT, DTT, SBC, DBC

(c) Cycle counter overflow breaks

The EASE64162/164 has a 32-bit counter that increments every step (called the cycle counter).
The overflow of the cycle counter can be used as a break condition.

SCT, RCT, DCT, CCC, DCC, SBC, DBC

(d) ESC key breaks

Press the host computer's ESC key to forcibly stop G command execution (realtime emulation).

(e) Breaks specified during G command input

• Break at specified address (with pass count)
• Break when specified data matches data at a specified address in data memory
• Break when specified data matches data in A register or B register

G, CTDM, DTDM

(f) N area access breaks

The EASE64162/164 will forcibly break when it accesses an area that exceeds the maximum
address for its respective chip modes (☞1). However, N area access breaks will not occur when code
memory is expanded (EXPAND ON mode).

The maximum address of the program memory area differs for each chip mode. In
MSM64162 mode it is 7DFH, and in MSM64164 mode it is FDFH.

Chapter 3, EASE64162/164 Emulator

3-10

SEE

SEE

SEE

☞ 1

❏ Break request mask function

The break conditions explained in (a)-(c) above can be masked. As shown in Figure 3-4, each break
condition can be selectively and independently masked using a register called the break condition
register.

Figure 3-4. Break Masking

The order of bits in the break condition register of Figure 3-4 does not necessarily match the
order of bits in the actual register. The purpose of the this figure is to shown how break
conditions are masked, so the break conditions are listed in their order of appearance in the
previous section.

3-11

Chapter 3, EASE64162/164 Emulator

(a) Breakpoint Bit Break

(b) Trace pointer
 Overflow Break

(c) Cycle Counter
 Overflow Break

(d) ESC Key Break

(e) Break specified
 when G command input

(f) N Area access
 Break

Break Condition Register

to break control circuit

!

3.1.6. Performance/Coverage Functions

The EASE64162/164 has the following performance/coverage functions.

(a) Check for program areas not yet passed

The EASE64162/164 has a 8192 x 1-bit instruction executed bits memory (or IE bit memory) that
corresponds 1-for-1 to code memory’s entire address (0H-1FFFH). Whenever an instruction is
executed, the contents of IE bit memory at the address corresponding to the instruction will be set
to “1.” By examining the contents of IE bit memory, one can see which program areas have not
been passed (or debugged).

RIE, DIE

(b) Measuring elapsed time

Elapsed execution time for a specified block can be measured by using the EASE64162/164
internal 32-bit cycle counter (CC).

CCC, DCC, SCT, RCT, DCT

Chapter 3, EASE64162/164 Emulator

3-12

SEE

SEE

3.1.7. EPROM Programmer

The EASE64162/164 has an internal EPROM programmer (EPROM writer). By using the
EPROM programmer, EPROM contents can be transferred to code memory, and contents of a code
memory area can be written to EPROM.

In addition, the EPROM programmer can be used to read mask option data (☞1).

The types of EPROM that the EPROM programmer can write are as follows:

2764, 27128, 27256, 27512, 27C64, 27C128, 27C256, 27C512

TPR, VPR, PPR, TYPE, TPRM, VPRM

DO NOT USE THE EPROM PROGRAMMER FOR PURPOSES OTHER THAN
DEBUGGING PROGRAMS. IF RELIABILITY IN WRITE CHARACTERISTICS IS
NECESSARY, THEN USE AN EPROM PROGRAMMER DESIGNED FOR THAT
PURPOSE.

Refer to Appendix 7, “Mounting EPROMs,” for information about how to mount EPROMs.

3-13

Chapter 3, EASE64162/164 Emulator

SEE

!

☞ 1

3.1.8. Indicators

POWER indicator (red)

This indicator will light after EASE64162/164 power is turned on and correct operation begins.

RUN indicator (green)

This indicator will dark after EASE64162/164 power is turned on and correct operation begins. It will also
light during while emulation is executing and while EPROM programmer commands are executing.

TPR, VPR, PPR, TPRM, VPRM, G, STP

PORT5V indicator (green)

This indicator will light when the user connector interface power supply is being supplied from the
emulator's internal power supply.

PORT3V indicator (green)

This indicator will light when the user connector interface power supply is being supplied from an external
power source (+3V ~ +5V).

CIPS

Chapter 3, EASE64162/164 Emulator

3-14

SEE

SEE

3.2. EASE64162/164 Emulator Initialization

3.2.1. Setting Operating Frequency

As explained in Section 1.3, the EASE64162/164 operates with a clock supplied from an internal
oscillation circuit (32.768 KHz or 400 KHz) when shipped. Oki Electric normally recommends that the
EASE64162/164 be used as it is with these settings. Users who do not intend to change this setting can
skip this section and proceed to section 3.2.2.

There are two methods for changing the clock settings.

(a) Oscillation clocks of crystal board and CROSC board in emulator

As explained in Section 1.2, the EASE64162/164 operates with a clock supplied from an internal
oscillation circuit (32.768 KHz or 400 KHz) when shipped. The crystal for the internal oscillation circuit of
low-speed mode is mounted on the internal crystal board. The oscillation resistor for the internal
oscillation circuit of high-speed mode is mounted on the internal CROSC board. The crystal board and
CROSC board can be removed by first taking off the crystal board cover on the EASE64162/164's right
side (see Figures 3-5 and 3-6).

The crystal board can be made to oscillate for use by soldering on a commercial crystal and
oscillation resistor and capacitors. The CROSC board can be made to oscillate for use by soldering on a
commercial oscillation resistor. The CROSC board is supplied in two versions: 1.5V and 3.0V. Select a
resistor that matches the power supply voltage of the target chip that you will use.

Figure 3-5. Removing Crystal Board (1)

3-15

Chapter 3, EASE64162/164 Emulator

X'TAL
RESET

ON

OFF

Unscrew here to remove crystal board.

Figure 3-6. Removing Crystal Board (2)

As shown in Figure 3-6, the low-speed (32.768 KHz) crystal board and high-speed (400 KHz) CROSC
board are internal to the EASE64162/164. The EASE64162/164 emulator's oscillation circuits are shown
in Figures 3-7 and 3-8.

Chapter 3, EASE64162/164 Emulator

3-16

X'TAL

Crystal board

Low-speed (32.768 KHz)
crystal board

High-speed (400 KHz)
CROSC board

Figure 3-7. Crystal Board And Oscillation Circuit

The INT/EXT•SECLECT1 signal is switched by the CCLK command. It determines whether
the oscillation source will be from the internal crystal board of from the user cable XT pin.

EASE64162/164 operates with this clock in low-speed mode.

3-17

Chapter 3, EASE64162/164 Emulator

The board can
be pulled out
in this direction.

After replacing the
crystal, push the
connector back
in this direction.

X
' T

A
L

R
1

2324

12

X
'T

A
L

 B
O

A
R

D

Connector

C
N

1

G
N

D
X

T

C
1

R
2

C
2

Pins for checking
oscillation

☞ 1

☞ 2

SYS.CLK.LOW
 (☞ 2)

HC08

HC32

HCU04
HC08

HCU04

R2R1

X"TAL

C1 C2

Crystal Board HC04

GND

XT

XT
(User cable)

INT/EXT.SELECT1
 (☞ 1)

Figure 3-8. CROSC Board And Oscillation Circuit

The INT/EXT•SELECT2 signal is switched by the CCLK command. It determines whether
the oscillation source will be from the internal crystal board of from the user cable OSC1 pin.

EASE64162/164 operates with this clock in high-speed mode.

The CROSC board is supplied in two versions: 1.5V and 3.0V. Select a resistor that matches
the power supply voltage of the target chip that you will use.

Chapter 3, EASE64162/164 Emulator

3-18

☞ 3

☞ 4

☞ 5

The board can
be pulled out in
this direction.

After replacing the
crystal, push the
connector back
in this direction.

R
O

S

2324

12

C
R

O
SC

 B
O

A
R

D
Connector

G
N

D
O

SC

C
N

1

3.
0V

Pins for checking
oscillation

Identification label for 1.5V or 3.0V
(☞ 5)

MSM64164

OSC1

ROS

CROSC Board

GND

OSC2

OSC

OSC

SYS.CLK.HIGH
 (☞ 4)

HC08

HC32

HC04
HC08

HC04

OSC1
(User cable)

INT/EXT.SELECT2
 (☞ 3)

(b) User cable XT pin and OSC1 pin inputs

The emulator can be made to operate from clocks input on the user cable XT pin and OSC1 pin.

CCLK, DCLK

Use a signal like that shown below for clocks input on the user cable XT pin and OSC1 pin.

If you are using the emulator by oscillating from the crystal on the crystal board, then always
verify that it oscillates correctly. Depending on the crystal's type and manufacturer, it might
not oscillate.

If you have changed the oscillation resistor (ROS) on the CROSC board, then always verify
its oscillation. Depending on the resistor's value, it might not oscillate. Refer to the user's
manual of each chip for the range of resistor values.

There is no high-speed clock with the MSM64162D. Please be aware of this if using the
EASE64162/164 in MSM64162 mode to evaluate a MSM64162D.

3-19

Chapter 3, EASE64162/164 Emulator

!

!

SEE

e

a b

Duty ratio a:
Frequency
Voltage

b = 1:1
c = operating frequency
e= +4.75 to +5.0 V

!

3.2.2. EASE64162/164 Switch Settings

There is a 7-bit dipswitch toward the top of the left panel of the EASE64162/164, labeled BAUD RATE
SW (refer to Figure 3-9). The baud rate switch is explained below.

Figure 3-9. EASE64162/164 Dipswitch

[BAUD RATE SW]

These switches set the baud rate between EASE64162/164 and the host computer.

Chapter 3, EASE64162/164 Emulator

3-20

19200
9600
4800
2400 BAUD RATE SW

ON OFF

BAUD
RATE
SW

❏ 19200~2400 baud rate switches

These switches set the baud rate of the RS232C interface. They are used to match the
EASE64162/164 baud rate with that of the host computer.

EASE64162/164 is set as follows when shipped.

• Transfer format 8 bits, 1 stop bit, no parity
• Baud rate 9600 bps

The host computer must be set to match all the above EASE64162/164 parameters except for
the baud rate (☞1). The baud rate can be set to a value 19200 bps to 2400 bps using the baud rate
switches (refer to Table 3-1 below).

Table 3-1. Baud Rate Switch Settings

In Table 3-1:
ON Flip bit switch to the left.
OFF Flip bit switch to the right.

Oki if800 series computers are set using the SWITCH command.
PC9801 series computers are set using the SPEED command.
IBM-PC computers use the INT232C command (described in Section 3.2.5).

For details, refer to your host computer's user manual.

With the if800 series, after changing parameters with the SWITCH command, be sure to boot
up the computer again by pushing the if800 reset button. Otherwise, the RS232C
parameters will not be set correctly.

The EASE64162/164 settings must match the settings of the host computer connected to the
RS232C cable. If the settings do not match, then the EASE64162/164 cannot operate.

3-21

Chapter 3, EASE64162/164 Emulator

☞ 1

!

!

19200 9600 4800 2400

ON19200 OFF OFF OFF

OFF9600 ON OFF OFF

OFF4800 OFF ON OFF

OFF2400 OFF OFF ON

BAUD
RATE SW

BPS

!

3.2.3. Connecting The MSM64162/164 ADC POD

The MSM64162/164 ADC POD provides the CR oscillator of the MSM64162 and MSM64164's
A/D converter. There are two types of MSM64162/164 ADC POD: 1.5V and 3.0V. (☞1)

Figure 3-10. External Views Of MSM64162/164 ADC POD

Each of the pins shown in Figure 3-10 (RS0, RT0, CRT0, CS0, IN0, RS1, RT1, CS1, IN1) is
identical to the corresponding MSM64162 and MSM64164 pin. Connect resistors and capacitors that
match the oscillation modes. Refer to the user's manual of your target chip for specific interfacing details.

The CR oscillation characteristics differ for 1.5V and 3.0V. Select values that match the
power supply voltage of the target chip.

Be sure to connect the ADC POD with the emulator main unit's power supply switched off.

Note that the MSM64162D chip does not have the four pins RS1, RT1, CS1, and IN1.

Chapter 3, EASE64162/164 Emulator

3-22

RS0 CRT0 IN0

MSM64162/164

OKI
No.XXXXXXX
Ver.XXX/3.0V

ADC POD QTU-11228-2

RS1 CS1

CS0 RT1 IN1RT0

Voltage label

Connect to EASE64162/164
ADC connector

RS0 CRT0 IN0

MSM64162/164

ADC POD QTU-11228-2

RS1 CS1

CS0 RT1 IN1RT0

Voltage label

Connect to EASE64162/164
ADC connector

OKI
No.XXXXXXX
Ver.XXX/1.5V

☞ 1

!
!

3.2.4. Confirming EASE64162/164 Power Supply Voltage

The EASE64162/164 has an internal power supply circuit that uses normal household power.
The rated voltage of the power supply circuit is AC 100~240 V (50/60Hz).

The current voltage range setting is shown on a seal affixed below the AC power supply
connector. Be sure that the AC power supply that you will use matches this range.

ABSOLUTELY DO NOT USE A POWER SUPPLY OTHER THAN AC 100-240 V. DOING
SO COULD CAUSE A FIRE.

3-23

Chapter 3, EASE64162/164 Emulator

AC 100 240 V~

AC Power Connector

Seal

!

A seal like the one shown at
left is affixed.

3.2.5. Starting the EASE64162/164 Emulator

The procedure for starting the EASE64162/164 emulator is as follows.

• Baud rate switches

For details on switch settings, refer to Section 3.2.2, “EASE64162/164 Switch Settings.”

• Is the AC power supply connector connected to the AC power supply cable?
• Is the emulation kit connected to the host computer?
• Is the user cable connected (when interfacing to the user application system)?
• Is the M64162/164 ADC POD connected?

Figure 3-11. Cable Connection Diagram

Chapter 3, EASE64162/164 Emulator

3-24

(1) Verify that the following EASE64162/164 emulator (hereafter called the emulation kit)
switches are set correctly.

(2) Verify that the necessary cable types are connected to the emulation kit.

Host Computer

RS232C Cable

User Application System
Using MSM64162, or MSM64164

M64162/164
ADC POD

Grounded AC outlet
(100 V 240 V)~

Stabilized DC power for
supplying VCC

Power
Cable

User Cables

EASE64162/164

The system will start even if the user application system is not connected. In this case, do
not connect the user cables.

Vcc is not supplied to the user application system from the user cables (however, GND is
connected to the user application system through the user cables). If Vcc must be supplied
to the user application system, then supply it from a separate power supply (refer to Figure 3-
11).

Use MS-DOS or PC-DOS version 3.1 or later.

When the EASE64162/164 is shipped, its data transfer parameters are as follows.

Oki if800 series computers are set using the SWITCH command.

PC9801 series computers are set using the SPEED command.
For details, refer to the manual of the host computer.

With the if800 series after changing parameters with the SWITCH command, if the if800 reset

button is pushed once more to boot up the computer again, then be sure to note that the RS232C
parameters will not be set correctly.

IBM-PC computers use the INT232C program (described in step 5 below).

3-25

Chapter 3, EASE64162/164 Emulator

!

!

!

!

(3) Turn on the host computer power supply, and start MS-DOS (PC-DOS).

(4) Set the host computer’s transfer parameters.

Communication method RS232C interface

Transfer speed 9600 bps

Transfer format 8 bits, 1 stop bit, no parity

INT232C is a TSR (Transient but Stay Resident) program. It sets the RS232C interface
operating conditions of the IBM-PC/AT, and simultaneously enables interrupt signals.

Invoking this program once will place it in host computer memory, where it will reside until
removed. The method for invoking and removing INT232C is shown below.

The brackets [] can be omitted. When omitted, the default values of the following explanations
apply.

<options>

X Perform XON/XOFF control (☞1).
M Perform modem control.
* Do not perform XON/XOFF or modem control.
R Remove resident INT232C.

<baud>

Specifies the baud rate. Choose one of the following.

2400, 4800, 9600 (default)

<parity>

Specifies whether and what kind of parity checking to perform. Choose one of the following.

N Do not perform parity checking (default).
O Perform odd parity checking.
E Perform even parity checking.

<databits>

Specifies the number of data bits. Choose one of the following.

7, 8 (default)

<stopbits>

Specifies the number of stop bits. Choose one of the following.

1 (default), 2

Chapter 3, EASE64162/164 Emulator

3-26

(5) Invoke INT232C.
This step should be executed only if you are using an IBM-PC computer.
For other computers, skip this step and go to step 6.

A> INT232C [<options>[;<baud>,<parity>,<databits>,<stopbits>]] ↵

EASE64162/164 does not perform XON/XOFF control. Therefore, only use '*' or 'R" for the
INT232C option. With any other settings, the EASE64X will not operate.

A> INT232C * ↵
(This is the same as: INT232C *;9600,N,8,1

A> INT232C *;1200 ↵

A> INT232C R ↵

❏ List of messages

INT232C outputs the following messages.

• INT232C has been removed from memory.

• INT232C has not been loaded.

• INT232C has already been loaded.

• INT232C has been loaded.

The debugger executable file EASE64X.EXE can be started from the directory that stores it or
from another directory.

(1) Starting from the directory that stores EASE64X.EXE

Input the following after the DOS prompt.

(2) Starting from another directory

If the PATH environment variable includes the directory that contains EASE64X.EXE, then input
is the same as in (1). If not specified by PATH, then the EASE64X debugger is invoked as follows.

Here pathname is the absolute path name of the directory that contains EASE64X.EXE.

3-27

Chapter 3, EASE64162/164 Emulator

Example

(6) Start the EASE64X debugger.

A> EASE64X ↵

A> pathname\EASE64X ↵

(7) The following message will be displayed on the console, and the system will wait for a reset
switch input from emulation kit.

!

EASE64X Debugger Ver. x.xx
Copyright (C) xxxx. OKI Electric Ind. Co., Ltd.

Low-Power Series Emulator <<EASE64162/164>> Ver.X.XX

*

(1) For more information on the emulator's RS232C interface, refer to Section 3.2.2,
"EASE64162/164 Switch Settings."

(2) The user application system cannot be supplied with Vcc taken from the emulator.
(3) Before turning on the emulator's power supply, verify that the connected AC power

supply voltage is the same as the voltage shown on the AC power supply connector.
(4) If the emulator does not start, then refer to Appendix 6.
(5) Table 3-2 shows the various items initialized when EASE64162/164 is turned on, when

the reset switch is pressed, when a RST command is executed, and when a RST E
command is executed. A circle indicates that the item is initialized, while a dash
indicates that it is not initialized. Also, when the reset switch is pressed, all open files
will be closed.

Chapter 3, EASE64162/164 Emulator

3-28

(8) Turn on the emulation kit power supply switch and the power supply of the user application
system. The following message will be displayed on the host computer, and emulator system
initialization will end.

(9) A "*" prompt will be displayed, and the system will wait for command input.

(10) Debugger commands can now be input.

!

3-29

Chapter 3, EASE64162/164 Emulator

Table 3-2 Initialization

Item Contents Initialized
Power

Applied

Reset
Switch

Pressed

RST

Command

RST E

Command

Evaluation

Board

Initializes to same state as when a
reset is input to a microcontroller in
the MSM64162/164.

O O O O

Break

Conditions

Only breakpoint bits are enabled.
O – – –

Breakpoint

Bits

All areas cleared to "0", disabling all

breakpoint bit breaks. O – – –

Break Status Cleared to state of no breaks

generated. O O O –

Trace Pointer Cleared to "0"
O – – –

Trace Trigger Trace trigger disabled; set to address

tracing. O O O –

Trace Enable

Bits

All areas set to 1, enabling trace

enable bit tracing. O – – –

Cycle Counter Set to default mode.
O O O –

EPROM
Programmer
Setting

Set to type 27512
O – – –

Reset Input from

User Cable

Prohibited
O – – –

Trace Object

Settings

Set to BCF, BSR0, BEF, and BSR1.
O – – –

Memory
Expansion

Set to EXPAND OFF state.
O – – –

Chapter 3, EASE64162/164 Emulator

3-30

3.3. EASE64X Debugger Commands

3.3.1. Debugger Command Syntax

The explanations of this manual make use of the following symbols.

• UPPER CASE Debugger command names are expressed with upper case letters.

DCM, LOD, G

• Italics Italicized expressions indicate user-supplied information (changes
according to operator input). The following italicized words are used.

Example

This indicates a general parameter that follows after a command
name. It includes fname, address, data, number, and mnemonic,
explained below.

parm

This indicates a file name, including drive name, path name,
primary name, and extension. Except for the extension, a file
name is handled with the exact same processing as a DOS file
name. Extensions are handled differently depending on the
command (when omitted for some commands, default extensions
exist).

fname

This indicates an address value input.address

This indicates a data value input.data

A number is used to indicate a cycle counter value input, step
count, etc. A count indicates input of a pass count value of G
command breakpoints. Both are recognized as decimal
numbers.

number
count

This indicates an optional string input from a set of strings that is
determined by the command type.

mnemonic

• Special symbols These symbols have the following special meanings for explaining
command syntax.

White space is a string consisting of one or more spaces (ASCII code 20H) and/or tabs
(ASCII code 09H) in any order.

3-31

Chapter 3, EASE64162/164 Emulator

This indicates white space (☞1).∆

This means a carriage return input.↵

The xxxx means an optional string used within an explanation.
The xxxx enclosed in { } means that it can be omitted.

{xxxx}

When text displayed automatically by the debugger and operator
input are mixed on one line, the underlined portion indicates user
input.

___ (underline)

☞ 1

3.3.1.1. Character Set

EASE64X debugger commands can make use of the following character set.

TAB is ASCII code 09H; space is ASCII code 20H; CR (carriage return) is ASCII code 0DH.

All characters usable with EASE64X debugger commands are included in this character set.
However, any character can be coded in commend fields, described later.

Chapter 3, EASE64162/164 Emulator

3-32

1. Alphabetic characters (upper and lower case)

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m

n o p q r s t u v w x y z

2. Digits

0 1 2 3 4 5 6 7 8 9

3. Delimiters
TAB space CR (☞ 2)

4. Other special symbols

, () – * >

☞ 2

!

3.3.1.2. Command Format

❏ Debugger Command Format

Debugger commands consist of a command name followed by several parameters (parm). White
space always delimits between the command name and parm. Commas (,) delimit between parm and
parm. A command line is recognized as ending at the point a carriage return (↵) is input.

❏ Comment Input

The entire string following a semicolon (;) is recognized as a comment. It will be ignored during
command parsing. For example, the entire input line below is a comment, so the emulator will perform no
operation.

* ;;;; This is an example of whole comment line ;;;;

❏ Command Name Format

Command names are strings consisting of 1-7 alphabetic characters. They express instructions
given to the debugger. A command name's function is indicated by its first character. Second and
following characters are keywords for memory and internal registers of the evaluation board or emulator.

D (Display) Data display commands
C (Change) Data change commands
E (Enable) Enable commands
F (Fill) Data fill commands
R (Reset) Reset commands
S (Set) Set commands
P (Program) Commands for writing data to EPROM
T (Transfer) Coommands for reading data from EPROM
V (Verify) Commands for comparing memory contents
G (Go) Execute (emulation) commands

3-33

Chapter 3, EASE64162/164 Emulator

command_name ∆ parm, parm . . . , parm ↵

Example

Chapter 3, EASE64162/164 Emulator

3-34

3.3.1.3 Command Summary

This section gives a summary table of all EASE64X commands.

Name Function

Syntax

Parameters / options

No.

Command Group Name

Detailed explanations of each command are given in 3.3.4. The table of this section was created
with the purpose of first giving a quick overview of the commands, and then in the future serving as a
command index.

The tavle of this section follows the format below.

• No. Sequence number

• Name Name of the command

• Syntax Syntax of the command

• Parameters and Options Describes each of the parameters and options
expressed in Command Syntax

• Reference Page The reference page for a explanation in 3.3.4 “EASE64X
Command Details”.

Reference
page

Page

Chapter 3, EASE64162/164 Emulator

3-35

C Change contents of target chip registers

Cmnemonic ∆ data ↵

mnemonic : PC (0 to 7DF or 0 to FDF)
B (0 to F) ,CAPR0 (0 to FF) ,TBCR (0 to F) ,P20CON (0 to F)
A (0 to F) ,CAPR1 (0 to FF) ,DSPCON (0 to 3) ,P21CON (0 to F)
HL (0 to FF) ,CAPCON (0 to 1) ,IE0 (0 to F) ,P22CON (0 to F)

(☞1) XY (0 to FF) ,CNTA (0 to 79999) ,IE1 (0 to F) ,P23CON (0 to F)
SP (0 to FF) ,CNTB (0 to 3FFF) ,IE2 (0, 1) ,P30CON (0 to F)
BSR0 (0 to F) ,ADCON0 (0 to 3) ,IRQ0 (0 to F) ,P31CON (0 to F)
BSR1 (0 to F) ,ADCON1 (0 to F) ,IRQ1 (0 to F) ,P32CON (0 to F)
BCF (0, 1) ,SBUF (0 to FF) ,IRQ2 (0 to F) ,P33CON (0 to F)
BEF (0, 1) ,SCON (0 to F) ,MIEF (0, 1) ,P40CON (0 to F)
P1D (0 to F) ,FCON (0, 1) ,P41CON (0 to F)
P2D (0 to F) ,BDCON (0 to F) ,P42CON (0 to F)
P3D (0 to F) ,BFCON (0, 1 or 0 to F) ,P43CON (0 to F)
P4D (0 to F) ,BUPCON (0 to 3 or 0, 1) ,P01CON (0 to F)

3 3-62

Evaluation Board Access Commands

D Display contents of target chip registers

D ↵ or D mnemonic ↵

mnemonic : PC ,P0 ,CAPR1 ,IRQ0
B ,P1D ,CAPCON ,IRQ1
A ,P2D ,TBCR ,IRQ2
HL ,P3D ,DSPCON ,BUPCON
XY ,P4D CNTA ,MIEF
CY ,SBUF ,CNTB
SP ,SCON ,ADCON0
BSR0 ,FCON ,ADCON1
BSR1 ,BDCON ,IE0
BCF ,BFCON ,IE1
BEF ,CAPR0 ,IE2

2 3-62

Page

CHIP Set target chip

CHIP [∆ mnemonic] ↵

mnemonic : 64164, 64164

1 3-61

Chapter 3, EASE64162/164 Emulator

3-36

DDSPR Display Display Register

DDSPR ↵4 3-67

CDSPR Change Display Register

CDSPR ∆ mnemonic ↵

mnemonic : 0~20 . . . MSM64162 mode
0~30 . . . MSM64164 mode

5 3-67

Evaluation Board Access Commands (cont.)

• The numbers in parentheses indicate the input data range for the corresponding

mnemonics.

• The data range of PC is 0H~7DFH in MSM64162 mode and 0H~FDFH in MSM64164

mode.

• When TBCR is changed, it will be reset to 0 regardless of the specified data.

• The change data of CNTA is a decimal value.

• In MSM64162 mode, the following mnemonics are invalid.

P4D, SBUF, SCON, P40CON, P41CON, P42CON, P43CON

• The data range of BFCON is 0H or 1H in MSM64162 mode and 0H~FH in MSM64164

mode.

• The data range of BUPCON is 0H~3H in MSM64162 mode and 0H or 1H in MSM64164

mode.

• The FCON register does not exist in the MSM64162D chip.

• If invalid data (5H, 6H, or 7H) is written to the ADCON1 register when evaluating a

MSM64162D, then the emulator may operate incorrectly.

☞ 1

Page

Chapter 3, EASE64162/164 Emulator

3-37

DCM Display Code Memory

DCM ∆ address [, address] ↵ or
DCM ∆ * ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

* : displays entire address range

1 3-71

CCM Change Code Memory

CCM ∆ address ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

2 3-73

FCM Fill Code Memory

FCM ∆ address , address [, data] ↵ or
FCM ∆ * [, data] ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

* : fills entire address range
data : 0 to FF

3 3-75

LOD Load Disk file program into Code Memory

LOD ∆ fname ↵

fname : [Pathname] filename [extension]

4
3-77
3-81

SAV Save Code Memory into Disk file

SAV ∆ fname [∆ address , address] ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

fname : [Pathname] filename [extension]

5
3-78
3-81

Code Memory Commands Page

Chapter 3, EASE64162/164 Emulator

3-38

Code Memory Commands (cont.)

VER Verify Disk file with Code Memory

VER ∆ fname [∆ address , address] ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

fname : [Pathname] filename [extension]

6
3-79
3-81

ASM Line Assembler Command
This command stores the code it generates in code memory.

ASM ∆ address ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

7 3-82

DASM
Disassembler Command
This command disassembles program memory contents
of a specified address range.

DASM ∆ address [, address] ↵ or
DASM ∆ * ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

* : displays entire address range

8 3-84

Page

Chapter 3, EASE64162/164 Emulator

3-39

Data Memory Commands

DDM Display Data Memory

DDM ∆ address [, address] ↵ or
DDM ∆ * ↵

address : 780 to 7FF . . . MSM64162 mode
700 to 7FF . . . MSM64164 mode

* : displays entire address range

1 3-87

CDM Change Data Memory

CDM ∆ address ↵

address : 780 to 7FF . . . MSM64162 mode
700 to 7FF . . . MSM64164 mode

2 3-89

FDM Fill Data Memory

FDM ∆ address , address [, data] ↵ or
FDM ∆ * [, data] ↵

address : 780 to 7FF . . . MSM64162 mode
700 to 7FF . . . MSM64164 mode

* : fills entire address range
data : 0 to FF

3 3-91

Page

Chapter 3, EASE64162/164 Emulator

3-40

STP Step Execution

STP [∆ number] [, address] ↵ or
STP ∆ * ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

* : executes 65535 steps
number : 1 to 65535

1 3-94

G Realtime Emulation (continuous execution)

G [∆ address] [, parm] ↵

parm : address [, address . . . , address]
RAM (data–count)
BAR (data–count)
address (count)

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

2 3-97

Emulation Commands Page

Chapter 3, EASE64162/164 Emulator

3-41

DBC Display Break Condition Register

DBC ↵1 3-103

DBS Display Break Status

DBS ↵3 3-109

DBP Display Break Point Bits

DBP ∆ address [, address] ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

4 3-105

EBP Enable Break Point Bits

EBP ∆ address [, address . . . , address] ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

5 3-106

RBP Reset Break Point Bits

RBP ∆ address [, address . . . , address] ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

6 3-105

SBC Set Break Condition Register

SBC ↵2 3-103

Break Commands Page

Chapter 3, EASE64162/164 Emulator

3-42

FBP Fill Break Point Bits

FBP ∆ address , address [, data] ↵ or
FBP ∆ * [, data] ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

* : fills entire address range
data : 0, 1

7 3-107

Break Commands Page

Chapter 3, EASE64162/164 Emulator

3-43

DTM Display Trace Memory

DTM ∆ -number-step ∆ numberstep ↵ or
DTM ∆ numberTP ∆ numberstep ↵ or
DTM ∆ * ↵

number-step : number of steps to go back (1~8192)
numberstep : number of steps to display (1~8192)
numberTP : value of TP at which to start display (0~8191)
* : Display the entire area of trace memory

1 3-112

CTDM Change Trace Data Memory

CTDM [∆ address]↵

address : 780 to 7FF . . . MSM64162 mode
700 to 7FF . . . MSM64164 mode

4 3-117

DTDM Display Trace Data Memory

DTDM ↵5 3-117

DTO Display Trace Object

DTO ↵3 3-118

CTO Change Trace Object

CTO ↵2 3-118

STT Set Trace Trigger

STT ↵6 3-120

Trace Commands Page

Chapter 3, EASE64162/164 Emulator

3-44

DTT Display Trace Trigger

DTT ↵7 3-118

RTT Reset Trace Trigger

RTT ↵8 3-118

DTR Display Trace Enable Bits

DTR ∆ address [, address . . . , address] ↵ or
DTR ∆ * ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

* : displays entire address range

9 3-124

FTR Fill Trace Enable Bits

FTR ∆ address , address [, data] ↵ or
FTR ∆ * [, data] ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

* : fills entire address range
data : 0, 1

12 3-126

ETR Enable Trace Enable Bits

ETR ∆ address [, address . . . , address] ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

10 3-125

RTR Reset Trace Enable Bits

RTR ∆ address [, address . . . , address] ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

11 3-125

Trace Commands (continued) Page

Chapter 3, EASE64162/164 Emulator

3-45

DTP Display Trace Pointer

DTP ↵13 3-128

Trace Commands (continued)

RTP Reset Trace Pointer

RTP ↵14 3-128

Page

Chapter 3, EASE64162/164 Emulator

3-46

RST Reset System and Evaluation Chip

RST ↵ Reset the system.
RST ∆ E ↵ Reset the evaluation chip.

1 3-130

URST Set User Reset Terminal (on user cable)

URST [∆ mnemonic]↵

mnemonic : ON, OFF

2 3-132

Reset Commands Page

Chapter 3, EASE64162/164 Emulator

3-47

DIE Display Instruction Executed Bits

DIE ∆ address [, address] or
DIE ∆ * ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

* : displays entire address range

6 3-139

DCC Display Cycle Counter

DCC ↵1 3-137

CCC Change Cycle Counter

CCC ∆ [-]number ↵

number : 0 to 4294967295

2 3-138

SCT Set Cycle Counter Trigger

SCT ↵3 3-134

DCT Display Cycle Counter Trigger

DCT↵4 3-134

RCT Reset Cycle Counter Trigger

RCT ↵5 3-134

RIE Reset Instruction Executed Bits

RIE ↵7 3-139

Performance/Coverage Commands Page

Chapter 3, EASE64162/164 Emulator

3-48

TYPE Set EPROM Type

TYPE ∆ mnemonic ↵

mnemonic : 64, 128, 256, 512

1 3-142

PPR Program EPROM

PPR ∆ addressCode , addressCode [, addressEPROM]↵ or
PPR ∆ * ↵

address Code : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

*: programs entire address range
address EPROM: EPROM write address

2 3-143

TPR Transfer EPROM into Code Memory

TPR ∆ addressCode , addressCode [, addressEPROM]↵
TPR ∆ * ↵

address Code : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

*: transfers entire address range
address EPROM: EPROM transfer address

3 3-145

VPR Verify EPROM with Code Memory

VPR ∆ addressCode , addressCode [, addressEPROM]↵
VPR ∆ * ↵

address Code : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

*: verifies entire address range
address EPROM: EPROM comparison address

4 3-147

EPROM Programmer Commands Page

Chapter 3, EASE64162/164 Emulator

3-49

LODM Load Disk file Mask Option into System memory

LODM ∆ fname ↵

fname : [Pathname] filename [Extension]

1 3-150

Mask Option File Commands Page

VERM Verify Disk file with System Memory

VERM ∆ fname ↵

fname : [Pathname] filename [Extension]

2 3-151

PPRM Program Mask Option Data into EPROM

PPRM ↵3 3-153

TPRM Transfer EPROM into System Memory

TPRM ↵4 3-154

VPRM Verify EPROM with System Memory

VPRM ↵5 3-155

Chapter 3, EASE64162/164 Emulator

3-50

BATCH Batch Processing

BATCH ∆ fname ↵

fname : [Pathname] filename [Extension]

1 3-158

PAUSE Pause Command Input

PAUSE ↵2 3-159

Commands for Automatic Command Execution Page

Chapter 3, EASE64162/164 Emulator

3-51

LIST Listing (Redirect the Console output to Disk file)

LIST ∆ fname ↵

fname : [Pathname] filename [Extension]

1 3-161

NLST No Listing (Cancel the Console output Redirection)

NLST ↵2 3-162

> Call OS Shell

>DOS command ↵3 3-163

CCLK Display/Change Clock Mode

CCLK [∆ mnemonic] ↵

HIN, HOUT, LIN, LOUT

4 3-164

CIPS Display/Change Interface Power Supply

CIPS [∆ mnemonic] ↵

mnemonic : INT, EXT

5 3-165

EXPAND Expand Code Memory

EXPAND [∆ mnemonic] ↵

mnemonic : ON, OFF

6 3-166

EXIT Terminate the Debugger and Exit to OS

EXIT ↵7 3-168

Other Commands Page

Chapter 3, EASE64162/164 Emulator

3-52

3.3.2. History Functions

EASE64X has a function for saving previous command line input (☞1). This function is known as
the history function.

When using the debugger, occasionally you will want to input the same command as one several
previous, or the same command except with different parameters. This is when the history function is
especially powerful.

(1) Current line buffer and history buffer

EASE64X has a current line buffer for editing the current command line input and a history buffer
for saving command lines.

The command line buffer is a 72-character buffer for command line input. The history buffer is a
72-character by 20-line buffer for storing command line input in order.

There are two types of history buffers. One is for normal command line input, and one is for
command line input during execution of the ASM command.

Figure 2-5. Current Line Buffer and History Buffer

SSTTPP 111100,,55

DTM -10 10

G 100, 10F

C A 3

DA

ASM 100

:

STP 110, 5 ↵

LHLI 35

LAI 3

LMA

INA

INH

JP 800

:

History buffer for
normal command
line input

History buffer for
command line input
during execution of
ASM commands

ASM command?
NO YES

Current line buffer

A command line input by an operator is first stored in the current line buffer. Simultaneous to the
operator pressing a carriage return, the contents of the current line buffer are stored in the history buffer.
Each time a command line is input, its contents are stored in order in the history buffer.

The history buffer is configured as a ring. The oldest input line (the command line input 20 lines
before the current command line input) is overwritten. As a result, the previous 20 lines of command line
input will always be stored.

The operator can read the contents of the history buffer into the current line buffer at any time
during command line input.

Note that input from a file called by the BATCH command will not be stored in the history buffer.

❏ Using history functions

This somewhat covers the same material as Section 3-3-3, “Special Keys For Raising Command
Input Efficiency,” but the history functions are utilized with the ↑ key (or CTRL + K) and the ↓ key (or
CTRL + J).

Pressing the ↑ key will read the immediately previous command line input from the history buffer
into the command line buffer and display it on the console. Then each time the ↑ key is pressed, the next
previous command line input will be read and displayed.

Converse to the ↑ key, the ↓ key reads the command line input immediately afterward from the
history buffer and displays it on the console.

After the operator has edited the displayed current line buffer contents with the special keys for
command line editing, as explained in the next section, he can enter it as the new command line input by
pressing the ↵ key. At this time, the current line buffer will be executed to its end as the command line
input, regardless of the cursor position on the line.

Of course, the contents of the current line buffer can be executed if only the ↵ key is pressed
without any editing.

EASE64X command line input is input from the console after the EASE64X output prompt
“*”, and during ASM command execution.

3-53

Chapter 3, EASE64162/164 Emulator

☞ 1

3.3.3. Special Keys For Raising Command Input Efficiency

EASE64X provides special editing keys, as mentioned in the previous section on the history
function, for raising efficiency of current line buffer editing. There are a total of 12 special keys. They can
effectively create new command line inputs. The special keys and their control functions are explained
below.

(1) CTRL+A and CTRL+Z

CTRL+A moves the cursor to the first location of the current line buffer.

CTRL+Z moves the cursor to the last location of the current line buffer.

Contents of current line buffer before editing

CTRL + A pressed

Contents of current line buffer after editing

CTRL + Z pressed

Contents of current line buffer after editing

(2) CTRL+B and CTRL+F

CTRL+B searches for a string consisting of letters and digits only from the current cursor location
in the current line buffer toward the first location. In other words, it recognizes characters other than
letters and digits as string delimiters.

If a string is detected, then the cursor will be moved to its first location. If no string could be
detected, then the cursor will be moved to the first location of the current line buffer.

Chapter 3, EASE64162/164 Emulator

3-54

S T P 1 0 0 0 , 1 0

S T P 1 0 0 0 , 1 0

S T P 1 0 0 0 , 1 0

Example

CTRL+F searches for a string consisting of letters and digits only from the current cursor location
in the current line buffer toward the last location. In other words, it recognizes characters other than
letters and digits as string delimiters.

If a string is detected, then the cursor will be moved to its first location. If no string could be
detected, then the cursor will be moved to the last location of the current line buffer.

Contents of current line buffer before editing

CTRL + B pressed
CTRL + B pressed

Contents of current line buffer after editing

CTRL + F pressed

Contents of current line buffer after editing

(3) CTRL+H (or ←) and CTRL+L (or →)

CTRL+H moves the cursor one location to the left of its current location in the current line buffer.

CTRL+L moves the cursor one location to the right of its current location in the current line buffer.

Contents of current line buffer before editing

CTRL + H or ← pressed

Contents of current line buffer after editing

CTRL + L or → pressed

Contents of current line buffer after editing

3-55

Chapter 3, EASE64162/164 Emulator

Example S T P 1 0 0 0 , 1 0

S T P 1 0 0 0 , 1 0

S T P 1 0 0 0 , 1 0

Example S T P 1 0 0 0 , 1 0

S T P 1 0 0 0 , 1 0

S T P 1 0 0 0 , 1 0

(4) CTRL+K (or ↑) and CTRL+J (or ↓)

CTRL+K (or ↑) and CTRL+J (or ↓) read history buffer contents into the current line buffer, as
explained in the previous section. For details, refer to the previous Section 3.3.2, “History Function.”

(5) CTRL+D and CTRL+X

CTRL+D deletes current line buffer contents from the current cursor position to the last location,
and then moves the cursor to the end of the line.

CTRL+X deletes the current line buffer contents, and then moves the cursor to the start of the
buffer.

Contents of current line buffer before editing

CTRL + D pressed

Contents of current line buffer after editing

CTRL + X pressed

Contents of current line buffer after editing

(6) CTRL+R (or INS) and DEL

CTRL+R (or INS) inserts a single blank character at the current cursor position in the current line
buffer.

DEL deletes a singles character at the current cursor position in the current line buffer. The
cursor position does not change.

Chapter 3, EASE64162/164 Emulator

3-56

Example S T P 1 0 0 0 , 1 0

S T P 1

Contents of current line buffer before editing

CTRL + R or INS pressed

Contents of current line buffer after editing

DEL pressed

Contents of current line buffer after editing

If you will use EASE64X with an IBM PC-AT, then add the appropriate ANSI escape
sequence driver from your DOS system disk to CONFIG.SYS. If you forget to do so, then
you will not be able to use the special editing keys.

To use the ↑ , ↓ , ← , → , INS and DEL keys, set your host computer’s key table to the same
key code settings as in the table on the next page. If the settings do not match, then the
danger exists that a special key function will operate differently. NEC PC-9801 change the
key table file to KEY.TBL using the MS-DOS utility program KEY.EXE.

3-57

Chapter 3, EASE64162/164 Emulator

Example S T P 1 0 0 0 , 1 0

S T P 1 0 0 0 , 1 0

S T P 1 0 0 0 , 1 0

!

Host Computer ANSI Escape Sequence Driver Name

IBM PC-AT ANSI.SYS

!

The table below shows the special editing keys and how they affect the contents of the current
line buffer. It also shows the EASE64X internal processing code (in hexadecimal) for each key. Check
the settings of your host computer’s key table, and if they do not match these settings, then change them
to match.

In the table, “line” means the current line buffer.

Chapter 3, EASE64162/164 Emulator

3-58

Editing Key Code

01H

Control Function

CTRL + A Moves the cursor to the start of the current line buffer.

02HCTRL + B
Searches for string of letters and digits only from the
current cursor location to the first location, and moves the
cursor to the start of the string.

06HCTRL + F
Searches for string of letters and digits only from the
current cursor location to the first location, and moves the
cursor to the start of the string.

0AHCTRL + J or ↓
Reads the next command line input from the history buffer
into the current line buffer and displays it.

0BHCTRL + K or ↑
Reads the previous command line input from the history
buffer into the current line buffer and displays it.

08HCTRL + H or ← Moves the current cursor position one to the left.

0CHCTRL + L or → Moves the current cursor position one to the right.

18HCTRL + X
Deletes the current line buffer, and moves the cursor to the
first location.

1AHCTRL + Z Moves the cursor to the end of the current line buffer.

7FHDEL Deletes a character at the current cursor location.

04HCTRL + D Deletes all characters from the current cursor location to
the last location.

12HCTRL + R or INS Inserts a single blank at the current cursor location.

3.3.4 Command Details

This chapter explains the EASE64X commands organized by function.

A list of contents like the one shown below is given at the start of each functional grouping. At
the top is a two-line title box outlining the name of the functional group. Below it are the names of the
command groups covered by the functional group, outlined in one-line title boxes. Under each command
group are the names of the commands it covers.

The header of each page shows the name of the command explained on that page in boldface
and enclosed in a rectangle. This is provided for convenience when looking up command explanations.

Each command is explained in the order of input format, description, and execution example.
These are given under the following respective title lines.

3-59

Chapter 3, EASE64162/164 Emulator

3.3.4.x

Functional Group Name

3.3.4.x.x Command Group Name

3.3.4.x.x Command Group Name

Command Name

Command Name

Command Name

Command Name

Input Format

Description

Execution Example

Chapter 3, EASE64162/164 Emulator

3-60

3.3.4.1

Evaluation Board Access Commands

3.3.4.1.2 Displaying/Changing Target Chip Registers

3.3.4.1.3 Displaying/Changing Display Registers

D

C

DDSPR

CDSPR

3.3.4.1.1 Displaying/Changing Target Chip

CHIP

3.3.4.1.1 Displaying/Changing Target Chip

CHIP [∆ mnemonic] ↵

mnemonic : 64162
64164

The EASE64162/164 can operate in a MSM64162 mode and a MSM64164 mode
(☞ 1). The CHIP command sets the EASE64162/164 operating mode with

mnemonic. If mnemonic is omitted, then the current operating chip mode will be
displayed.

The EASE64162/164 resets its evaluation board after the CHIP command is
input. The CHIP command will display the following on the CRT.

To evaluate an MSM64162D, set the chip mode to MSM64162 mode.

* CHIP
MSM64164 MODE

* CHIP 64162
*** EVA BOARD RESET ***

3-61

Chapter 3, EASE64162/164 Emulator

D, C

CHIP

Input Format

Description

* CHIP 64162

* * * * * EVA BOARD RESET * * * * *

☞ 1

Execution Example

3.3.4.1.2 Displaying/Changing Target Chip Registers

D [mnemonic] ↵ Display command

C mnemonic [∆ data] ↵ Change command

mnemonic : mnemonic of a register

The D command displays the contents of the register specified by mnemonic. A
register mnemonic is one of the mnemonics shown in Table 3-3. If no mnemonic
is input, then contents of all registers will be displayed.

The C command changes the contents of the register specified by mnemonic.
The format of mnemonic is the same as for the D command. A list of mnemonics
is shown in Table 3-3. The data differs for each register; Table 3-3 shows the
data range of each.

Chapter 3, EASE64162/164 Emulator

3-62

D, C

D, C

Input Format

Description

mnemonic : old-data OLD --->
(☞ 1)

Here mnemonic expresses the mnemonic of the register that is to have its current contents changed.
The old-data will be the current contents of the SFR or register. At this point the operator enters new
data (data) and inputs a carriage return.

When the emulator waiting for input data for a change, the following key input is value in addition to data.

↵ (carriage return only) The C command terminates

The following mnemonics are write-only registers. If selected, then old-data will not be
displayed.

P20CON, P21CON, P22CON, P23CON
P30CON, P31CON, P32CON, P33CON
P40CON, P41CON, P42CON, P43CON
P01CON

The MSM64162/164 mask option specifications can set P5 and P6, but their contents cannot
be displayed or changed by EASE64162/164 with a debugger command.

☞ 1

3-63

Chapter 3, EASE64162/164 Emulator

mnemonic : old-data OLD ---> data ↵

D, C

!

Table 3-3(a). List of registers mnemonics

Register Name Mnemonic Input Data Range Input Data Range
In MSM64162 Mode In MSM64162 Mode

Program Counter PC 0 to 7DF 0 to FDF
B Register B 0 to F 0 to F
A Register A 0 to F 0 to F
HL Register HL 0 to FF 0 to FF
XY Register XY 0 to FF 0 to FF
Carry Flag CY 0, 1 0, 1
Stack Pointer SP 80 to FF 0 to FF
Bank Select Register 0 BSR0 0 to 7 0 to 7
Bank Select Register 1 BSR1 0 to 7 0 to 7
Bank Common Flag BCF 0, 1 0, 1
Bank Enable Flag BEF 0, 1 0, 1

(☞ 3) Backup Control Register BUPCON 0 to 3 0, 1
(☞ 2) Serial Port Buffer Register SBUF 0 to FF
(☞ 2) Serial Control Register SCON 0 to F
(☞ 8) Frequency Control Register FCON 0, 1 0, 1

Buzzer Control Register BDCON 0 to F 0 to F
(☞ 3) Buzzer Frequency Control Register BFCON 0, 1 0 to F

Capture Control Register CAPCON 0 to F 0 to F
(☞ 4) Capture Register 0 CAPR0
(☞ 4) Capture Register 1 CAPR1
(☞ 5) Time Base Counter Register TBCR 0 to F 0 to F

Display Control Register DSPCON 0 to 2 0 to 2
A/D Converter Control Register 0 ADCON0 o to 3 o to 3

(☞ 9) A/D Converter Control Register 1 ADCON1 0 to F 0 to F
(☞ 6) Counter A Register CNTA 0 to 79999 0 to 79999

Counter B Register CNTB 0 to 3FFF 0 to 3FFF
(☞ 4) Port 0 Register P0

Port 1 Register P1D 0 to F 0 to F
Port 2 Register P2D 0 to F 0 to F
Port 3 Register P3D 0 to F 0 to F

(☞ 2) Port 4 Register P4D 0 to F
(☞ 7) Port 20 Control Register P20CON 0 to F 0 to F

Port 21 Control Register P21CON 0 to F 0 to F
Port 22 Control Register P22CON 0 to F 0 to F
Port 23 Control Register P23CON 0 to F 0 to F
Port 30 Control Register P30CON 0 to F 0 to F
Port 31 Control Register P31CON 0 to F 0 to F
Port 32 Control Register P32CON 0 to F 0 to F
Port 33 Control Register P33CON 0 to F 0 to F

(☞ 2) Port 40 Control Register P40CON 0 to F
(☞ 2) Port 41 Control Register P41CON 0 to F
(☞ 2) Port 42 Control Register P42CON 0 to F

Chapter 3, EASE64162/164 Emulator

3-64

D, C

Table 3-3(b). List of registers mnemonics

Register Name Mnemonic Input Data Range Input Data Range
In MSM64162 Mode In MSM64162 Mode

(☞ 2) Port 43 Control Register P43CON 0 to F
Port 01 Control Register P01CON 0 to 7 0 to 7

(☞ 3) Interrupt Enable Register 0 IE0 0 to F 0 to F
Interrupt Enable Register 1 IE1 0 to F 0 to F
Interrupt Enable Register 2 IE2 0, 1 0, 1

(☞ 3) Interrupt Request Register 0 IRQ0 0 to F 0 to F
Interrupt Request Register 1 IRQ1 0 to F 0 to F
Interrupt Request Register 2 IRQ2 0 to 3 0 to 3
Master Interrupt Enable Flag MIEF 0, 1 0, 1

In MSM64162 mode, the mnemonics SCON, SBUF, P4D, and P40CON~P43CON are
invalid

The bit configurations in MSM64162 mode and MSM64164 mode differ. Refer to the chips'
user's manuals for details.

CAPR0, CAPR1, and P0 are read-only registers, so the change command is invalid with
them.

When TBCR is changed, it will be reset to 0 regardless of the change data specified.

The change data for CNTA is a decimal value.

P20CON~P23CON, P30CON~P33CON, P40CON~P43CON, and P01CON are write-only
registers, so the display command is invalid with them.

The FCON register does not exist in the MSM64162D chip.

If invalid data (5, 6, or 7) is written to the ADCON1 register when evaluating a MSM64162D,
then the emulator may operate incorrectly.

☞ 2

3-65

Chapter 3, EASE64162/164 Emulator

D, C

☞ 3

☞ 4

☞ 5

☞ 6

☞ 7

☞ 8

☞ 9

* DA
A :0

* CA
A :0 OLD ---> 8

* CHL E4

* DHL
HL :E4

* CHIP
MSM64164 MODE

* D MSM64164 mode
PC :0000 P0 :F CNTA :80000
A :8 P1D :0 CNTB :C000
B :0 P2D :F ADCON0 :C
HL :E4 P3D :F ADCON1 :0
XY :00 FCON :E IE0 :0
CY :0 BDCON :0 IE1 :0
SP :FF BFCON :0 IE2 :E
BSR0 :0 CAPRO :0 IRQ0 :0
BSR1 :0 CAPR1 :0 IRQ1 :0
BCF :0 CAPCON :0 IRQ2 :C
BEF :0 TBCR :0 BUPCON :E
MIEF :E DSPCON :C
P4D :F SCON :0 SBUF :00

* CHIP 64162

*** EVA BOARD RESET ***

* D MSM64162 mode

PC :0000 P0 :F CNTA :80000
A :0 P1D :0 CNTB :C000
B :0 P2D :F ADCON0 :C
HL :00 P3D :F ADCON2 :0
XY :00 FCON :E IE0 :2
CY :0 BDCON :0 IE1 :0
SP :FF BFCON :E IE2 :E
BSR0 :0 CAPR0 :0 IRQ0 :2
BSR1 :0 CAPR1 :0 IRQ1 :0
BCF :0 CAPCON :0 IRQ2 :C
BEF :0 TBCR :0 BUPCON :8
MIEF :E DSPCON :C

Chapter 3, EASE64162/164 Emulator

3-66

Execution Example

D, C

3.3.4.1.3 Displaying/Changing Display Registers

CDSPR [∆ number] ↵

The CDSPR command changes the values of the display registers
(DSPR00~DSPR30). (☞ 1)

The number range differs for MSM64162 mode and MSM64164 mode. In
MSM64162 mode, its range is 00 to 20 (decimal). In MSM64164 mode, its range
is 00 to 30 (decimal).

DSPR00 = old-data OLD --->

Here old-data is the current value of the corresponding display register. The
inputs new data (data) and a carriage return. The data is a value 0H to FH.

DSPR00 = old-data OLD ---> data NEW ↵
DSPR00 = old-data OLD ---> input data for next parameter

When the carriage return is input, processing moves to the next parameter. If
there is no next parameter, then the CDSR command terminates.

If number is specified, then changes will begin from the specified display register.

When the emulator is waiting for input data for a change, the following three key
inputs are valid in addition to data.

“∆ ↵ ” (space followed by carriage return) Display contents of next display
register without changing the
current data, and wait for new

input data.

“– ↵ ”- (minus followed by carriage return) Display contents of previous
display register without
changing the current data, and
wait for new input data.

“↵ ” (carriage return only) Terminate the CDSPR
command.

3-67

Chapter 3, EASE64162/164 Emulator

CDSPR, DDSPR

CDSPR

Input Format

Description

* CDSPR
DSPR00 = 0 OLD ---> 8
DSPR01 = 0 OLD ---> 4
DSPR02 = 0 OLD ---> F
DSPR03 = 0 OLD ---> NOT CHANGE :Input ∆↵
DSPR04 = 0 OLD ---> - :Input -↵
DSPR03 = 0 OLD ---> 1
DSPR04 = 0 OLD ---> :Input ↵

* CDSPR 5
DSPR05 = 0 OLD ---> 7
DSPR06 = 0 OLD ---> A
DSPR07 = 0 OLD --->

Chapter 3, EASE64162/164 Emulator

3-68

CDSPR, DDSPR

Execution Example

DDSPR ↵

The DDSPR command displays all display register values
(DSPR00~DSPR30).(☞ 1)

* DDSPR ---------> MSM64162 mode

0 1 2 3 4 5 6 7 8 9
DSPR0 8 4 F 1 0 7 A 0 0 0
DSPR1 0 0 0 0 0 0 0 0 0 0
DSPR2 0

* CHIP 64164
*** EVA BOARD RESET ***

* DDSPR ----------> MSM64164 mode

0 1 2 3 4 5 6 7 8 9
DSPR0 0 0 0 0 0 0 0 0 0 0
DSPR1 0 0 0 0 0 0 0 0 0 0
DSPR2 0 0 0 0 0 0 0 0 0 0
DSPR3 0

In MSM64162 mode, display registers DSPR00~DSPR20 are valid. In MSM64164 mode,
display registers DSPR00~DSPR30 are valid.

3-69

Chapter 3, EASE64162/164 Emulator

DDSPR

Input Format

Description

Execution Example

CDSPR, DDSPR

☞ 1

Chapter 3, EASE64162/164 Emulator

3-70

3.3.4.2

Code Memory Commands

3.3.4.2.1 Displaying Changing Code Memory

DCM

CCM

3.3.4.2.2 Load / Save / Verify

LOD

SAV

VER

3.3.4.2.3 Assemble/Disassemble

ASM

DASM

FCM

3.3.4.2.1 Displaying/Changing Code Memory

DCM ∆ address [, address] ↵
or
DCM ∆ * ↵

address : 0~7DF (MSM64162 mode)
0~FDF (MSM64164 mode)

* : display entire address range

The DCM command displays the contents of code memory.

The address expresses an address in code memory space for which the contents
are to be displayed. It is a value 0H to 7DFH when in MSM64162 mode, or 0H to
FDFH when in MSM64164 mode.

The DCM command can be forcibly terminated by pressing the ESC key.

Display contents are one of the following, depending on input format.

address Displays the contents of one address.
address, address Displays the range from the first address to the second

address.
* Displays the entire area of code memory (☞1).

The entire area of code memory changes with the mode. When in
MSM64162 mode, it is 0H to 7DFH. When in MSM64164 mode, it
is 0H to FDFH.

3-71

Chapter 3, EASE64162/164 Emulator

DCM

DCM

Input Format

Description

☞ 1

* DCM 0,2F

0 1 2 3 4 5 6 7 8 9 A B C D E F
LOC=0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
LOC=0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
LOC=0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

* DCM 1A
LOC=001A 00

* DCM * ---------> MSM64164 mode

0 1 2 3 4 5 6 7 8 9 A B C D E F
L0C=0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
LOC=0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
LOC=0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
LOC=0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
L0C=0040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
LOC=0050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
LOC=0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
LOC=0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0 1 2 3 4 5 6 7 8 9 A B C D E F
L0C=0080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

.

.

.

.
LOC=0FD0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Chapter 3, EASE64162/164 Emulator

3-72

DCM

Execution Example

CCM ∆ address ↵

address : 0~7DF (MSM64162 mode)
0~FDF (MSM64164 mode)

The CCM command changes the contents of code memory.

The address expresses a code memory address. It is a value 0H to 7DFH when
in MSM64162 mode, or 0H to FDFH when in MSM64164 mode.

When the carriage return is input, the emulator will output the following message
and wait for data input.

LOC = address old-data OLD --->

Here address is the code memory address at which contents are to be changed.
The old-data is the current contents of code memory. The user inputs new data
followed by a carriage return. The data is the value to change the contents to. It
is in the range 0H to FFH.

LOC = address old-data OLD ---> data NEW ↵
LOC = address old-data OLD ---> input data for next parameter

When the carriage return is input, processing will move to the next parameter. If
there is no next parameter, then the CCM command will terminate.

When the emulator is waiting for input data for a change, the following three key
inputs are valid in addition to data.

“∆ ↵ ” (space followed by carriage return) Display contents of next code
memory address without
changing the current data, and
wait for new input data.

“– ↵ ”- (minus followed by carriage return) Display contents of previous
code memory address without
changing the current data, and
wait for new input data.

“↵ ” (carriage return only) Terminate the CDSPR
command.

3-73

Chapter 3, EASE64162/164 Emulator

CCM

CCM

Input Format

Description

* CCM 200
LOC=0200 00 OLD ---> 11 NEW
LOC=0201 00 OLD ---> 23 NEW
LOC=0202 00 OLD ---> E4 NEW
LOC=0203 00 OLD ---> A1 NEW
LOC=0204 00 OLD ---> NOT CHANGE :INPUT ∆ ↵
LOC=0205 00 OLD ---> 4 NEW
LOC=0206 00 OLD ---> - :INPUT - ↵
LOC=0205 04 OLD ---> 33 NEW
LOC=0206 00 OLD ---> BB NEW
LOC=0207 00 OLD ---> :INPUT ↵

* DCM 200,20F

0 1 2 3 4 5 6 7 8 9 A B C D E F
LOC=0200 11 23 E4 A1 00 33 BB 00 00 00 00 00 00 00 00 00

Chapter 3, EASE64162/164 Emulator

3-74

Execution Example

CCM

FCM ∆ address, address [, data] ↵
or
FCM ∆ * [, data] ↵

address : 0~7DF (MSM646162 mode)
0~FDF (MSM646164 mode)

* : display entire address range
data : 0~FF

The FCM command changes the contents of code memory.

The address expresses a code memory address. It is a value 0H to 7DFH when
in MSM64162 mode, or 0H to FDFH when in MSM64164 mode. The data is a
the value of the change data. Its range is 0H to FFH.

The changes are classified by input format as follows.

address, address, data Fill entire range from first address to second address
with the data value.

address, address Fill entire range from first address to second address
with "0."

*, data Fill entire code memory area with the data value.
* Fill entire code memory area with “0.” (☞1)

The entire area of code memory changes with the mode. When in
MSM64162 mode, it is 0H to 7DFH. When in MSM64164 mode, it is
0H to FDFH.

3-75

Chapter 3, EASE64162/164 Emulator

FCM

FCM

Input Format

Description

☞ 1

* FCM 50,8F,E4

* DCM 50,8F
0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC=0050 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4
LOC=0060 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4
LOC=0070 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4
LOC=0080 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4

* FCM 50,6F

* DCM 50,8F
0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC=0050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
LOC=0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
LOC=0070 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4
LOC=0080 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4 E4

* FCM *,AA

* DCM 50,8F
0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC=0050 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
LOC=0060 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
LOC=0070 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
LOC=0080 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA

* FCM *

* DCM 50,8F
0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC=0050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
LOC=0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
LOC=0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
LOC=0080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Chapter 3, EASE64162/164 Emulator

3-76

FCM

Execution Example

3.3.4.2.2 Load/Save/Verify

LOD ∆ fname ↵

fname : [Pathname] filename [Extension]

The LOD command loads the contents of an object file output by ASM64K into
code memory. For this command, an object file is an Intel HEX format file
generated by ASM64K.

If the extension is omitted, then ".HEX" (Intel HEX format file) will be the default.

The input filename can have a path specification. If the path is omitted, then the
file in the current directory will be loaded. If the extension is omitted, then the the
file with the default extension will be loaded.

The object file generated by the ASM64K cross-assembler includes code
information obtained by converting the OLMS-64K instruction mnemonics and
directives in the source program file, and symbol information obtained from the
symbol definitions in the source program file. Do not specify the /S option for
assembly that will generate symbol information because EASE64X does not
handle symbol information.

3-77

Chapter 3, EASE64162/164 Emulator

LOD

LOD

Input Format

Description

!

SAV ∆ fname [∆ address , address] ↵

fname : [Pathname] filename [Extension]

The SAV command saves the contents of the specified range of code memory to
a disk file.

The input filename can have a path specification. If the path is omitted, then a
file in the current directory will be saved. If the extension is omitted, then the
default extension (HEX) will be appended to the file.

The address, address represents the area of code memory to be saved. If
omitted, then the entire code memory area will be saved. (☞ 1)

The entire area of code memory changes with the mode. When in
MSM64162 mode, it is 0H to 7DFH. When in MSM64164 mode, it is
0H to FDFH.

☞ 1

Chapter 3, EASE64162/164 Emulator

3-78

SAV

SAV

Input Format

Description

VER ∆ fname [∆ address , address] ↵

fname : [Pathname] filename [Extension]

The VER command compares the contents of the specified disk file with the
contents of code memory. When a difference is found, the address and the
contents of the disk file and of code memory will be displayed as shown below.

The input filename can have a path specification. If the path is omitted, then a
file in the current directory will be verified. If the extension is omitted, then the
default extension (HEX) will be appended to the file.

The address, address represents the area of disk file and of code memory to be
compared. When in MSM64162 mode, the address range is 0H to 7DFH. When
in MSM64164 mode, the address range is 0H to FDFH. If address, address is
omitted, then the entire code memory area will be compared. (☞1).

3-79

Chapter 3, EASE64162/164 Emulator

VER

VER

Input Format

Description

LOC = X X X X DISK [X X X X] CM [X X X X]

Address Disk File Code Memory
contents contents

As shown below, comparison between the disk file and code memory will be performed on
the overlap of disk file areas containing data and the “address, address” address range
specified with the VER command.

Chapter 3, EASE64162/164 Emulator

3-80

VER

☞ 1

0000H

0FDFH

Existing
Areas

Existing
Areas

Code Memory
Area

Areas in
File

Input Address
Range

Compared
Areas

Address
Range

Compared
Areas

Compared
Areas

* LOD T1

FILE OPENED NORMALLY. FILE TYPE : INTELLEC HEX

***** LOAD COMPLETED , NEXT ADDRESS = 0300 *****

* VER T1
***** VERIFY COMPLETED *****

* CCM 100

LOC=0100 BE OLD ---> 12 NEW
LOC=0101 A7 OLD ---> 34 NEW
LOC=0102 11 OLD ---> 45 NEW
LOC=0103 90 OLD ---> 56 NEW
LOC=0104 36 OLD ---> 78 NEW
LOC=0105 00 OLD ---> A1 NEW
LOC=0106 01 OLD ---> 22 NEW
LOC=0107 C4 OLD --->

* VER T1 0,7FF

LOC = 0100 DISK [BE] CM [12]
LOC = 0101 DISK [A7] CM [34]
LOC = 0102 DISK [11] CM [45]
LOC = 0103 DISK [90] CM [56]
LOC = 0104 DISK [36] CM [78]
LOC = 0105 DISK [00] CM [A1]
LOC = 0106 DISK [01] CM [22]
***** VERIFY COMPLETED *****

* SAV T1CH 0,2FF

***** SAVE COMPLETED *****

3-81

Chapter 3, EASE64162/164 Emulator

Execution Example

LOD, SAV, VER

3.3.4.2.3 Assemble/Disassemble Commands

ASM ∆ address ↵

address : 0~7DF (MSM64162 mode)
0~FDF (MSM64164 mode)

The ASM command converts OLMS-64K series instruction statements
(directives, mnemonics, and operands) into object code using an assembler
based on ASM64K, and then stores that object code in code memory.(☞ 1).

The address expresses a code memory address. It is a value 0H to 7DFH when
in MSM64162 mode, or 0H to FDFH when in MSM64164 mode.

When the carriage return is input, the emulator displays the following message
and waits for data input.

address * wait for instruction statement input

At this point the operator can input code that follows the format below.

Chapter 3, EASE64162/164 Emulator

3-82

ASM

ASM

Input Format

Description

3-83

Chapter 3, EASE64162/164 Emulator

(1) The maximum number of characters that can be input on one line is 29.
(2) After an instruction statement and carriage return are input, the emulator

displays the assembled object code and then waits for input at the next
address.

(3) The ASM command terminates with an "END."
(4) Spaces or tabs can be used as delimiters.
(5) All MSM64162, MSM64164 mnemonics and operands can be used.
(6) Character constants (such as 'A') and string constants (such as "ABC")

cannot be coded in operands.
(7) A semicolon ";" is used to code a comment.
(8) The default radix for immediate values used in operands is 10 (decimal

values). To use a radix other than 10, input as shown in the following
table.

When a hexadecimal constant's first character would normally be a letter (A~F), a '0' (zero) needs to be
inserted as the first character to distinguish it from a symbol.

(9) The following assembler directives can be used.

(10) The history function can be used. The ASM command has a 20-line buffer, separate from the
debugger's history buffer, for use as an assembler-only history function. This buffer's contents
are preserved even after the ASM command terminates, so when the ASM command is started
again, the previously input 20 lines can easily be brought up for editing using the arrow keys.
This feature can simplify input.

Comments input with the ASM command cannot be displayed with the DASM command.

Directive Type Directives Allowed

Address control ORG

Data definition DB

Assembly control END

ASM

Radix Syntax Examples

Binary (radix 2)
Append a 'B' after the number.

01010101B

Octal (radix 8)
Append an 'O' after the

number.
777O

Decimal (radix 10)
Append a 'D' or nothing after

the number.
10D, 10

Hexadecimal (radix 16)
Append a 'H' after the number.

0ABH

☞ 1

DASM ∆ address [, address] ↵
or
DASM ∆ * ↵

address : 0~7DF (MSM64162 mode)
0~FDF (MSM64164 mode)

* : disassemble entire address range

The DASM command disassembles the contents of code memory and displays
the results on the console (☞1).

The address expresses an address in code memory. It is a value 0H to 7DFH
when in MSM64162 mode, or 0H to FDFH when in MSM64164 mode.

The DASM command can be forcibly terminated by pressing the ESC key.

Display contents are one of the following, depending on input format.

address Displays the contents of one address.
address, address Displays the range from the first address to the second

address.
* Displays the entire area of code memory.

Comments input with the ASM command cannot be displayed with
the DASM command.

The entire area of code memory changes with the mode. When in
MSM64162 mode, it is 0H to 7DFH. When in MSM64164 mode, it is
0H to FDFH.

☞ 2

☞ 1

Chapter 3, EASE64162/164 Emulator

3-84

DASM

DASM

Input Format

Description

* ASM 100
LOC = 0100 50 C0 * LHLI 0C0H
LOC = 0102 6F * LMA
LOC = 0200 * ORG 200H
LOC = 0200 * LHLI 03FH
LOC = 0202 * END

* DASM 100
LOC=0100 50C0 LHLI C0

* DASM 100,103
LOC=0100 50C0 LHLI C0
LOC=0102 6F LMA
LOC=0103 00 NOP

3-85

Chapter 3, EASE64162/164 Emulator

ASM, DASM

Execution Example

Chapter 3, EASE64162/164 Emulator

3-86

3.3.4.3

Data Memory Commands

3.4.3.1 Displaying/Changing Data Memory

DDM

CDM

FDM

3.3.4.3.1 Displaying/Changing Data Memory

DDM ∆ address [, address] ↵
or
DDM ∆ * ↵

address : 780~7FF (MSM64162 mode)
700~7FF (MSM64164 mode)

* : display entire address range

The DDM command displays the contents of data memory.

The address is a value 780H~7FFFH in MSM64162 mode and 700H~7FFH in
MSM64164 mode.

The DDM command can be forcibly terminated by pressing the ESC key.

Display contents are one of the following, depending on input format.

address Displays the contents of one address.
address, address Displays the range from the first address to the second

address.
* Displays the entire area of data memory (☞ 1).

The entire area displayed differs for each chip mode. In MSM64162
mode, the area 780H to 7FFH is displayed. In MSM64164 mode,
the area 700H to FFFH is displayed.

☞ 1

3-87

Chapter 3, EASE64162/164 Emulator

DDM

DDM

Input Format

Description

* DDM 780,79F
F E D C B A 9 8 7 6 5 4 3 2 1 0

LOC=0780 0 1 0 B 0 0 2 2 0 0 0 6 0 0 2 0
LOC=0790 0 1 1 9 1 4 4 0 0 3 1 6 4 4 0 8

* DDM 79F
LOC=079F 0

* DDM 790
LOC=0790 8

* DDM * --------> MSM64164 mode
F E D C B A 9 8 7 6 5 4 3 2 1 0

LOC=0700 0 9 0 0 1 1 1 0 0 D 0 0 0 A 0 0
LOC=0710 0 2 0 0 0 7 2 8 5 2 0 0 0 1 4 3
LOC=0720 1 0 0 C 8 B 0 0 0 1 0 9 C 1 0 4
LOC=0730 2 5 0 8 0 8 0 2 0 3 C 4 0 8 0 A
LOC=0740 8 1 0 0 0 E 0 4 0 1 0 0 0 6 0 B
LOC=0750 4 2 0 A 0 8 0 0 0 0 1 3 0 0 1 6
LOC=0760 0 9 0 0 2 0 0 0 0 5 4 1 0 A 0 0
LOC=0770 0 2 8 2 0 8 0 4 0 1 8 2 0 C 8 A

F E D C B A 9 8 7 6 5 4 3 2 1 0
LOC=0780 0 1 0 B 0 0 2 2 0 0 0 6 0 0 2 0
LOC=0790 0 1 1 9 1 4 4 0 0 3 1 6 4 4 0 8
LOC=07A0 0 2 0 0 0 4 0 0 4 A 0 1 0 1 0 4
LOC=07B0 F F 0 0 1 0 0 8 0 8 0 4 4 4 0 7
LOC=07C0 0 2 C 4 8 0 4 3 0 7 1 0 0 1 8 0
LOC=07D0 0 9 0 C 2 0 6 0 8 4 0 B 0 0 0 1
LOC=07E0 1 C 8 0 0 0 1 3 0 D 1 A 0 2 0 0
LOC=07F0 1 0 0 4 1 0 0 8 0 0 0 E 0 1 0 5

Chapter 3, EASE64162/164 Emulator

3-88

DDM

Execution Example

3-89

Chapter 3, EASE64162/164 Emulator

CDM ∆ address ↵
address : 780~7FF (MSM64162 mode)

700~7FF (MSM64164 mode)

The CDM command changes the contents of data memory.

When the carriage return is input, the emulator will output the following message
and wait for data input.

LOC = address old-data OLD --->

Here address is the data memory address at which contents are to be changed.
The old-data is the current contents of data memory. The user inputs new data
followed by a carriage return. The data is the value to change the contents to. It
is in the range 0H to FH.

LOC = address old-data OLD ---> data NEW ↵
LOC = address old-data OLD ---> input next parameter

When the carriage return is input, processing will move to the next parameter. If
there is no next parameter, then the CDM command will terminate.

When the emulator is waiting for input data for a change, the following three key
inputs are valid in addition to data.

“∆ ↵ ” (space followed Display contents of next data memory address
by carriage return) without changing the current data, and wait for

new input data.

“– ↵ ” (minus followed Display contents of previous data memory
by carriage return) address without changing the current data, and

wait for new input data.

“↵ ” (carriage return only) Terminate the CDM command.

CDM

CDM

Input Format

Description

* DDM 750,75F
F E D C B A 9 8 7 6 5 4 3 2 1 0

LOC=0750 4 2 0 A 0 8 0 0 0 0 1 3 0 0 1 6

* CDM 750
LOC=0750 6 OLD ---> 0 NEW
LOC=0751 1 OLD ---> 5 NEW
LOC=0752 0 OLD ---> 0 NEW
LOC=0753 0 OLD ---> - :INPUT − ↵
LOC=0752 0 OLD ---> E NEW
LOC=0753 0 OLD ---> A NEW
LOC=0754 3 OLD ---> F NEW
LOC=0755 1 OLD ---> 2 NEW
LOC=0756 0 OLD ---> NOT CHANGE :INPUT ∆ ↵
LOC=0757 0 OLD ---> C NEW
LOC=0758 0 OLD ---> 9 NEW
LOC=0759 0 OLD ---> :INPUT ↵

* DDM 750,75F
F E D C B A 9 8 7 6 5 4 3 2 1 0

LOC=0750 4 2 0 A 0 8 0 9 C 0 2 F A E 5 0

Chapter 3, EASE64162/164 Emulator

3-90

Execution Example

CDM

FDM ∆ address, address [, data] ↵
or
FDM ∆ * [, data] ↵

address : 780~7FF (MSM64162 mode)
700~7FF (MSM64164 mode)

* : display entire address range
data : 0~F

The FDM command changes the contents of data memory.

The address expresses a data memory address. The address is a value
780H~7FFFH in MSM64162 mode and 700H~7FFH in MSM64164 mode.
The data is the value of the change data. Its range is 0H to FH.

The changes are classified by input format as follows.

address, address, data Fill entire range from first address to second address
with the data value.

address, address Fill entire range from first address to second address
with "0."

*, data Fill entire code memory area with the data value.
* Fill entire code memory area with “0.”

(☞ 1).

The address is a value 780H~7FFFH in MSM64162 mode and
700H~7FFH in MSM64164 mode.☞ 1

3-91

Chapter 3, EASE64162/164 Emulator

FDM

FDM

Input Format

Description

* FDM 700,7FF,A

* DDM 750,76F
F E D C B A 9 8 7 6 5 4 3 2 1 0

LOC=0750 A A A A A A A A A A A A A A A A
LOC=0760 A A A A A A A A A A A A A A A A

* FDM 760,76F

* DDM 750,76F
F E D C B A 9 8 7 6 5 4 3 2 1 0

LOC=0750 A A A A A A A A A A A A A A A A
LOC=0760 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* FDM *,1

* DDM 750,76F
F E D C B A 9 8 7 6 5 4 3 2 1 0

LOC=0750 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LOC=0760 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

* FDM *

* DDM 750,76F
F E D C B A 9 8 7 6 5 4 3 2 1 0

LOC=0750 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC=0760 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 3, EASE64162/164 Emulator

3-92

FDM

Execution Example

3-93

Chapter 3, EASE64162/164 Emulator

3.3.4.4

Emulation Commands

3.3.4.4.1 Step Commands

STP

3.3.4.4.2 Realtime Emulation Commands

G

3.3.4.4.1 Step Commands

STP [∆ count] [, address] ↵
or
STP ∆ * ↵

address : 0~7DF (MSM64162 mode)
0~FDF (MSM64164 mode)

count : 1~65535
* : execute 65535 steps

The STP command executes a user program in code memory one instruction at
a time.

The address expresses the first address of the user program at which step
execution is to start. It is a value 0H to 7DFH when in MSM64162 mode, or 0H
to FDFH when in MSM64164 mode.

If address is omitted, then step execution will start from the address indicated by
the current program counter (PC). If "*" is input, then 65535 steps will be
executed from the current program counter (PC).

The count is a decimal value from 1 to 65535. It indicates the number of steps to
be executed. If count is omitted, then step execution will be performed for just
one instruction and the command will terminate.

The STP command stops user program execution after each instruction. At each
stop, it displays the address and mnemonic of the executed instruction, and then
displays the states of the registers and ports after execution.

The STP command does not display instructions skipped by the skip instructions.
When the condition for skipping an instruction is met (multiply-accumulate
instruction, increment instruction, etc.), the step ends after skipping the next
instruction.

The STP command can be forcibly terminated by pressing the ESC key. (☞ 1)

Termination by the ESC key cannot be performed while in halt
mode.

Chapter 3, EASE64162/164 Emulator

3-94

STP

STP

Input Format

Description

☞ 1

When the carriage return is input, the emulator will display the following header,
followed by register and port values for each step.

B ∆ A ∆ H ∆ L ∆ X ∆ Y ∆ C ∆ P0 ∆ P1D ∆ P2D ∆ P3D ∆ P4D ∆ SP (☞ 2)

The header is displayed every 10 steps. Register and port data are shown as
numbers only where they change. They are displayed as '.' where they have not
changed from the previous step. However, the data immediately after a header
is always displayed as numbers. (☞ 3)

The register and port contents displayed and the corresponding headers are
shown below.

B B register
A A register
H H register
L L register
X X register
Y Y register
C Carry flag
P0 Port 0 register
P1D Port 1 register
P2D Port 2 register
P3D Port 3 registe
P4D Port 4 registe
SP Stack pointer

P4D is not displayed in MSM64162 mode.

Values are displayed for registers and ports after each instruction is
executed.

When an AIS instruction is executed after an ADCS or SUBCS
instruction, the skip function of the AIS instruction is not allowed.
However, when executed as a single instruction with the STP
command, the skip function of the AIS instruction will no longer be
disallowed.

The time base counter value is preserved between instructions even
with the STP command. However, while operation of timers and
counters synchronized to the microprocessor's internal clock is
guaranteed, operation when synchronized to an external clock is not
guaranteed.

!

!

☞ 3

☞ 2

3-95

Chapter 3, EASE64162/164 Emulator

STP

* STP 3,0
B A H L X Y C P0 P1D P2D P3D P4D SP

LOC=0000 13 SBC 0 1 0 2 0 0 0 F 0 F F F FF
LOC=0001 2D0F LMAD 0F00
LOC=0003 95 LAI 5 . 5

* STP 5
B A H L X Y C P0 P1D P2D P3D P4D SP

LOC=0004 2D36 LMAD 36 0 5 0 2 0 0 0 F 0 F F F FF
LOC=0006 9A LAI A . A
LOC=0007 2D36 LMAD 36
LOC=0009 247C RMBD 7C,0
LOC=000B 2B31 SMBD 31,3

Chapter 3, EASE64162/164 Emulator

3-96

STP

Execution Example

3.3.4.4.2 Realtime Emulation Commands

G ∆ [address] [, parm] ↵
parm : address [, address . . . , address]

address (count)
: RAM (data – count)
: BAR (data – count)

address : 0~7DF (MSM64162 mode)
(☞ 1) 0~FDF (MSM64164 mode)

count : 1~65535
data : 0~FF, X

The G command performs realtime emulation (continuous execution) of a user
program in code memory.

The address expresses the first address of the user program at which realtime
emulation is to start. It is a value 0H to 7DFH when in MSM64162 mode, or 0H
to FDFH when in MSM64164 mode.

If the first address is omitted, then realtime emulation will start from the address
indicated by the current program counter (PC). If a start address is specified for
realtime emulation, then both the entire instruction executed memory and the
trace pointer will be reset '0.'

The condition that will break realtime emulation is entered in parm. There are
four break conditions, shown on the next page. If parm is omitted, then realtime
emulation will continue to execute until a break condition break occurs (☞ 2).

The G command can be forcibly terminated by pressing the ESC key.(☞ 3)

Be sure to input the first address of an instruction within the code
memory area for address. Breaks will not occur if other addresses
are input.

Refer to section 3.3.4.5, "Break Commands," regarding break
conditions.

Breaks by the ESC key are not performed while in halt mode.☞ 3

☞ 2

☞ 1

3-97

Chapter 3, EASE64162/164 Emulator

G

G

Input Format

Description

(1) Address break (specified as individual addresses)

A break will occur when an instruction at any of the addresses specified by address is executed.
A maximum of 20 addresses can be entered at one time. The address is a value 0H to 7FDH
when in MSM64162 mode, or 0H to FDFH when in MSM64164 mode. It should be the address
of the first byte of an instruction.

(2) Address pass count break

A break will occur when the instruction at the address specified by address is executed count
times. The address is a value 0H to 7DFH when in MSM64162 mode, or 0H to FDFH when in
MSM64164 mode. It should be the address of the first byte of an instruction. The count is a
decimal value 1-65535.

(3) Data memory match break

A break will occur when the specified data is written count times to data memory. RAM indicates
data memory; the actual data memory address for matching is specified with the CTDM
command (☞ 4).

The data is a value 0H to FFH, and can be specified as either 4 bits or 8 bits (☞ 5).
The count is a decimal value 1-65535.)

Refer to Section 3.4.6, "Trace Commands," regarding the CTDM command. If the address
specified with the CTDM command does not match the data memory address specified in the
addressing of an instruction, then no break will occur.

The input methods for 4-bit and 8-bit data differ as follows.

• 8-bit
RAM (3E-16) Break when 3EH is written 16 times to the specified data memory with an 8-

bit move instruction or 8-bit calculation instruction.

• 8-bit (high nibble is FH)
RAM (F5-6) Break when the number of times F5H is written to the specified data memory

with an 8-bit move instruction or 8-bit calculation instruction, and the number
of times 5H is written with another instruction, totals 6.

• 4-bit
RAM (X3-10) Break when 3H is written 10 times to the specified data memory. The 'X'

indicates a 4-bit input. However, if the data memory address specified with
the CTDM command is an odd address, then data writes with 8-bit move
instructions or 8-bit calculation instructions will not be counted.

Chapter 3, EASE64162/164 Emulator

3-98

☞ 4

☞ 5

G

address [, address , address]

address (count)

RAM (data - count)

(4) BA register match break

A break will occur when the data specified by data is written to the BA register count times. The
data is a value 0H to FFH, and can be specified as either 4 bits or 8 bits (☞ 6). The count is a

decimal value 1-65535.

The input methods for 4-bit and 8-bit data differ as follows.

• 8-bit
BAR (1F-5) Break when 1FH is written 5 times to the BA register with an 8-bit move

instruction or 8-bit calculation instruction.

• 4-bit
BAR (X3-3) Break when 3H is written 3 times to the A register. Specification for the B

register only is not possible.

When the carriage return is input, the emulator will display the following message.

RESET TRACE POINTER
*** EMULATION GO ***

However, the "RESET TRACE POINTER" message will be output only when a user program start
address has been specified.

When this message is output, all instruction executed bits and the trace pointer will be set to '0,' and
execution will begin.

There are two ways to break once realtime emulation of a program is begun by a G command. The first
is to specify parameters with the command input, as described above. The second is to use the break
condition register. G command break conditions are listed below.

(1) Break when ESC key is pressed.
(2) Break when one of the conditions specified by parm in G command input is satisfied.
(3) Break when the following break conditions are enabled.

(a) Break upon execution of an address at which the breakpoint bit is set to '1.'
(b) Break when the trace pointer overflows.
(c) Break when the cycle counter overflows.

(4) Break when the execution address exceeds 07DFH in MSM64162 mode or 0FDFH in MSM64164
mode.

If one of the above conditions is satisfied, then the emulator will display the following message after the
instruction at the address that caused the break condition is executed.

3-99

Chapter 3, EASE64162/164 Emulator

G

BAR (data - count)

☞ 6

***** Break Status *****
[Break PC = Break-address Next PC = Next-address]
[Next Trace Pointer = Trace-Pointer]

The Break Status is one of the break conditions.

DBS command

The Break-address is the address of the user program where the realtime emulation break occurred. The
Next-address is the first address of the instruction that is to be executed after the Break-address. The
Trace-Pointer is the trace pointer value at the point the break occurred.

The Break-address and Next-address are hexadecimal data. The Trace-Pointer is decimal data.

When a break condition is fulfilled during a skip, the break will be saved. The break will be
performed after the skip completes.

However, if an instruction at a break address set as an address break or breakpoint break is
skipped, then the break will not be saved. No break will be performed after the skip
completes.

If an interrupt is generated when a break condition is fulfilled, then the break will be saved.
The break will be performed after the interrupt transfer cycle completes.

The time base counter value is preserved after a break occurs until execution begins again.
However, while operation of timers and counters synchronized to the microprocessor's
internal clock is guaranteed, operation when synchronized to an external clock is not
guaranteed.

When a break occurs in high-speed clock mode, the time base counter value will not be the
same as it would for low-speed clock mode even under the same break conditions because
the clocks are asynchronous.

If a warning message (Warning 2) is displayed after a G command break, then the duty
setting of the LCD driver display control register (DSPCON) is different from the duty setting
of the mask options previously loaded. You should verify the duty settings. (When power is
first applied, the mask option duty setting is 1/4 duty.)

With the MSM64162/MSM64162D/MSM64164, the skip function of an AIS instruction will be
disabled in a program where the AIS instruction is executed following either ADCS and
ADCS@XY instructions, and SUBCS and SUBCS@XY instructions. With the
EASE64162/164 emulator, however, if a break is set to occur immediately after execution of
either ADCS and ADCS@XY instructions, or SUBCS and SUBCS@XY instructions, and
execution is set to resume starting with the AIS instruction, then the skip function of the AIS
instruction will not be disabled.

Chapter 3, EASE64162/164 Emulator

3-100

G

SEE

!

!

!

!

!

!

* G 0,100
RESET TRACE POINTER

*** EMULATION GO ***
** ADDRESS MATCH BREAK **
[BREAK PC=0100 NEXT PC=0102]
[NEXT TRACE POINTER=0021]

* G 0
RESET TRACE POINTER

*** EMULATION GO ***
** ESC KEY BREAK **
[BREAK PC=010B NEXT PC=010C]
[NEXT TRACE POINTER=2857]

* G 0,16F(15)
RESET TRACE POINTER

*** EMULATION GO ***
** ADDRESS PASS COUNT BREAK **
[BREAK PC=016F NEXT PC=0000]
[NEXT TRACE POINTER=5520]

* G 0,RAM(3C-2)
RESET TRACE POINTER

*** EMULATION GO ***
** DATA MEMORY PASS COUNT BREAK **
[BREAK PC=0108 NEXT PC=010A]
[NEXT TRACE POINTER=1311]

* G 0,BAR(XC-4)
RESET TRACE POINTER

*** EMULATION GO ***
** BA DATA PASS COUNT BREAK **
[BREAK PC=0108 NEXT PC=0109]
[NEXT TRACE POINTER=0259]

3-101

Chapter 3, EASE64162/164 Emulator

Execution Example

G

Chapter 3, EASE64162/164 Emulator

3-102

3.3.4.5

Break Commands

3.3.4.5.1 Setting Break Conditions

SBC

DBC

3.3.4.5.3 Displaying Break Results

RBP

FBP

DBS

DBP

EBP

3.3.4.5.2 Setting Breaks on Executed Addresses

3.3.4.5.1 Setting Break Conditions

SBC ↵

DBC ↵

The SBC command sets break conditions.

When the carriage return is input, input mode will be entered for each break
condition.

The operator sets or cancels each break condition by entering a 'Y' or 'N' at the
underscore.

When each carriage return is input, processing moves to the next parameter. If
there is no next parameter, then the SBC command will terminate.

When the emulator is waiting for input data for a change, the following two key
inputs are valid.

“∆ ↵ ” (space followed Process the next parameter without changing
by carriage return) the current data. If there is no next parameter,

then the SBC command will terminate.

“↵ ” (carriage return only) Terminate the SBC command.

The DBC command displays currently specified break conditions.

ALL BREAK CONDITIONS RESET All break conditions have been
canceled.

BREAK POINT BREAK Breaks on breakpoint bits are
set.

TRACE POINTER OVER-FLOW BREAK Breaks on trace pointer overflow
are set.

CYCLE COUNTER OVER-FLOW BREAK Breaks on cycle counter
overflow are set.

3-103

Chapter 3, EASE64162/164 Emulator

BREAK POINT BREAK (Y/N) Y
CYCLE COUNTER OVER-FLOW BREAK (Y/N) N
TRACE POINTER OVER-FLOW BREAK (Y/N)

Input next parameter

SBC, DBC

SBC, DBC

Input Format

Description

BREAK POINT BREAK (Y/N)_

* DBC
BREAK POINT BREAK

* SBC
BREAK POINT BREAK (Y/N)Y
CYCLE COUNTER OVER-FLOW BREAK (Y/N)Y
TRACE POINTER OVER-FLOW BREAK (Y/N)Y

* DBC
BREAK POINT BREAK
CYCLE COUNTER OVER-FLOW BREAK
TRACE POINTER OVER-FLOW BREAK

* SBC
BREAK POINT BREAK (Y/N)N
CYCLE COUNTER OVER-FLOW BREAK (Y/N)N
TRACE POINTER OVER-FLOW BREAK (Y/N)N

* DBC
ALL BREAK CONDITION RESET

Chapter 3, EASE64162/164 Emulator

3-104

SBC, DBC

Execution Example

3.3.4.5.2 Setting Breaks on Executed Addresses

DBP ∆ address [, address] ↵
or
DBP ∆ * ↵

address : 0~7DF (MSM64162 mode)
0~FDF (MSM64164 mode)

* : display entire address range

The DBP command displays the contents of breakpoint bit memory (☞1).

The address is a value 0H to 7DFH when in MSM64162 mode, or 0H to FDFH
when in MSM64164 mode.

The DBP command can be forcibly terminated by pressing the ESC key.

Breaks will be performed at addresses where the breakpoint bit is '1.' Breaks will
not be performed at addresses where the breakpoint bit is '0.'

Display contents are one of the following, depending on input format.

address Displays the contents of one address.
address, address Displays the range from the first address to the second

address.
* Displays the entire area of breakpoint bit memory.

(☞2).

Breakpoint bits correspond one-for-one with addresses in code
memory. They are used to cause breaks at specified locations in a
user program when executed with the G command.

A breakpoint bit is enabled when the breakpoint bit is '1.' However,
the only breakpoint bits that can generate breaks are those
corresponding to the address of the first byte of an instruction code
in the user program.

Breakpoint bits are enabled as realtime emulation break conditions
only when "BREAK POINT BREAK" is set as a break condition.

The entire area of breakpoint bit memory changes with the mode.
When in MSM64162 mode, it is 0H to 7DFH. When in MSM64164
mode, it is 0H to FDFH.

☞ 2

☞ 1

3-105

Chapter 3, EASE64162/164 Emulator

DBP, EBP, RBP, FBP

DBP

Input Format

Description

EBP ∆ address [, address . . . address] ↵
address : 0~7DF (MSM64162 mode)

0~FDF (MSM64164 mode)

The EBP command sets breakpoint bits to '1.'

The address expresses an address to be set to “1.” It is a value 0H to 7DFH
when in MSM64162 mode, or 0H to FDFH when in MSM64164 mode. Up to ten
address values can be input with one command.

RBP ∆ address [, address . . . address] ↵
address : 0~7DF (MSM64162 mode)

0~FDF (MSM64164 mode)

The RBP command resets breakpoint bits to '0.'

The address expresses an address to be set to “0.” It is a value 0H to 7DFH
when in MSM64162 mode, or 0H to FDFH when in MSM64164 mode. Up to ten
address values can be input with one command.

Chapter 3, EASE64162/164 Emulator

3-106

EBP

Input Format

Description

RBP

Input Format

Description

DBP, EBP, RBP, FBP

FBP ∆ address , address [, data] ↵
or
FBP ∆ * [, data] ↵

address : 0~7DF (MSM64162 mode)
0~FDF (MSM64164 mode)

* : display entire address range
data : 0, 1

The FBP command changes the contents of a specified range of breakpoint bit
memory.

The address expresses a breakpoint bit memory address. It is a value 0H to
7DFH when in MSM64162 mode, or 0H to FDFH when in MSM64164 mode.
The data is a the value of the change data. Its can be '0' or '1.'

The changes are classified by input format as follows.

address, address, data Fill entire range from first address to second address
with the data value.

address, address Fill entire range from first address to second address
with "0."

*, data Fill entire breakpoint bit memory area with the data
value.

* Fill entire breakpoint bit memory area with ”0.” (☞ 1)

The entire area of breakpoint bit memory changes with the mode.
When in MSM64162 mode, it is 0H to 7DFH. When in MSM64164
mode, it is 0H to FDFH.

☞ 1

3-107

Chapter 3, EASE64162/164 Emulator

DBP, EBP, RBP, FBP

FBP

Input Format

Description

* FBP

* DBP 40,7F
0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC=0040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC=0050 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC=0060 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC=0070 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* FBP 40,55,1

* DBP 40,7F
0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC=0040 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LOC=0050 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
LOC=0060 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC=0070 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* EBP 60,68,6F,73,79

* DBP 40,7F
0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC=0040 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LOC=0050 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
LOC=0060 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
LOC=0070 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

* RBP 68,73

* DBP 40,7F
0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC=0040 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LOC=0050 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
LOC=0060 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
LOC=0070 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Chapter 3, EASE64162/164 Emulator

3-108

DBP, EBP, RBP, FBP

Execution Example

3-109

Chapter 3, EASE64162/164 Emulator

DBS

3.3.4.5.3 Displaying Break Results

DBS ↵

The DBS command displays the break condition from realtime emulation.

ESC KEY BREAK Break on ESC key input.
BREAK STATUS NOT FOUND System has just been initialized or no program has been

executed.
BREAK POINT BREAK Break on a breakpoint bit.
TRACE POINTER OVER-FLOW BREAK Break on trace pointer overflow.
CYCLE COUNTER OVER-FLOW BREAK Break on cycle counter overflow.
ADDRESS MATCH BREAK Break on address match.
ADDRESS PASS COUNT BREAK Break on address pass count.
DATA MEMORY PASS COUNT BREAK Break on data memory pass count.
BA DATA PASS COUNT BREAK Break on BA register pass count.
N AREA BREAK Break when address exceeded 7DFH in MSM64162 mode or

FDFH in MSM64614 mode.

DBS

Input Format

Description

Chapter 3, EASE64162/164 Emulator

3-110

* G 0,100
RESET TRACE POINTER
*** EMULATION GO ***
** ADDRESS MATCH BREAK **
[BREAK PC=0100 NEXT PC=0102]
[NEXT TRACE POINTER=0194]

* DBS
** ADDRESS MATCH BREAK **

* G 0
RESET TRACE POINTER
*** EMULATION GO ***
** ESC KEY BREAK **
[BREAK PC=0109 NEXT PC=010A]
[NEXT TRACE POINTER=0025]

* DBS
** ESC KEY BREAK **

* EBP 100

* G 0
RESET TRACE POINTER
*** EMULATION GO ***
** BREAK POINT BREAK **
[BRAEAK PC=0100 NEXT PC=0102]
[NEXT TRACE POINTER=0194]

* DBS
** BREAK POINT BREAK **

DBS

Execution Example

3-111

Chapter 3, EASE64162/164 Emulator

3.3.4.6

Trace Commands

3.3.4.6.1 Displaying Trace Memory

DTM

RTT

3.3.4.6.2 Displaying/Changing Trace Contents

3.3.4.6.3 Displaying/Changing Trace Triggers

3.3.4.6.4 Displaying/Changing Trace Enable Bits

3.3.4.6.5 Displaying/Changing the Trace Pointer

DTDM

CTDM

DTR

ETR

STT

CTO

DTO

DTT

RTR

FTR

DTP

RTP

3.3.4.6.1 Displaying Trace Memory

DTM ∆ parm ↵

parm : - number-step , numberstep
: numberTp , numberstep
: *

The DTM command displays the contents of trace memory as specified by parm.
Trace memory is an 8192 x 64-bit RAM area.

The numberstep indicates the number of steps to display as a decimal number 1-

8192. The number-step indicates the number of steps back from the current

trace pointer value (called TP below). The numberTP indicates the TP value at

which to start the trace display as a decimal number 0-8191 (☞ 1).

The * indicates that the contents of TP to TP-1 should be displayed if the trace
pointer has overflowed, or the contents of 0 to TP-1 should be displayed if it has
not.

Trace memory stores various information from realtime emulation. An operator
can debug more efficiently be viewing this information.

As shown below, trace memory is configured as a ring, so during realtime
emulation trace memory will be overwritten in order from the oldest contents first.

Figure 3-11. Trace Pointer Example

Chapter 3, EASE64162/164 Emulator

3-112

DTM

DTM

Input Format

Description

8191
0
1
2 TP

Trace Memory

Direction of
Trace Pointer

Examples of -number-step , numberstep input and numberTp , numberstep input

are shown below. Assume that the current TP is 50.

DTM -30, 10

DTM 30, 10

3-113

Chapter 3, EASE64162/164 Emulator

DTM

Example

Example

0

20

30

50 (current TP)

Trace Memory

Displayed Area 10

30

0

30

40

50 (current TP)

Trace Memory

Displayed Area 10

Input TP

After the parameters are correctly input and a carriage return is pressed, a
header in the format below will be displayed, followed by the trace memory
contents for each trace pointer value.

BA ∆ HL ∆ C ∆ SP ∆ R(address) ∆ P2 ∆ P3 ∆ BC ∆ BE ∆ BS01 ∆
TP

The header is displayed every 10 steps. Trace data is shown as numbers only
where it changes. It is displayed as '.' where it has not changed from the
previous step. However, the trace data immediately after a header is always
displayed as numbers. The address will be displayed as the data memory
address specified by the CTDM command (☞ 2).

The above header is the initial display state. It can be changed with the CTO
command as shown below.

(1) If BCF, BSR0, BEF, BSR1 are selected

BA ∆ HL ∆ C ∆ SP ∆ R(address) ∆ P2 ∆ P3 ∆ BC ∆ BE ∆ BS01 ∆
TP

(2) If P4, P0 are selected (☞ 3)

BA ∆ HL ∆ C ∆ SP ∆ R(address) ∆ P2 ∆ P3 ∆ P4 ∆ P0 ∆ TP

(3) If P4, P1 are selected (☞ 3)

BA ∆ HL ∆ C ∆ SP ∆ R(address) ∆ P2 ∆ P3 ∆ P4 ∆ P1 ∆ TP

The trace contents displayed and the corresponding headers are shown below.

B B register
A A register
H H register
L L register
C Carry flag
SP Stack pointer
R(address) Data memory at address
P2 Port 2
P3 Port 3
BC BCF flag
BE BEF flag
BS01 BSR0 register and BSR1 register
P4 Port 4
P0 Port 0
P1 Port 1

Tracing of the BCF flag, BEF flag, BSR0 register, BSR1 register and Port 4, Port
0 or Port 4,Port 1 is selected with the CTO command.

Chapter 3, EASE64162/164 Emulator

3-114

DTM

Keep in mind the following points when displaying the contents of
trace memory.

• If trace memory has not overflowed, then trace data will be stored
in trace memory from 0 to the current TP. Accordingly, if the input
TP or number of back steps is greater than the current TP, then
trace memory from 0 will be displayed. If the number of steps input
is greater than the number of steps stored in trace memory, then
only steps with stored data will be displayed.

• If trace memory has overflowed, then trace data will be stored in
the entire trace memory (0-8191), regardless of the current TP.
Accordingly, if the number of back steps is greater than the current
TP, then data before a TP of 0 (8191, 8190, 8189, ...) will be
displayed.

The data memory address to be traced is specified with the CTDM
command. Data memory tracing traces write data each time it is
written to the specified address in data memory. Usually the value
of the upper 4 bits of the data memory trace will be FH, but when
data is written with an 8-bit move instruction or 8-bit calculation
instruction the full 8 bits of write data will be traced. Data memory
tracing will not be performed when the data memory address
specified by an instruction's addressing does not match the address
specified by the CTDM command.

Port 4 will not be displayed if MSM64162 mode is selected.

When trace data being displayed changes, it is traced with a one-
instruction delay.

3-115

Chapter 3, EASE64162/164 Emulator

☞ 1

☞ 2

DTM

☞ 3

!

* CTO
(1) BCF,BSR0,BEF,BSR1
(2) P4,P0
(3) P4,P1

TRACE OBJECT ---> 1
** RESET TRACE POINTER **

* G 0,100
RESET TRACE POINTER
*** EMULATION GO ***
** ADDRESS MATCH BREAK **
[BREAK PC=0100 NEXT PC=0102]
[NEXT TRACE POINTER=0012]

* DTM 0,11
BA HL C SP R(700) P2 P3 BC BE BS01 TP

LOC=0000 13 SBC DA 00 0 EF DC F F 1 0 70 0000
LOC=0001 95 LAI 5 0001
LOC=0002 2D36 LMAD 36 .5 0002
LOC=0004 9A LAI A 0003
LOC=0005 2D36 LMAD 36 .A 0004
LOC=0007 2D0F LMAD 0F 0005
LOC=0009 247C RMBD 7C,0 0006
LOC=000B 2B31 SMBD 31,1 0007
LOC=000D 287C SMBD 7C,0 0008
LOC=000F 2809 SMBD 09,0 0009

BA HL C SP R(700) P2 P3 BC BE BS01 TP
LOC=0011 A900 JP 0100 DA 00 0 EF DC F F 1 0 70 0010

Chapter 3, EASE64162/164 Emulator

3-116

Execution Example

DTM

3.3.4.6.2 Displaying/Changing Trace Contents

DTDM ↵
CTDM [∆ address] ↵

address : 780~7FF (MSM64162 mode)
700~7FF (MSM64164 mode)

The DTDM command displays the data memory address being traced. When
the carriage return is input, the emulator will output the following message.

TRACE DATA MEMORY ADDRESS ---> address

The address is the data memory address being traced.

The CTDM command sets the address to trace. The address is the address to
trace. It is a value 780H to 7FFH when in MSM64162 mode, or 700H to 7FFH
when in MSM64164 mode. If it is omitted, then the emulator will output the
following message and wait for data input.

TRACE DATA MEMORY ADDRESS : old-data OLD --->

Here old-data is the data memory address currently set. The operator inputs a
new address and a carriage return. The new address should be a value 780H to
7FFH when in MSM64162 mode, or 700H to 7FFH when in MSM64164. If a
carriage return only is input, then the CTDM command will terminate without
changing the data address.

When the emulator is waiting for input data for a change, the following key input
is valid in addition to a new address.

“↵ ” (carriage return only) Terminate the CTDM command.

If a data memory match break is specified as a break parameter of
the G command, then the object of the match will be data memory
address specified with the CTDM command.

* DTDM
TRACE DATA MEMORY ADDRESS ---> 0700

* CTDM
TRACE DATA MEMORY ADDRESS : 0700 OLD ---> 790 NEW

* DTDM
TRACE DATA MEMORY ADDRESS ---> 0790

3-117

Chapter 3, EASE64162/164 Emulator

DTDM, CTDM

DTDM, CTDM

Input Format

Description

Execution Example

!

DTO ↵
CTO ↵

The CTO command selects one of three sets of trace objects traced in 8 bits of
trace memory. These trace objects are listed below.

• BCF, BSR0, BEF, BSR1
• P4, P0
• P4, P1

The DTO command displays the currently set trace objects.

The CTO command sets the trace objects. When the carriage return is input, the
emulator outputs the following message and waits for data.

(1) BCF, BSR0, BEF, BSR1
(2) P4, P0
(3) P4, P1

TRACE OBJECT --->

Here the user inputs a 1 or 3, followed by a carriage return.

When the emulator is waiting for input, the following key input is valid in addition
to 1 or 3.

“↵ ” (carriage return only) Terminate the CTO command.

• When the trace objects are changed with the CTO command, the TP (trace pointer) will be
reset to '0.'

• After a system reset, the trace objects will be set to BCR, BSR0, BEF, and BSR1.
!

Chapter 3, EASE64162/164 Emulator

3-118

DTO, CTO

DTO, CTO

Input Format

Description

In MSM64162 mode P4 (port 4) data is not traced and is not displayed by the DTM
command. P4 is also not displayed by the CTO command.

* DTO
TRACE OBJECT ---> BCF,BSR0,BEF,BSR1

* CTO
(1) BCF,BSR0,BEF,BSR1
(2) P4,P0
(3) P4,P1

TRACE OBJECT ---> 2
** RESET TRACE POINTER **

* DTO
TRACE OBJECT ---> P4,P0

3-119

Chapter 3, EASE64162/164 Emulator

Execution Example

DTO, CTO

Trace Memory

8 bits

BCF, BSR0, BEF, BSR1

P1

Switched by
CTO command

P4 (☞ 1)

P4

P0

(☞ 1)

☞ 1

3.3.4.6.3 Displaying/Changing Trace Triggers

STT ↵
DTT ↵
RTT ↵

The STT command sets the trace start address and trace stop address for trigger
tracing.

The DTT command displays the trace trigger settings.

The RTT command cancels trigger tracing, and enables address tracing.

There are two conditions for executing a trace.

(1) Address tracing

With address tracing, tracing is performed upon execution of addresses where
the trace enable bit is set to '1.' The trace enable bit must be set at the address
of the first byte of each instruction to be traced (☞ 1).

(2) Trigger tracing

When the STT command sets a trace start address and trace stop address, the
trace start bit and trace stop bit at those respective addresses will be set to '1.'
With trigger tracing, tracing starts when an address with the trace start bit set to
'1' is passed. Tracing then stops when an address with the trace stop bit set to
'1' is passed (☞ 2).

Chapter 3, EASE64162/164 Emulator

3-120

STT, DTT, RTT

STT

Input Format

Description

Selection of address tracing or trigger tracing is performed with the STT and RTT
commands.

• Select address tracing --- Execute RTT command, disabling trigger tracing.
• Select trigger tracing ----- Execute STT command, enabling trigger tracing.

The concepts of address tracing and trigger tracing are shown below.

Address tracing will be selected when the system is reset.

Trace enable bits correspond one-for-one with addresses in code
memory. They enable tracing when address tracing is being
executed. Trace enable bits need to be set to '1' at the address of
the first byte of each instruction to be traced.

Trace start bits and trace stop bits both correspond one-for-one with
addresses in code memory. They set the start and stop addresses
for tracing when trigger tracing is being executed. Trace start bits
and trace stop bits need to be set to '1' at the address of the first
byte of their respective instructions. The contents of the address
where the trace start bit is '1' will be traced, but the contents of the
address where the trace stop bit is '1' will not be traced. If the start
address set with the G command is identical to the trace start
address, then tracing will start when the trace start address is
passed the second time.

When the carriage return of an STT command is input, the emulator will output
the following message and wait for input.

START ADDRESS : old-address OLD --->

☞ 2

☞ 1

3-121

Chapter 3, EASE64162/164 Emulator

STT, DTT, RTT

!

0H

0

1

1

0

0

0

1

1

1

0

1FFFH

.

.

.

.

.

.

Do not trace

Trace

Do not trace

Trace

Do not trace

Address Tracing

Trace Enable Bits Trace Start Bits Trace Stop Bits

0H

0

1

0

1FFFH

.

.

.

.

.

.

0

1

0

.

.

.

.

.

.

Start tracing

Stop tracing

Trigger Tracing

Here old-address is the currently set trace start address. The operator inputs the
new address at which trace execution is to start, followed by a carriage return.
The address is a value 0H to 7DFH when in MSM64162 mode, or 0H to FDFH
when in MSM64164 mode. When the carriage return is input, the emulator moves
to input mode for the next parameter.

When the emulator is waiting for input, the following two key inputs are valid in
addition to an address.

“∆ ↵ ” (space followed Proceed to process next parameter without
by carriage return) changing the start address.

“↵ ” (carriage return only) Terminate the STT command without changing
the start address.

After input of the start address is complete, the emulator outputs the following
message and waits for data input.

STOP ADDRESS : old-address OLD --->

Here old-address is the currently set trace stop address. The operator inputs the
new address at which trace execution is to stop, followed by a carriage return.
The address is a value 0H to 7DFH when in MSM64162 mode, or 0H to FDFH
when in MSM64164 mode.

When the emulator is waiting for input, the following two key inputs are valid in
addition to an address.

“∆ ↵ ” (space followed For both key inputs, terminate the
by carriage return) STT command without changing

the stop address.
“↵ ” (carriage return only)

When the STT command terminates, the trace start bit will be set to '1' at the
address set as the start address, the trace stop bit will be set to '1' at the address
set as the stop address, and then the emulator will wait for the next command to
be input. Both the start address and stop address need to be set at the first byte
of an instruction code.

After execution of an STT command, the trace triggers will remain valid until an
RTT command is executed.

The DTT command outputs the following message when its carriage return is
input.

START ADDRESS : start-address
STOP ADDRESS : stop-address

Here start-address will be the address at which to start trace execution, and stop-
address will be the address at which to stop trace execution.

The RTT command cancels trigger tracing and enables address tracing when its
carriage return is input. However, if an STT command has been executed before
the RTT command input, then the start address and stop address set by that STT
command will be saved. Later when another STT command is input, if just a
carriage return is input, then trigger tracing will be enabled and tracing will execute
from the saved start address to the saved stop address.

Chapter 3, EASE64162/164 Emulator

3-122

STT, DTT, RTT

* STT
START ADDRESS 0000 OLD ---> 100 NEW
STOP ADDRESS 0100 OLD ---> 200 NEW

* DTT
START ADDRESS 0100
STOP ADDRESS 0200

* G 0,300
RESET TRACE POINTER
*** EMULATION GO ***
** ADDRESS MATCH BREAK **
[BREAK PC=0300 NEXT PC=0301]
[NEXT TRACE POINTER=0256]

* RTT

3-123

Chapter 3, EASE64162/164 Emulator

STT, DTT, RTT

Execution Example

DTR, ETR, RTR, FTR
3.3.4.6.4 Displaying/Changing Trace Enable Bits

DTR ∆ address [, address] ↵
or
DTR ∆ * ↵

address : 0~7DF (MSM64162 mode)
0~FDF (MSM64164 mode)

The DTR command displays the contents of trace enable bit memory.

Trace enable bits correspond one-for-one with code memory addresses. When
address tracing is selected, the user can control trace execution by manipulating
the trace enable bits.

When address tracing is selected and a user program is executed, the emulator
examines the trace enable bit at the address of each executed instruction code.
If a trace enable bit is '1,' then the trace information at that time will be written to
trace memory. Thus, the user can write only the trace information he needs into
trace memory by setting the appropriate trace enable bits to '1.'

Only trace enable bits set at the first byte of an instruction code are effective.

The address is a value 0H to 7DFH when in MSM64162 mode, or 0H to FDFH
when in MSM64164 mode.

The DTR command can be forcibly terminated by pressing the ESC key.

Tracing will be performed at addresses where the trace enable bit is '1.' Tracing
will not be performed at addresses where the trace enable bit is '0.'

Display contents are one of the following, depending on input format.

address Displays the contents of one address.
address, address Displays the range from the first address to the second

address.
* Displays the entire area of trace enable bit memory

(☞ 1).

The entire area of trace enable bit memory changes with the mode.
When in MSM64162 mode, it is 0H to 7DFH. When in MSM64164
mode, it is 0H to FDFH.

☞ 1

Chapter 3, EASE64162/164 Emulator

3-124

DTR

Input Format

Description

ETR ∆ address [, address . . . , address] ↵
address : 0~7DF (MSM64162 mode)

0~FDF (MSM64164 mode)

The ETR command sets trace enable bits to '1.'

The address expresses an address to be set to '1.' It is a value 0H to 7DFH
when in MSM64162 mode, or 0H to FDFH when in MSM64164 mode. Up to ten
address values can be input with one command.

RTR ∆ address [, address . . . , address] ↵
address : 0~7DF (MSM64162 mode)

0~FDF (MSM64164 mode)

The RTR command resets trace enable bits to '0.'

The address expresses an address to be set to '0.' It is a value 0H to 7DFH
when in MSM64162 mode, or 0H to FDFH when in MSM64164 mode. Up to ten
address values can be input with one command.

3-125

Chapter 3, EASE64162/164 Emulator

DTR, ETR, RTR, FTR

ETR

Input Format

Description

RTR

Input Format

Description

FTR ∆ address , address [, data] ↵
or
FTR ∆ * [, data] ↵

address : 0~7DF (MSM64162 mode)
0~FDF (MSM64164 mode)

* : display entire address range
data : 0, 1

The address expresses a trace enable bit memory address. It is a value 0H to
7DFH when in MSM64162 mode, or 0H to FDFH when in MSM64164 mode.
The data is a the value of the change data. Its can be '0' or '1.'

The changes are classified by input format as follows.

address, address, data Fill entire range from first address to second address
with the data value.

address, address Fill entire range from first address to second address
with "0."

*, data Fill entire trace enable bit memory area with the data
value.

* Fill entire trace enable bit memory area with "0."
(☞ 1)

The entire area of trace enable bit memory changes with the mode.
When in MSM64162 mode, it is 0H to 7DFH. When in MSM64164
mode, it is 0H to FDFH.

☞ 1

Chapter 3, EASE64162/164 Emulator

3-126

DTR, ETR, RTR, FTR

FTR

Input Format

Description

* FTR *

* DTR 30,60
0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC=0030 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC=0040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC=0050 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC=0060 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* FTR 30,4A,1

* DTR 30,60
0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC=0030 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LOC=0040 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
LOC=0050 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC=0060 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* ETR 50,5A,63,6F

* DTR 30,60
0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC=0030 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LOC=0040 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
LOC=0050 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
LOC=0060 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

* RTR 5A,63

* DTR 30,60
0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC=0030 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LOC=0040 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
LOC=0050 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC=0060 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3-127

Chapter 3, EASE64162/164 Emulator

DTR, ETR, RTR, FTR

Execution Example

3.3.4.6.5 Displaying/Changing the Trace Pointer

DTP ↵ Display trace pointer

RTP ↵ Clear trace pointer

The DTP command displays the contents of the current trace pointer (TP). The
value is displayed as decimal data.

The RTP command clears the trace pointer value to 0. The trace pointer is also
initialized to 0 when power is turned on, when a start address is specified with a
G command, or when the trace objects are changed with the CTO command.

* DTP
TRACE POINTER ---> 5039

* RTP
** RESET TRACE POINTER **

* DTP
TRACE POINTER ---> 0000

Chapter 3, EASE64162/164 Emulator

3-128

DTP, RTP

DTP, RTP

Input Format

Description

Execution Example

3-129

Chapter 3, EASE64162/164 Emulator

3.3.4.7

Reset Commands

RST

RST E

URST

Chapter 3, EASE64162/164 Emulator

3-130

RST ↵

The RST command resets the EASE64162/164 as follows.

Cycle counter Reset to 0.
Break status register Invalidate all break status.
Trigger trace start address Disabled.
Trigger trace stop address Disabled.
Trace mode Set to address trace mode.
Cycle counter start address Disabled.
Cycle counter stop address Disabled.
Instruction executed memory All reset to 0.
Evaluation board Reset to same as when MSM64164 is reset.

* RST
Low-Power Series Emulator << EASE64162/164 >> Ver 2.24

RST

RST

Input Format

Description

Execution Example

RST ∆ E ↵

The RST E command resets the evaluation board.

After this command is executed, the evaluation board will be reset to the same
state as when the MSM64162 or MSM64164 is reset. For details about the state
after reset, refer to the user's manual of the chip.

* RST E
**** EVA BOARD RESET ****

3-131

Chapter 3, EASE64162/164 Emulator

RST E

RST E

Input Format

Description

Execution Example

URST [∆ mnemonic] ↵

The URST command sets whether the RESET pin input of the user cable is
enabled or not.

One of the following parameters is entered for mnemonic.

ON : Inputs from RESET pin during realtime emulation are enabled.
OFF : Inputs from RESET pin are disabled.

If mnemonic is omitted, then the current setting will be displayed. After a system
reset, inputs from the RESET pin are disabled.

* URST
USER RESET DISABLE

* URST ON

* URST
USER RESET ENABLE

* URST OFF

* URST
USER RESET DISABLE

Chapter 3, EASE64162/164 Emulator

3-132

URST

URST

Input Format

Description

Execution Example

3-133

Chapter 3, EASE64162/164 Emulator

3.3.4.8

Performance/Coverage Commands

RCT

DCC

CCC

DIE

CIE

SCT

DCT

3.3.4.8.1 Measuring Execution Time

3.3.4.8.2 Monitoring Executed Program Memory Areas

3.3.4.8.1 Measuring Execution Time

SCT ↵
DCT ↵
RCT ↵

The SCT command specifies the addresses where cycle counter counting is to
start and stop. This command allows program execution time to be measured by
incrementing the cycle counter during G command execution (☞ 1).

The cycle counter is a 32-bit binary counter, so it can count up to a maximum of
4,294,967,295. Program execution breaks on cycle counter overflow are also
possible.

The DCT command displays the cycle counter start and stop addresses.

The RCT command disables the cycle counter start and stop addresses and
stops cycle counter counting.

When the SCT command sets a cycle counter start address and cycle counter
stop address, the cycle counter start bit and cycle counter stop bit at those
respective addresses will be set to '1.' After G command program execution
starts, cycle counting starts when an address with the cycle counter start bit set
to '1' is passed. Cycle counting then stops when an address with the cycle
counter stop bit set to '1' is passed (☞ 2).

The cycle counter is incremented each machine cycle. Program
execution time can be calculated with the following formula.

Program execution time = 1/frequency x 3 x cycle counter value

Below is a timing diagram of cycle counter counting.

Count
Cycle counter start bits and cycle counter stop bits both correspond
one-for-one with addresses in code memory. They set the start and
stop addresses for cycle counter counting. Cycle counter start bits
and cycle counter stop bits need to be set to '1' at the address of the
first byte of their respective instructions. The cycle counter will not
be incremented at the address where the cycle counter stop bit is
set to '1.'

The cycle counter is not incremented in hold mode.

☞ 2

☞ 1

Chapter 3, EASE64162/164 Emulator

3-134

SCT, DCT, RCT

SCT

Description

Input Format

S1 S2 S3 S1 S2 S3 S1 S2

Clock

Operating clock

Cycle counter

!

When the carriage return of an SCT command is input, the emulator will output
the following message and wait for input.

START ADDRESS : old-address OLD --->

Here old-address is the currently set cycle counter start address. The operator
inputs the new address at which cycle counter counting is to start, followed by a
carriage return. The address is a value 0H to 7DFH when in MSM64162 mode,
or 0H to FDFH when in MSM64164 mode. When the carriage return is input, the
emulator moves to input mode for the next parameter.

When the emulator is waiting for input, the following two key inputs are valid in
addition to an address.

“∆ ↵ ” (space followed Proceed to process next parameter without
by carriage return) changing the start address.

“↵ ” (carriage return only) Terminate the SCT command without changing
the start address.

After input of the start address is complete, the emulator outputs the following
message and waits for data input.

STOP ADDRESS : old-address OLD --->

Here old-address is the currently set cycle counter stop address. The operator
inputs the new address at which cycle counter counting is to stop, followed by a
carriage return. The address is a value 0H to 7DFH when in MSM64162 mode,
or 0H to FDFH when in MSM64164 mode.

When the emulator is waiting for input, the following two key inputs are valid in
addition to an address.

“∆ ↵ ” (space followed For both key inputs, terminate the
by carriage return) SCT command without changing the

stop address.
“↵ ” (carriage return only)

When the SCT command terminates, the cycle counter start bit will be set to '1'
at the address set as the start address, the cycle counter stop bit will be set to '1'
at the address set as the stop address, and then the emulator will wait for the
next command to be input. Both the start address and stop address need to be
set at the first byte of an instruction code.

After execution of an SCT command, the cycle counter settings will remain valid
until an RCT command is executed.

The DCT command outputs the following message when its carriage return is
input.

START ADDRESS : start-address
STOP ADDRESS : stop-address

Here start-address will be the address at which to start cycle counter counting,
and stop-address will be the address at which to stop cycle counter counting.

3-135

Chapter 3, EASE64162/164 Emulator

SCT, DCT, RCT

SCT, DCT, RCT

The RCT command cancels the start and stop addresses set by the previous
SCT command when its carriage return is input. However, the start address and
stop address set by that SCT command will be saved. Later when another SCT
command is input, if just a carriage return is input, then cycle counter counting
will be performed from the saved start address to the saved stop address.

* SCT
START ADDRESS 0000 OLD ---> NOT CHANGE
STOP ADDRESS 0000 OLD ---> 100 NEW

* DCT
START ADDRESS 0000
STOP ADDRESS 0100

* CCC
CYCLE COUNTER STATUS : 0000000000

* G 0,100
RESET TRACE POINTER

*** EMULATION GO ***
** ADDRESS MATCH BREAK **
[BREAK PC=0100 NEXT PC=0101]
[NEXT TRACE POINTER=0257]

* DCC
CYCLE COUNTER STATUS : 0000000256

* RCT

Chapter 3, EASE64162/164 Emulator

3-136

Execution Example

DCC ↵

The DCC command displays the contents of the cycle counter. When the
carriage return is entered, the emulator will output the following message.

CYCLE COUNTER STATUS : number

The number is the cycle counter value displayed in decimal.

* DCC
CYCLE COUNTER STATUS : 0000000256

3-137

Chapter 3, EASE64162/164 Emulator

DCC

DCC

Input Format

Description

Execution Example

CCC [-] number ↵
data : 0–4294967295

The CCC command changes the cycle counter contents to the value indicated by
number. The number should be a decimal value 0 to 4,294,967,295. If a minus
sign '-' is input before number, then the cycle counter will be set to the value of
number subtracted from 4,294,967,295.

* CCC 19
CYCLE COUNTER STATUS : 0000000019

* CCC -1
CYCLE COUNTER STATUS : 4294967294

Chapter 3, EASE64162/164 Emulator

3-138

CCC

CCC

Input Format

Description

Execution Example

3.3.4.8.2 Monitoring Executed Program Memory Areas

DIE ∆ address [, address] ↵
or
DIE ∆ * ↵

address : 0~7DF (MSM64162 mode)
0~FDF (MSM64164 mode)

* : display entire address range
RIE ↵

The DIE command displays the contents of instruction executed bit memory.

Instruction executed bits correspond one-for-one with code memory addresses.
While realtime emulation of a user program executes, the instruction executed
bits at the same addresses as executed instruction codes will be set to '1.' After
realtime emulation, using the DIE command to view the contents of instruction
executed memory can show ranges which user program executed.

When a start address is specified with the G command, all instruction executed
bit memory will be reset to 0.

The address is a value 0H to 7DFH when in MSM64162 mode, or 0H to FDFH
when in MSM64164 mode.

The DIE command can be forcibly terminated by pressing the ESC key.

Addresses where the instruction executed bits are '1' indicate addresses where
the user program was executed. Addresses where the instruction executed bits
are '0' indicate addresses where the user program was not executed.

Display contents are one of the following, depending on input format.

address Displays the contents of one address.
address, address Displays the range from the first address to the second

address.
* Displays the entire area of instruction executed bit

memory (☞ 1).

The entire area of instruction executed bit memory changes with the
mode. When in MSM64162 mode, it is 0H to 7DFH. When in
MSM64164 mode, it is 0H to FDFH.

The RIE command resets the entire contents of instruction executed
bit memory to '0.'

☞ 1

3-139

Chapter 3, EASE64162/164 Emulator

DIE, RIE

DIE, RIE

Input Format

Description

* RIE

* G 32,4E
RESET TRACE POINTER

*** EMULATION GO ***
** ADDRESS MATCH BREAK **
[BREAK PC=004E NEXT PC=004F]
[NEXT TRACE POINTER=0029]

* DIE 20, 5F

0 1 2 3 4 5 6 7 8 9 A B C D E F
LOC=0020 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LOC=0030 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LOC=0040 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
LOC=0050 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 3, EASE64162/164 Emulator

3-140

Execution Example

DIE, RIE

3-141

Chapter 3, EASE64162/164 Emulator

3.3.4.9

EPROM Programmer Commands

3.3.4.9.1 Setting EPROM Type

TYPE

3.3.4.9.2 Writing to EPROM

3.3.4.9.3 Reading from EPROM

3.3.4.9.4 Comparing EPROM with Code Memory

PPR

VPR

TPR

3.3.4.9.1 Setting EPROM Type

TYPE ∆ [parm] ↵
parm : mnemonic

The TYPE command sets the type of EPROM that will be used in the EPROM
programmer. The mnemonic indicates the EPROM type.

Usable EPROM types are one of the following.

Intel products and other EPROMs that are written at high speed with the
Intelligent Programming method.

The following can be input for mnemonic.

If mnemonic is omitted, then the currently set EPROM type will be displayed.
The setting will be "27512" after power is turned on.

* TYPE
EPROM TYPE --->27512

* TYPE 256

* TYPE
EPROM TYPE --->27256

Chapter 3, EASE64162/164 Emulator

3-142

TYPE

TYPE

Input Format

Description

Execution Example

EPROM Type mnemonic

2764 64

27128 128

27256 256

27512 512

3.3.4.9.2 Writing to EPROM

PPR ∆ addresscode , addresscode [, addressEPROM] ↵
or
PPR ∆ * ↵

addresscode : 0~7DF (MSM64162 mode)

0~FDF (MSM64164 mode)
* : writes entire address range
addressEPROM : EPROM write start address

The PPR command writes the contents of the specified code memory area to the
EPROM starting at the specified addressEPROM.

Each addresscode is a value 0H to 7DFH when in MSM64162 mode, or 0H to

FDFH when in MSM64164 mode. The addresscode, addresscode specifies the

range of code memory to be written. If an '*' is input, then a range of code
memory that corresponds to the EPROM type will be set (☞ 1).

The addressEPROM is the EPROM's starting address for writing. If this address

is omitted, then writing will start from EPROM address 0.

Input continues until a carriage return is entered. Then the following message
will be output.

EPROM TYPE ---> type
START PROGRAMMING [Y/N] ---> _

Here type indicates the currently set EPROM type. If the EPROM type displayed
is the same as the EPROM type that the user wants to write, then enter "Y↵ " at
the underscore. If they are different, then input "N↵ " and set the EPROM type
again with the TYPE command.

When "Y↵ " is input at the underscore, the EASE64162/164 "RUN" indicator will
light, and the data write will start. If the data write completes normally, then the
"RUN" indicator will go off, the PPR command will terminate, and the emulator
will wait for another command input.

The range of code memory written to EPROM when '*' is input
changes with the mode. When in MSM64612 mode, it is 0H to
7DFH. When in MSM64164 mode, it is 0H to FDFH.

☞ 1

3-143

Chapter 3, EASE64162/164 Emulator

PPR

PPR

Input Format

Description

* PPR 0,1FF,0
EPROM TYPE ---> 27512
START PROGRAMMING [Y/N] --->Y

* TYPE 128

* PPR *,0
EPROM TYPE ---> 27128
START PROGRAMMING [Y/N] --->Y

Chapter 3, EASE64162/164 Emulator

3-144

Execution Example

PPR

3.3.4.9.3 Reading from EPROM

TPR ∆ addresscode , addresscode [, addressEPROM] ↵
or
TPR ∆ * ↵

addressEPROM : EPROM address

addresscode : 0~7DF (MSM64162 mode)

0~FDF (MSM64164 mode)
* : transferred entire address range

The TPR command reads EPROM contents in the specified range and transfers
them to the specified code memory area.

Each addresscode represents a code memory address. It is a value 0H to

7DFH in MSM64162 mode or 0H to FDFH in MSM64164 mode.(☞ 1) The

addresscode, addresscode specifies the range of code memory to be

transferred.

The addressEPROM is the starting address in EPROM to be read. If this

address is omitted, then reading will start from EPROM address 0. If an '*' is
input, then the entire area of the EPROM from address 0 will be transferred to
code memory. (☞ 2).

Input continues until a carriage return is entered. Then the following message
will be output.

EPROM TYPE ---> type
START READING [Y/N] ---> _

Here type indicates the currently set EPROM type. If the EPROM type displayed
is the same as the EPROM type that the user wants to read, then enter "Y↵ " at
the underscore. If they are different, then input "N↵ " and set the EPROM type
again with the TYPE command.

When "Y↵ " is input at the underscore, the EASE64162/164 "RUN" indicator will
light, and the data transfer will start. If the data transfer completes normally, then
the "RUN" indicator will go off, the TPR command will terminate, and the
emulator will wait for another command input.

The valid address range for each EPROM type is shown below.☞ 1

3-145

Chapter 3, EASE64162/164 Emulator

TPR

TPR

Input Format

Description

EPROM Type address range

2764 0 ~ 1FFF

27128 0 ~ 3FFF

27256 0 ~ 7FFF

27512 0 ~ FFFF

The range of code memory transferred from EPROM when '*' is
input changes with the mode. When in MSM64162 mode, it is 0H to
7DFH. When in MSM64164 mode, it is 0H to FDFH.

* TPR 0,2FF,0
EPROM TYPE ---> 27512
START READING [Y/N] --->Y

* TPR *
EPROM TYPE ---> 27512
START READING [Y/N] --->Y

☞ 2

Chapter 3, EASE64162/164 Emulator

3-146

TPR

Execution Example

3.3.4.9.4 Comparing EPROM with Code Memory

VPR ∆ addresscode , addresscode [, addressEPROM] ↵
or
VPR ∆ * ↵

addresscode : 0~7DF (MSM64162 mode)

0~FDF (MSM64164 mode)
* : compared entire address range
addressEPROM : EPROM comparison start address

The VPR command compares the contents of the specified range of code
memory with the contents of the EPROM starting at the specified address, and
displays any differences on the console.

Each addresscode is a code memory address 0H to 7DFH when in MSM64162

mode, or 0H to FDFH when in MSM64164 mode. The addresscode,

addresscode specifies the range of code memory to be compared. If an '*' is

input, then a range of code memory that corresponds to the EXPAND mode will
be set (☞ 1).

The addressEPROM is the EPROM's starting address for comparison. If this

address is omitted, then comparison will start from EPROM address 0.

Input continues until a carriage return is entered. Then the following message
will be output.

EPROM TYPE ---> type
START READING [Y/N] ---> _

Here type indicates the currently set EPROM type. If the EPROM type displayed
is the same as the EPROM type that the user wants to compare, then enter "Y↵ "
at the underscore. If they are different, then input "N↵ " and set the EPROM type
again with the TYPE command.

When "Y↵ " is input at the underscore, the EASE64162/164 "RUN" indicator will
light, and the data comparison will start. If the data comparison completes
normally, then the "RUN" indicator will go off, the VPR command will terminate,
and the emulator will wait for another command input.

When compare errors are encountered, they will be displayed on the console in
the following format.

3-147

Chapter 3, EASE64162/164 Emulator

VPR

VPR

Input Format

Description

U/M CM = X X X X X X PR = X X X X X X

Mismatch Code Code EPROM EPROM
display memory memory address data
marker address data

The range of code memory compared with EPROM when '*' is input
changes with the mode. When in MSM64162 mode, it is 0H to
7DFH. When in MSM64164 mode, it is 0H to FDFH.

* TPR *
EPROM TYPE ---> 27512
START READING [Y/N] --->Y

* CCM 100
LOC=0100 E4 OLD ---> 23 NEW
LOC=0101 E4 OLD ---> 65 NEW
LOC=0102 E4 OLD --->

* VPR 0,FDF,0
EPROM TYPE ---> 27512
START READING [Y/N] --->Y

U/M CM = 0100 23 PR = 0100 E4
U/M CM = 0101 65 PR = 0101 E4

☞ 1

Chapter 3, EASE64162/164 Emulator

3-148

VPR

Execution Example

3-149

Chapter 3, EASE64162/164 Emulator

3.3.4.10

Mask Option File Commands

3.3.4.10.1 Loading Mask Option File

LODM

3.3.4.10.2 Verifying Mask Option File

3.3.4.10.3 Writing Mask Option Data to EPROM

3.3.4.10.4 Reading Mask Option Data from EPROM

VERM

TPRM

PPRM

3.3.4.10.5 Comparing Mask Option Data with EPROM

VPRM

3.3.4.10.1 Loading Mask Option File

LODM ∆ fname ↵
fname : [Pathname] filename [Extension]

The LODM command loads the contents of a mask option file output by
MASK162 or MASK164 into the system controller's system memory. A mask
option file is an Intel HEX format file generated by MASK162 or MASK164. (☞ 1)

If the file extension is omitted, then "HEX" (Intel HEX format file) will be the
default.

The input file name can have a path specification. If the path is omitted, then the
file in the current directory will be loaded. If the extension is omitted, then the file
with the default extension appended will be loaded.

• Refer to the MASK162 User's Manual or MASK164 User's Manual
for details about mask option files.

• If a program is executed when no mask option file has been loaded
into system memory, then LCD driver display will not be performed
correctly.

If mask option data for 1/2 duty is loaded, then a warning message
(Warning 1) will be displayed after the load completes. The
EASE64162/164 emulator cannot output a 1/2-bias waveform when
1/2 duty is specified. For details, refer to Chapter 4, "Debugging
Notes".

Chapter 3, EASE64162/164 Emulator

3-150

LODM

LODM

Input Format

Description

☞ 1

!

3.3.4.10.2 Verifying Mask Option File

VERM ∆ fname ↵
fname : [Pathname] filename [Extension]

The VERM command compares the contents of the specified mask option file
with mask option data stored the system controller's system memory. If a
mismatch in contents is found, then the address of the mismatch and the
contents of both the mask option file and system memory will be displayed as
follows.

LOC = xxxx DISK [xx] SM [xx]
↑ ↑ ↑

Address Contents of Contents of
mask option file system memory

The input file name can have a path specification. If the path is omitted, then the
file in the current directory will be compared.

If the extension is omitted, then the file with the default extension (HEX)
appended will be compared.

3-151

Chapter 3, EASE64162/164 Emulator

VERM

VERM

Input Format

Description

* LODM M164_000

FILE OPENEND NORMALLY. FILE TYPE : INTELLEC HEX
***** LOAD COMPLETED *****

* VERM M164_000

***** VERIFY COMPLETED *****

Chapter 3, EASE64162/164 Emulator

3-152

LODM, VERM

LODM, VERM

Execution Example

3.3.4.10.3 Writing Mask Option Data to EPROM

PPRM ↵

The PPRM command writes an EPROM with the mask option data in the system
controller's system memory. The EPROM address range to be written is always
from 0H to BFFH.

When the carriage return is entered after the above input format, the emulator
will output the following message.

EPROM TYPE ---> type
START PROGRAMMING [Y/N] ---> _

Here type indicates the currently set EPROM type. If the EPROM type displayed
is the same as the EPROM type that the user wants to write, then enter "Y↵ " at
the underscore. If they are different, then input "N↵ " and set the EPROM type
again with the TYPE command.

When "Y↵ " is input at the underscore, the EASE64162/164 "RUN" indicator will
light, and the data write will start. If the data write completes normally, then the
"RUN" indicator light will go off, the PPRM command will terminate, and the
emulator will wait for another command input.

3-153

Chapter 3, EASE64162/164 Emulator

PPRM

PPRM

Input Format

Description

3.3.4.10.4 Reading Mask Option Data from EPROM

TPRM ↵

The TPRM command transfers mask option data on an EPROM into the system
controller's system memory. The EPROM address range to be transferred is
always from 0H to BFFH.

When the carriage return is entered after the above input format, the emulator
will output the following message.

EPROM TYPE ---> type
START READING [Y/N] ---> _

Here type indicates the currently set EPROM type. If the EPROM type displayed
is the same as the EPROM type that the user wants to write, then enter "Y↵ " at
the underscore. If they are different, then input "N↵ " and set the EPROM type
again with the TYPE command.

When "Y↵ " is input at the underscore, the EASE64162/164 "RUN" indicator will
light, and the data transfer will start. If the data transfer completes normally, then
the "RUN" indicator light will go off, the TPRM command will terminate, and the
emulator will wait for another command input.

If mask option data for 1/2 duty is transferred, then a warning
message (Warning 1) will be displayed after the load completes. The
EASE64162/164 emulator cannot output a 1/2-bias waveform when
1/2 duty is specified. For details, refer to Chapter 4, "Debugging
Notes".

Chapter 3, EASE64162/164 Emulator

3-154

TPRM

TPRM

Input Format

Description

!

3.4.10.5 Comparing Mask Option Data with EPROM

VPRM ↵

The VPRM command compares an EPROM with the mask option data in the
system controller's system memory. The EPROM address range to be
compared is always from 0H to BFFH.

When the carriage return is entered after the above input format, the emulator
will output the following message.

EPROM TYPE ---> type
START READING [Y/N] ---> _

Here type indicates the currently set EPROM type. If the EPROM type displayed
is the same as the EPROM type that the user wants to write, then enter "Y↵ " at
the underscore. If they are different, then input "N↵ " and set the EPROM type
again with the TYPE command.

When "Y↵ " is input at the underscore, the EASE64162/164 "RUN" indicator will
light, and the data comparison will start. If the data comparison completes
normally, then the "RUN" indicator light will go off, the VPRM command will
terminate, and the emulator will wait for another command input.

If a comparison error is found, then the emulator will display the following on the
console.

U/M PR = xxxx xx SM xx
↑ ↑ ↑ ↑

Mismatch EPROM EPROM System
display address data memory
marker data

3-155

Chapter 3, EASE64162/164 Emulator

VPRM

VPRM

Input Format

Description

* LODM M164_000

FILE OPENED NOMALLY. FILE TYPE : INTELLEC HEX
***** LOAD COMPLETED *****

* PPRM
EPROM TYPE ---> 27512
START PROGRAMMING [Y/N] --->Y

* VPRM
EPROM TYPE --->27512
START READING [Y/N] --->Y

*TPRM
EPROM TYPE --->27512
START READING [Y/N] --->Y

Chapter 3, EASE64162/164 Emulator

3-156

PPRM, TPRM, VPRM

Execution Example

3-157

Chapter 3, EASE64162/164 Emulator

3.3.4.11

Commands for Automatic Command Execution

BATCH

PAUSE

BATCH ∆ fname ↵

fname : [Pathname] filename [Extension]

The BATCH command automatically executes the contents of the specified
fname as emulator commands.

The input file name can have a path specification. If the path is omitted, then the
file will be taken in the current directory.

If the file extension is omitted, then a default extension (CMD) will be appended.
To specify a file without an extension, append a period '.' after the filename.

In addition to emulator commands, the batch file can also contain assembler
mnemonics input within the ASM command.

Automatic execution is performed until the end of the file.

Only one batch file can be open. Therefore, even if a BATCH
command is included within a batch file, it will be ignored.

* BATCH E4
Batchfile: E4 opened

* DTR 0,30

0 1 2 3 4 5 6 7 8 9 A B C D E F
LOC=0000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LOC=0010 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LOC=0020 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LOC=0030 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

* DTO
TRACE OBJECT ---> BCF,BSR0,BEF,BSR1

* DCC
CYCLE COUNTER STATUS : 0000000000

* TYPE
EPROM TYPE --->27512

*
* Batchfile: E4 closed

Chapter 3, EASE64162/164 Emulator

3-158

BATCH

BATCH

Input Format

Description

!
Execution Example

PAUSE ↵

The PAUSE command waits for keyboard input when executed. By placing a
PAUSE command in a batch file, automatic command execution can be
temporarily suspended. The input wait state will be released upon input from the
keyboard, or if the emulator reset switch is pressed.

* PAUSE

* PAUSE
Low-Power series Emulator << EASE64162/164 >> Ver 2.24

3-159

Chapter 3, EASE64162/164 Emulator

PAUSE

PAUSE

Input Format

Description

Execution Example

Chapter 3, EASE64162/164 Emulator

3-160

3.3.4.12

Other Commands

3.3.4.12.1 Saveing CRT Contents

LIST

3.3.4.12.2 Shell Command

3.3.4.12.5 Changing Code Memory Area

3.3.4.11.6 Terminating the EASE64X Debugger

>

EXIT

EXPAND

3.3.4.12.3 Displaying/Changing the Clock

CCLK

3.3.4.12.4 Displaying/Changing Interface Power Supply

CIPS

NLST

3.3.4.12.1 Saving CRT Contents

LIST ∆ fname ↵

fname : [Pathname] filename [Extension]

The LIST command stores the contents displayed to the console in the specified
file.

The input file name can have a path specification. If the path is omitted, then the
file will be created in the current directory. If a file of the same name exists in the
specified directory, then that file will be deleted and a new file will be created.

If the file extension is omitted, then a default extension (LST) will be appended.

While a file is being created by a LIST command, another LIST command cannot
be used (only one list file can be opened).

The LIST command becomes valid immediately after it has been
input. When any of the following occurs, the LIST command
becomes invalid and the list file is closed.

• An NLST command is input.
• The EASE64X debugger terminates.
• The EASE64162/164 base unit's reset switch is pressed.

* LIST SAMP1
Listfile: FILENAME.LST opened

* DTR 0, 30
0 1 2 3 4 5 6 7 8 9 A B C D E F

LOC=0000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LOC=0010 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LOC=0020 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LOC=0030 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3-161

Chapter 3, EASE64162/164 Emulator

LIST

LIST

Input Format

Description

!

Execution Example

NLST ↵

The NLST command terminates a previous LIST command. It will close the list
file opened by the LIST command.

Contents are stored in the list file until the NLST command.

* NLST
Listfile: SAMP1.LST closed

Chapter 3, EASE64162/164 Emulator

3-162

NLST

NLST

Input Format

Description

Execution Example

3.3.4.12.2 Shell Command

>DOS command ↵

The shell function invokes the MS-DOS command processor COMMAND.COM

as a child process of the EASE64X debugger. The string input after this

command will be passed to COMMAND.COM and executed.

After the MS-DOS command terminates, the EASE64X debugger will again wait

for a command to be input.

In order to realize the shell function, the free area of the system being used must

have sufficient space for invoked programs. The resident portion of

EASE64X.EXE consumes about 90K bytes. Thus, for a program to be invoked

after the shell command has been executed, it must have fewer bytes than the

original free area less the size of the newly loaded COMMAND.COM.

* >COPY A:SAMP1. LST B:

3-163

Chapter 3, EASE64162/164 Emulator

>

>

Input Format

Description

Execution Example

3.3.4.12.3 Displaying/Changing the Clock

CCLK [∆ mnemonic] ↵
mnemonic : HIN, HOUT, LIN, LOUT

The CCLK command switches the clock supplied to the evaluation board. One

of the following is entered for mnemonic.

HIN : High-speed clock on CROSC board.

HOUT : High-speed clock from user cable OSC1 pin.

LIN : Low-speed clock on crystal board.

LOUT : Low-speed clock from user cable XT pin.

The EASE64162/164 clock will be set to internal clocks (HIN, LIN) when power is

turned on (☞ 1).

If mnemonic is omitted, then the current setting will be displayed.

Refer to Section 3.2.1, "Setting Operating Frequency," regarding the
crystal board, CROSC board, and their peripheral circuits.

The high-speed clock function does not exist in the MSM64162D
chip. Please keep this in mind when evaluating the MSM64162 with
EASE64162/164.

* CCLK
HIGH CLOCK ---> IN
LOW CLOCK ---> IN

* CCLK HOUT

* CCLK
HIGH CLOCK ---> OUT
LOW CLOCK ---> IN

* CCLK LOUT

* CCLK
HIGH CLOCK ---> OUT
LOW CLOCK ---> OUT

☞ 1

Chapter 3, EASE64162/164 Emulator

3-164

CCLK

CCLK

Input Format

Description

Execution Example

!

3.3.4.12.4 Displaying/Changing Interface Power Supply

CIPS [∆ mnemonic] ↵

The CIPS command changes the interface power supply of the user connector.
The mnemonic is one of the following.

INT : Supply the user connector interface power supply from the emulator's
internal power supply (5V) (☞ 1).

EXT : Supply the user connector interface power supply from the user
connector VDD pin (☞ 2).

When the emulator is turned on, the EASE64162/164 user connector interface
power supply will be supplied from the emulator's internal power supply (5V).

If mnemonic is omitted, then the current setting will be displayed.

The EASE64162/164 "PORT5V" indicator will light up, and the
"PORT3V" indicator will go off.

Supply a voltage from 3V to 5V to the user connector VDD pin. The
EASE64162/164 "PORT3V" indicator wil l l ight up, and the
"PORT5V" indicator will go off.

* CIPS
INTERFACE POWER SUPPLY ---> INTERNAL

* CIPS EXT
* CIPS

INTERFACE POWER SUPPLY ---> EXTERNAL

☞ 2

☞ 1

3-165

Chapter 3, EASE64162/164 Emulator

CIPS

CIPS

Input Format

Execution Example

Description

3.3.4.12.5 Changing Code Memory Area

EXPAND [∆ mnemonic] ↵

The EXPAND command switches the EASE64162/164 code memory area.

The mnemonic is one of the following.

ON : Make code memory area 8192 bytes(☞ 1).

OFF : Make code memory area 2016 bytes or 4064 bytes.

When power is turned on, the EASE64162/164 code memory area will be set to
4064 bytes (MSM64164 mode).

If mnemonic is omitted, then the current setting will be displayed.

When the code memory area is changed to 8192 bytes, code
memory addresses will be expanded to 0H~1FFFH, and command
parameter input values will be changed as shown in Table 3-4.

The setting will be 2016 bytes in MSM64162 mode and 4064 bytes
in MSM64164 mode.

* EXPAND
CODE MEMORY AREA : 4Kbyte

* EXPAND ON

* EXPAND
CODE MEMORY AREA : 8Kbyte

☞ 1

Chapter 3, EASE64162/164 Emulator

3-166

EXPAND

Input Format

Description

Execution Example

EXPAND

☞ 2

Table 3-4. Command Parameter Changes

Command Parameter

CPC [∆ data] ↵ data : 0H to 1FFFH

DCM ∆ address [, address] ↵ address : 0H to 1FFFH

CCM ∆ address ↵ address : 0H to 1FFFH

FCM ∆ address , address [, data] ↵ address : 0H to 1FFFH

SAV ∆ fname [∆ address , address] ↵ address : 0H to 1FFFH

VER ∆ fname [∆ address , address] ↵ address : 0H to 1FFFH

ASM ∆ address ↵ address : 0H to 1FFFH

DASM ∆ address [, address] ↵ address : 0H to 1FFFH

STP [∆ number] [, address] ↵ address : 0H to 1FFFH

G [∆ address] [, parm] ↵ address : 0H to 1FFFH

DBP ∆ address [, address] ↵ address : 0H to 1FFFH

EBP ∆ address [, address . . . , address] ↵ address : 0H to 1FFFH

FBP ∆ address [address [, data]] ↵ address : 0H to 1FFFH

DTR ∆ address [, address] ↵ address : 0H to 1FFFH

ETR ∆ address [, address . . . , address] ↵ address : 0H to 1FFFH

FTR ∆ address [∆ address [, data]] ↵ address : 0H to 1FFFH

DIE ∆ address [, address] ↵ address : 0H to 1FFFH

PPR ∆ addresscode , addresscode [, addressEPROM] ↵ addresscode : 0H to 1FFFH

TPR ∆ addresscode , addresscode [, addressEPROM] ↵ addresscode : 0H to 1FFFH

VPR ∆ addresscode , addresscode [, addressEPROM] ↵ addresscode : 0H to 1FFFH

STT ↵

START ADDRESS: old-address OLD ---> address ↵ address : 0H to 1FFFH

STOP ADDRESS: old-address OLD ---> address ↵

SCT ↵

START ADDRESS: old-address OLD ---> address↵ address : 0H to 1FFFH

STOP ADDRESS: old-address OLD ---> address↵

3-167

Chapter 3, EASE64162/164 Emulator

EXPAND

3.3.4.12.6 Terminating the EASE64X Debugger

EXIT ↵

The EXIT command terminates the EASE64X debugger.

If a list file has been opened by the LIST command, then it will be closed before
the debugger terminates.

* EXIT
A>

Chapter 3, EASE64162/164 Emulator

3-168

EXIT

EXIT

Input Format

Description

Execution Example

4-1

Chapter 4, Debugging Notes

CCCChhhhaaaapppptttteeeerrrr 4444

DDDDeeeebbbbuuuuggggggggiiiinnnngggg NNNNooootttteeeessss

This chapter provides some notes about debugging with the
EASE64162/164 system.

4.1. Debugging Notes

4.1.1. Ports

The input/output of the port pins, BD pin, and RESET pin are as shown below. Their input/output
characteristics differ from those of the MSM64162 and MSM64164.

Chapter 4, Debugging Notes

4-2

P0

2 KΩ

HC125

HC4066

HC4066
PUI

PDI

IN

VDD

P1
HC4066

HC4066
PO

NO

VDD

 (☞ 1)

 (☞ 1)

Internal signal

Internal signal

(1) P0 (input port)

(2) P1 (output ports)

4-3

Chapter 4, Debugging Notes

P2, P3, P4

2 KΩ

HC132

HC4066

HC4066
PUIO

PDIO

INIO

VDD

HC4066

HC4066
PIO

NIO

VDD
I/O

 (☞ 1)

 (☞ 1)
Internal signal

(3) P2, P3, P4 (input/output ports)

P5, P6

HC04

HC4066
MOO

+5 V

HC4066

Internal signal

 (☞ 1)

(4) P5, P6 (mask option output ports)

From 3V to 5V is applied to VDD. The VDD supply is switched by the CIPS command: it will
be the emulation kit internal 5V supply if CIPS INT is input, or it will be the VDD supply of
user connector pins 36 and 37 if CIPS EXT is input. A voltage 3V to 5V can be input to the
VDD pin.

The RESET pin is effective when specified to be on by the URST command. If an “L” level is
input on this pin during realtime emulation, then the evaluation board will reset.☞ 2

☞ 1

Chapter 4, Debugging Notes

4-4

RESET

LM2901

VDD

VDD/2

USRRST

10 KΩ

5 V

500 Ω

-

+

 (☞ 1)

Internal signal

(6) RESET (reset input) (☞ 2)

BD

HC125

BDOUT

VDD

Internal signal

(5) BD (buzzer driver)

4.1.2. LCD Drivers

(1) Output Characteristics

The LCD driver outputs are configured as shown below. Their input/output characteristics differ from
those of the MSM64162 and MSM64164.

The LED output above is used to implement LEDs (light emitting diodes) to evaluate the LCD portion. It
outputs the following signals.

4-5

Chapter 4, Debugging Notes

HC4066

Ln (LCD output)

200

HC32

Ω

HC4066

HC4066

HC4066

V0 V1 V2 V3

V0 (0.0V)
V1 (1.5V)
V2 (3.0V)
V3 (4.5V)

Ln (LED output)

LnSW0

LnSW1

LnSW2

LnSW3

Common pin 1

Common pin 2

Common pin 3

Common pin 4

Segment pin n

Segment pin n

Segment pin n

Segment pin n

(Waveform when
Common 1 is on)

64Hz or
83.34Hz

(Waveform when
Common 2 is on)

(Waveform when
Common 3 is on)

(Waveform when
Common 4 is on)

 (☞ 1)

Chapter 4, Debugging Notes

4-6

To evaluate the timing of an LED turning on, build a circuit like the following.

Connection Example For LED Timing Evaluation

If the current flowing through in one LED is assumed to be 1.25 mA with this circuit, then the collector
current of the common pin transistor will be up to 37.5 mA (at 1/4 duty), so a transistor that can drive high
current is necessary.

Frequency will be 64 Hz when 1/4 duty or 1/2 duty is selected, or 83.34 Hz when 1/3 duty is
selected. ☞ 1

Common 1 pin COM2 COM4

COM1 COM3

LED

Ln

Segment pin

Ln

10 KΩ

COM 1

Frame frequency = 32 Hz

1/2-Duty Common Drive Waveform

V3

V2

V1

V0

V3

V2

V1

V0

COM 2

(2) Display registers for LCD drivers

In the MSM64162/MSM64164, the display registers and bits that are not specified as either segment or
common ports by LCD driver mask option data (☞ 2) cannot be read or written. However, in the
EASE64162/164 emulator, all bits of display registers can be read and written, regardless of mask option
data.

Therefore, an application program that utilizes the unused display register bits as a RAM area will not
work with the MSM64162/MSM64164. Also, the MSM64162/MSM64164 will always read these bits as 1,
but the EASE64162/164 will read them as undefined (but 0 after reset).

4-7

Chapter 4, Debugging Notes

Seg n

Frame frequency = 32 Hz

1/2-Duty Segment Drive Waveform

V3

V2

V1

V0

V3

V2

V1

V0

(Waveform when COM1 is off)

(Waveform when COM2 is off)

(Waveform when COM1 is on)

(Waveform when COM2 is off)

(Waveform when COM2 is on)

(Waveform when COM1 is off)

(Waveform when COM1 is on)

(Waveform when COM2 is on)

V3

V2

V1

V0

V3

V2

V1

V0

Seg n

Seg n

Seg n

(3) Clearing display registers by user reset

The EASE64162/164 can initialize the evaluation board with a user reset (☞ 3), but the display registers
for LCD drivers are not initialized by user resets.

(4) Output port selection by mask option

Eight pins of LCD driver outputs (L16~L23 for MSM64162, L26~L33 for MSM64164) can be set as output
ports by mask option. In the MSM64162/MSM64164 these 8 pins can match up in any way with the 8 bits
of Display Register 0 and Display Register 1 (DSPR00, DSPR01), but in the EASE64162/164 emulator
the matching is fixed to output to the user connector as shown below.

Mask option data is created by the mask option generators MASK162 and MASK164.

A user reset initializes the evaluation board by the input of an "L" level on the user connector
RESET pin during realtime emulation.

Chapter 4, Debugging Notes

4-8

a

b

c

d

P5.0

P5.1

P5.2

P5.3

DSPR00

a

b

c

d

P6.0

P6.1

P6.2

P6.3

DSPR01

☞ 2

☞ 3

4-9

Chapter 4, Debugging Notes

(COM1)

L30

L31

L32

L33

(COM2)

(COM3)

(COM4)

L1 L2 L3 L4 L5 L6 L7

Open-collector type driver

Light emitting diode

Circuit Example For LED Timing Evaluation

4.1.3. Stack Pointer

The most significant bit of the MSM64162 and MSM64164 stack pointer is always 1, but the most
significant bit of the EASE64162/164 stack pointer is always 0.

4.1.4. HALT Pin

The user connector HALT pin is a monitoring pin that outputs an “H” level in halt mode. The peripheral
circuitry of the HALT pin is shown below.

4.1.5. XT and OSC1 Pins

The user connector XT pin and OSC1 pin are used respectively for input of a low-speed and high-speed
clock. The interface power supply voltage must be 5V. The peripheral circuitry of the XT pin and OSC1
pin is shown below.

Chapter 4, Debugging Notes

4-10

7 6 5 4 3 2 1 0

1SP MSM64162, MSM64164

7 6 5 4 3 2 1 0

0SP EASE64162/164

HALT

HC541

HALT0Internal signal

HALT Pin Peripheral Circuit

XTUSER•CLK•L
Internal signal

IN/EX•SEL1
HC08

OSC1USER•CLK•H
Internal signal

IN/EX•SEL2
HC08

4.1.6 ADC POD

(1) Connecting to emulator base unite

Be sure that the emulator power supply is off when connecting the ADC POD to the emulator base unit.
If the power supply is on, then even when the ADC POD is connected, A/D conversion will not be
performed.
Also be sure that the serial number and version on the ADC POD voltage label (☞ 1) match those of
the label on the back of the emulator base unit (☞ 2) before connecting them. If the serial numbers and
versions are different, then A/D conversion might not be performed.

(2) CR oscillation clock

The CR oscillation clock for the ADC POD is supplied by the emulator’s internal evaluation board,
except when the SFR A/D conversion run/stop select bit (EADC) is 1. Therefore the evaluation board’s
internal counter B (CNTB0 ~ 3) will count regardless of whether emulation is executing or stopped.

Refer to section 3.2.3, “Connecting the MSM64162/164 ADC POD.”

Refer to Appendix 1, “EASE64162/164 External Views.”

4.1.7 DASM Command

The pairs of instructions shown below result in identical instruction codes. When the debugger’s DASM
command encounters one of these codes, it will display the mnemonic shown on the left.

NOP and AIS0 (both result in code 0H)

INA and AIS1 (both result in code 1H)

LAM and LAMM0 (both result in code 70H)

XAM and XAMM0 (both result in code 71H)

4-11

Chapter 4, Debugging Notes

☞ 1

☞ 2

4.1.8 Breaks

(1) If a break condition is fulfilled during a skip, then the break will be saved until after the skip
operation completes. (operation is the same even with the STP command.) However, if a break
address instruction is skipped at an address break or breakpoint break, then the break will not be
saved, and no break will occur when the skip completes.

(2) If a break condition is fulfilled during an interrupt transfer cycle, then the break will occur after the
interrupt transfer cycle completes. The break PC will be the interrupt vector address.

(3) The value of the time base counter when a break occurs in high-speed clock mode will not always
be the same even under the same conditions because the high-speed clock and low-speed clock
are asynchronous. Furthermore, when EASE64162/164 is operated with the high-speed clock,
interrupt timing may differ between break (emulation) operation and step command execution.

(4) With the MSM64162/MSM64162D/MSM64164, the skip function of an AIS instruction will be
disabled in a program where the AIS instruction is executed following either ADCS and ADCS@XY
instructions, or SUBCS and SUBCS@XY instructions. With the EASE64162/164 emulator,
however, if a break is set to occur immediately after execution of either ADCS and ADCS@XY
instructions, or SUBCS and SUBCS@XY instructions, and execution is set to resume starting with
the AIS instruction, then the skip function of the AIS instruction will not be disabled. Likewise, the
skip function of the AIS instruction will not be disabled with a STP command.

4.1.9 MSM64162D

The MSM64162D, when evaluated with EASE64162/164, will be evaluated in MSM64162 mode, but be
aware that you can still use functions that do not exist in the MSM64162D chip (high-speed clock, A/D
converter CROSC oscillation mode, IN1 external clock input mode). If those functions are used when
evaluating a MSM64162D, then chip operation will not be guaranteed.

Chapter 4, Debugging Notes

4-12

AAAAppppppppeeeennnnddddiiiixxxx

A-1

Appendix

A.1 EASE64162/164 External Views
A.2 User Cable Configuration
A.3 Pin Layout of User Connectors
A.4 RS232C Cable Configuration
A.5 Emulator RS232C Interface Circuit
A.6 If EASE64162/164 Won't Start
A.7 Mounting EPROMs
A.8 Error Messages
A.9 Command Summary

A.1. EASE64162/164 External Views

Appendix

A-2

OKI EASE64162/164

22
0

27
0

313

EPROM

POW
ER

RUN
PORT5

V
PORT3

V

PORT3V Indicator
PORT5V Indicator

RUN Indicator
POWER Indicator

EPROM Writer

Front View

Top View

A-3

Appendix

User connector

RS232C connector

ADC connector

LED connector

LCD connector

X'TAL

Left View

Right View

RESET

LCD

LED

USER

ADC
BAUD
RATE
SW

RS232C

Reset button

Power supply
switch

AC Power supply
connector

ON

OFF

Rear View

Appendix

A-4

Label

A.2. User Cable Configuration

Figure A-1 shows the configuration of the accessory user cables (two 40-pin cables). Table A-1 gives the
connector part number for the user cable.

Figure A-1. User Cable Configuration

Table A-1. User Cable Connector Part Number Information

Cable Maker Connector Model

User Cable (40-pin) Hirose Electric HIF3BA-40D-2.54R

A-5

Appendix

Pin 1

A.3. Pin Layout of User Connectors

(1) User Connectors

• As shown at left, the user connector is a 40-pin
connector with pin 1 at lower right.

• The voltage level of the user connector interface power
supply can be switched by the CIPS command to either
an internal power supply voltage (5V) or an externa
power supply voltage (3V~5V). However, the
switching of the interface power supply has no
relationship with the selection of the 1.5V or 3.0V
versions of the MSM64162/164 ADC POD and CROSC
board.

• The HALT pin is a monitoring pin that outputs an “H”
level in halt mode.

The P5.0~P5.3 pins and P6.0~P6.3 pins will be output
pins when the LCD driver pins (L26~L33 or L16~L23)
are set by mask option as output ports. They will output
the contents of the display registers (DSPR00,
DSPR01).

• When ON is specified by the URST command, the RESET pin becomes valid. When it is valid, an "L"
level input during realtime emulation will reset the evaluation board.

• When LOUT is specified by the CCLK command, the XT pin becomes valid. When it is valid, the XT
pin inputs a low-speed clock.

• When HOUT is specified by the CCLK command, the OSC1 pin becomes valid. When it is valid, the
OSC1 pin inputs a high-speed clock.

• When the user connector interface power supply is set to be an external power supply by the CIPS
command, supply a voltage from 3V to 5V on the VDD pin.

Appendix

A-6

Pin 39

Pin 1

Pin 40

Pin 2

A-7

Appendix

Pin Number Signal Name Pin Number Signal Name

1 P2.0 21 BD

2 P2.1 22 P5.0 (DSPR00 a)

3 P2.2 23 P5.1 (DSPR00 b)

4 P2.3 24 P5.2 (DSPR00 c)

5 P3.0 25 P5.3 (DSPR00 d)

6 P3.1 26 P6.0 (DSPR01 a)

7 P3.2 27 P6.1 (DSPR01 b)

8 P3.3 28 P6.2 (DSPR01 c)

9 P4.0 29 P6.3 (DSPR01 d)

10 P4.1 30 —

11 P4.2 31 RESET

12 P4.3 32 HALT

13 P0.0 33 XT

14 P0.1 34 OSC1

15 P0.2 35 —

16 P0.3 36 VDD

17 P1.0 37 VDD

18 P1.1 38 —

19 P1.2 39 GND

20 P1.3 40 GND

User Connector Pin List

(2) LCD connector

• As shown at left, the LCD connector is a 40-pin
connector with pin 1 at lower right.

• The LCD connector corresponds to the L0~L33 pins of
the MSM64162 and MSM64164. It outputs LCD driver
signals 0V to 4.5V.

Appendix

A-8

Pin 39

Pin 1

Pin 40

Pin 2

Pin Number Signal Name Pin Number Signal Name

1 L0 21 L20

2 L1 22 L21

3 L2 23 L22

4 L3 24 L23

5 L4 25 L24

6 L5 26 L25

7 L6 27 L26

8 L7 28 L27

9 L8 29 L28

10 L9 30 L29

11 L10 31 L30

12 L11 32 L31

13 L12 33 L32

14 L13 34 L33

15 L14 35 —

16 L15 36 —

17 L16 37 —

18 L17 38 —

19 L18 39 —

20 L19 40 —

LCD Connector Pin List

(3) LED connector

• As shown at left, the LED connector is a 40-pin
connector with pin 1 at lower right.

• The LED connector corresponds to thend L0~L33 pins
of the MSM64162 and MSM64164. It outputs LED
driver signals 0V to 5V.

A-9

Appendix

Pin 39

Pin 1

Pin 40

Pin 2

Pin Number Signal Name Pin Number Signal Name

1 L0 21 L20

2 L1 22 L21

3 L2 23 L22

4 L3 24 L23

5 L4 25 L24

6 L5 26 L25

7 L6 27 L26

8 L7 28 L27

9 L8 29 L28

10 L9 30 L29

11 L10 31 L30

12 L11 32 L31

13 L12 33 L32

14 L13 34 L33

15 L14 35 —

16 L15 36 —

17 L16 37 —

18 L17 38 —

19 L18 39 GND

20 L19 40 GND

LED Connector Pin List

(4) ADC connector

* The ADC connector is a 16-pin connector with pin 1 at
the lower right.

* The ADC connector connects to the accessory ADC
POD.

Appendix

A-10

Pin 15

Pin 1

Pin 16

Pin 2

A.4. RS232C Cable Configuration

(1) For NEC PC9801and OKI if800 series computers

A-11

Appendix

Emulator Serial Port Host Computer Serial Port

Signal name Terminal No. Terminal No. Signal name

F.GND 1 1 F.GND
RxD 2 2 TxD
TxD 3 3 RxD
CTS 4 4 RTS
RTS 5 5 CTS
DTR 6 6 DSR
S. GND 7 7 S.GND
CD 8 8 CD

: :
DSR 20 20 DTR

(2) For IBM PC/AT computers

Appendix

A-12

Emulator Serial Port Host Computer Serial Port

Signal Name

F.GND

RxD

TxD

CTS

RTS

DTR

S. GND

CD

DSR

Pin Number

1

2

3

4

5

6

7

8

20

Pin Number

1

2

3

4

5

6

7

8

9

Signal Name

CD

RxD

TxD

DTR

S. GND

DSR

RTS

CTS

A.5. Emulator RS232C Interface Circuit

A-13

Appendix

6

5

20

4

2

3

1

7

8

 RTS

 DSR

CTS

 RxD

 TxD

RS232C
Connector

10 KΩ

+12 V

10 KΩ

+12 V

10 KΩ

+12 V

10 K Ω

+12 V

75188

75189

75189

75189

75188

6
8
A
5
0

Appendix

A-14

A.6. If EASE64162/164 Won’t Start

Are you using MS-DOS
(PC-DOS) version 3.1

or later?

Can the personal computer
that you are using access the RS232C port

through system calls to AUX?

Is the EASE64X start-up
message displayed?
(refer to section 3.2.5)

Start

Use MS-DOS (PC-DOS)
version 3.1 of later

Switch to an appropriate
personal computer (for
example, NEC-PC9801)

The EASE64X program fi le
(EASE64X.EXE) might be
damaged. Contact the dealer
from whom you purchased the
system or OKI Electric's Sales
Department immediately.

Yes

Yes

To
next
page

No

No

No

Yes

A-15

Appendix

From
previous

page

Do the
interface method and data

transfer parameters (baud rate, data length,
etc.) match those of the host

computer?

Change the interface method and
transfer parameters to match.

Are the cables connected correctly? Connect the cables correctly.

Is the power
supply voltage correct

(AC 100–240 V)?

Input the correct power supply
voltage.

Try starting the emulator from the beginning one
more time. If this still does not work, then the
EASE64162/164 could be damaged. Contact your
Oki Electric dealer.

YES

YES

YES

NO

NO

NO

A.7. Mounting EPROMs

Follow the procedure below to insert an EPROM into the EASE64162/164’s EPROM socket.

(1) Open the EPROM programmer cover in the upper left of the EASE64162/164, as shown below.

Appendix

A-16

X'TAL

EPROM Pin 1

EPROM Socket

EPROM

ON

OFF

EPROM Programmer Cover

OKI EASE64162/164

POW
ER

RUN
PORT5V

PORT3V

(2) Next, set the EPROM to be written or read in the EPROM socket, as shown below.

To set the EPROM, insert the EPROM in the EPROM socket while the EPROM locking lever is up, and
then flip the EPROM locking lever to the horizontal position.

A-17

Appendix

EPROM Socket

EPROM Locking Lever

A.8. Error Messages

** Error 1: Data address error **

The input address was not an allowable value.

** Error 2: Data error **

The input data value was not an allowable value.

** Error 3: Illegal format **

The command syntax contains an error.

** Error 4: Command not found **

The input command does not exist.

** Error 5: Break status not found **

The break status does not exist.

** Error 6: Trace data not ready **

No data has been traced into trace memory.

** Error 7: File not found **

The input file name cannot be found.

** Error 8: Command input too long **

The number of characters input exceeds 256.

** Error 9: EPROM abnormal **

Programming of the EPROM was not performed correctly.

** Error 10: File not found **

The specified file name cannot be found.

** Error 11: Illegal file **

The specified file is not in Intel HEX format.

** Error 12: Illegal file **

The specified HEX file contains an error.

** Error 13: Abort **

Communications were terminated abnormally.

Appendix

A-18

** Error 14: Cannot create file **

The specified file cannot be created.

** Error 15: Disk full **

The disk is full.

** Error 16: File write error **

The specified file cannot be written correctly.

** Error 17: File read error **

The specified file cannot be read correctly.

** Error 18: File open error **

The specified file cannot be opened.

** Error 19: File close error **

The specified file cannot be closed.

** Error 20: Illegal code accepted **

The emulator received an illegal code.

** Error 21: Communication buffer overflow **

An abnormal condition occurred during communication.

** Error 22: Already diagnostic sequence **

A batch file is already open.

** Error 23: List file already open **

A list file is already open.

** Error 24: List file already closed **

No list file is open.

** Warning 1: The 1/2 bias signal cannot be output **

A 1/2 bias waveform cannot be output.

A-19

Appendix

** Warning 2: The LCD driver duty disagreed with mask option **

The LCD duty setting differs from the loaded mask option data.

Appendix

A-20

Appendix

A-21

C Change contents of target chip registers

Cmnemonic ∆ data ↵

mnemonic : PC (0 to 7DF or 0 to FDF)
B (0 to F) ,CAPR0 (0 to FF) ,TBCR (0 to F) ,P20CON (0 to F)
A (0 to F) ,CAPR1 (0 to FF) ,DSPCON (0 to 3) ,P21CON (0 to F)
HL (0 to FF) ,CAPCON (0 to 1) ,IE0 (0 to F) ,P22CON (0 to F)

(☞1) XY (0 to FF) ,CNTA (0 to 79999) ,IE1 (0 to F) ,P23CON (0 to F)
SP (0 to FF) ,CNTB (0 to 3FFF) ,IE2 (0, 1) ,P30CON (0 to F)
BSR0 (0 to F) ,ADCON0 (0 to 3) ,IRQ0 (0 to F) ,P31CON (0 to F)
BSR1 (0 to F) ,ADCON1 (0 to F) ,IRQ1 (0 to F) ,P32CON (0 to F)
BCF (0, 1) ,SBUF (0 to FF) ,IRQ2 (0 to F) ,P33CON (0 to F)
BEF (0, 1) ,SCON (0 to F) ,MIEF (0, 1) ,P40CON (0 to F)
P1D (0 to F) ,FCON (0, 1) ,P41CON (0 to F)
P2D (0 to F) ,BDCON (0 to F) ,P42CON (0 to F)
P3D (0 to F) ,BFCON (0, 1 or 0 to F) ,P43CON (0 to F)
P4D (0 to F) ,BUPCON (0 to 3 or 0, 1) ,P01CON (0 to F)

3 3-62

Evaluation Board Access Commands

D Display contents of target chip registers

D ↵ or D mnemonic ↵

mnemonic : PC ,P0 ,CAPR1 ,IRQ0
B ,P1D ,CAPCON ,IRQ1
A ,P2D ,TBCR ,IRQ2
HL ,P3D ,DSPCON ,BUPCON
XY ,P4D CNTA ,MIEF
CY ,SBUF ,CNTB
SP ,SCON ,ADCON0
BSR0 ,FCON ,ADCON1
BSR1 ,BDCON ,IE0
BCF ,BFCON ,IE1
BEF ,CAPR0 ,IE2

2 3-62

Page

CHIP Set target chip

CHIP [∆ mnemonic] ↵

mnemonic : 64164, 64164

1 3-61

A.9. Command Summary

Appendix

A-22

DDSPR Display Display Register

DDSPR ↵4 3-67

CDSPR Change Display Register

CDSPR ∆ mnemonic ↵

mnemonic : 0~20 . . . MSM64162 mode
0~30 . . . MSM64164 mode

5 3-67

Evaluation Board Access Commands (cont.)

• The numbers in parentheses indicate the input data range for the corresponding

mnemonics.

• The data range of PC is 0H~7DFH in MSM64162 mode and 0H~FDFH in MSM64164

mode.

• When TBCR is changed, it will be reset to 0 regardless of the specified data.

• The change data of CNTA is a decimal value.

• In MSM64162 mode, the following mnemonics are invalid.

P4D, SBUF, SCON, P40CON, P41CON, P42CON, P43CON

• The data range of BFCON is 0H or 1H in MSM64162 mode and 0H~FH in MSM64164

mode.

• The data range of BUPCON is 0H~3H in MSM64162 mode and 0H or 1H in MSM64164

mode.

• The FCON register does not exist in the MSM64162D chip.

• If invalid data (5H, 6H, or 7H) is written to the ADCON1 register when evaluating a

MSM64162D, then the emulator may operate incorrectly.

☞ 1

Page

Appendix

A-23

DCM Display Code Memory

DCM ∆ address [, address] ↵ or
DCM ∆ * ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

* : displays entire address range

1 3-71

CCM Change Code Memory

CCM ∆ address ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

2 3-73

FCM Fill Code Memory

FCM ∆ address , address [, data] ↵ or
FCM ∆ * [, data] ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

* : fills entire address range
data : 0 to FF

3 3-75

LOD Load Disk file program into Code Memory

LOD ∆ fname ↵

fname : [Pathname] filename [extension]

4
3-77
3-81

SAV Save Code Memory into Disk file

SAV ∆ fname [∆ address , address] ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

fname : [Pathname] filename [extension]

5
3-78
3-81

Code Memory Commands Page

Appendix

A-24

Code Memory Commands (cont.)

VER Verify Disk file with Code Memory

VER ∆ fname [∆ address , address] ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

fname : [Pathname] filename [extension]

6
3-79
3-81

ASM Line Assembler Command
This command stores the code it generates in code memory.

ASM ∆ address ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

7 3-82

DASM
Disassembler Command
This command disassembles program memory contents
of a specified address range.

DASM ∆ address [, address] ↵ or
DASM ∆ * ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

* : displays entire address range

8 3-84

Page

Appendix

A-25

Data Memory Commands

DDM Display Data Memory

DDM ∆ address [, address] ↵ or
DDM ∆ * ↵

address : 780 to 7FF . . . MSM64162 mode
700 to 7FF . . . MSM64164 mode

* : displays entire address range

1 3-87

CDM Change Data Memory

CDM ∆ address ↵

address : 780 to 7FF . . . MSM64162 mode
700 to 7FF . . . MSM64164 mode

2 3-89

FDM Fill Data Memory

FDM ∆ address , address [, data] ↵ or
FDM ∆ * [, data] ↵

address : 780 to 7FF . . . MSM64162 mode
700 to 7FF . . . MSM64164 mode

* : fills entire address range
data : 0 to FF

3 3-91

Page

Appendix

A-26

STP Step Execution

STP [∆ number] [, address] ↵ or
STP ∆ * ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

* : executes 65535 steps
number : 1 to 65535

1 3-94

G Realtime Emulation (continuous execution)

G [∆ address] [, parm] ↵

parm : address [, address . . . , address]
RAM (data–count)
BAR (data–count)
address (count)

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

2 3-97

Emulation Commands Page

Appendix

A-27

DBC Display Break Condition Register

DBC ↵1 3-103

DBS Display Break Status

DBS ↵3 3-109

DBP Display Break Point Bits

DBP ∆ address [, address] ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

4 3-105

EBP Enable Break Point Bits

EBP ∆ address [, address . . . , address] ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

5 3-106

RBP Reset Break Point Bits

RBP ∆ address [, address . . . , address] ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

6 3-105

SBC Set Break Condition Register

SBC ↵2 3-103

Break Commands Page

Appendix

A-28

FBP Fill Break Point Bits

FBP ∆ address , address [, data] ↵ or
FBP ∆ * [, data] ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

* : fills entire address range
data : 0, 1

7 3-107

Break Commands Page

Appendix

A-29

DTM Display Trace Memory

DTM ∆ -number-step ∆ numberstep ↵ or
DTM ∆ numberTP ∆ numberstep ↵ or
DTM ∆ * ↵

number-step : number of steps to go back (1~8192)
numberstep : number of steps to display (1~8192)
numberTP : value of TP at which to start display (0~8191)
* : Display the entire area of trace memory

1 3-112

CTDM Change Trace Data Memory

CTDM [∆ address]↵

address : 780 to 7FF . . . MSM64162 mode
700 to FDF . . . MSM64164 mode

4 3-117

DTDM Display Trace Data Memory

DTDM ↵5 3-117

DTO Display Trace Object

DTO ↵3 3-118

CTO Change Trace Object

CTO ↵2 3-118

STT Set Trace Trigger

STT ↵6 3-120

Trace Commands Page

Appendix

A-30

DTT Display Trace Trigger

DTT ↵7 3-118

RTT Reset Trace Trigger

RTT ↵8 3-118

DTR Display Trace Enable Bits

DTR ∆ address [, address . . . , address] ↵ or
DTR ∆ * ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

* : displays entire address range

9 3-124

FTR Fill Trace Enable Bits

FTR ∆ address , address [, data] ↵ or
FTR ∆ * [, data] ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

* : fills entire address range
data : 0, 1

12 3-126

ETR Enable Trace Enable Bits

ETR ∆ address [, address . . . , address] ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

10 3-125

RTR Reset Trace Enable Bits

RTR ∆ address [, address . . . , address] ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

11 3-125

Trace Commands (continued) Page

Appendix

A-31

DTP Display Trace Pointer

DTP ↵13 3-128

Trace Commands (continued)

RTP Reset Trace Pointer

RTP ↵14 3-128

Page

Appendix

A-32

RST Reset System and Evaluation Chip

RST ↵ Reset the system.
RST ∆ E ↵ Reset the evaluation chip.

1 3-130

URST Set User Reset Terminal (on user cable)

URST [∆ mnemonic]↵

mnemonic : ON, OFF

2 3-132

Reset Commands Page

Appendix

A-33

DIE Display Instruction Executed Bits

DIE ∆ address [, address] or
DIE ∆ * ↵

address : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

* : displays entire address range

6 3-139

DCC Display Cycle Counter

DCC ↵1 3-137

CCC Change Cycle Counter

CCC ∆ [-]number ↵

number : 0 to 4294967295

2 3-138

SCT Set Cycle Counter Trigger

SCT ↵3 3-134

DCT Display Cycle Counter Trigger

DCTz
4 3-134

RCT Reset Cycle Counter Trigger

RCT ↵5 3-134

RIE Reset Instruction Executed Bits

RIE ↵7 3-139

Performance/Coverage Commands Page

Appendix

A-34

TYPE Set EPROM Type

TYPE ∆ mnemonic ↵

mnemonic : 64, 128, 256, 512

1 3-142

PPR Program EPROM

PPR ∆ addressCode , addressCode [, addressEPROM]↵ or
PPR ∆ * ↵

address Code : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

* : programs entire address range
address EPROM : EPROM write address

2 3-143

TPR Transfer EPROM into Code Memory

TPR ∆ addressCode , addressCode [, addressEPROM]↵
TPR ∆ * ↵

address Code : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

* : transfers entire address range
address EPROM : EPROM transfer address

3 3-145

VPR Verify EPROM with Code Memory

VPR ∆ addressCode , addressCode [, addressEPROM]↵
VPR ∆ * ↵

address Code : 0 to 7DF . . . MSM64162 mode
0 to FDF . . . MSM64164 mode

* : verifies entire address range
address EPROM : EPROM comparison address

4 3-147

EPROM Programmer Commands Page

Appendix

A-35

LODM Load Disk file Mask Option into System memory

LODM ∆ fname ↵

fname : [Pathname] filename [Extension]

1 3-150

Mask Option File Commands Page

VERM Verify Disk file with System Memory

VERM ∆ fnamez

fname : [Pathname] filename [Extension]

2 3-151

PPRM Program Mask Option Data into EPROM

PPRM ↵3 3-153

TPRM Transfer EPROM into System Memory

TPRM ↵4 3-154

VPRM Verify EPROM with System Memory

VPRM ↵5 3-155

Appendix

A-36

BATCH Batch Processing

BATCH ∆ fname ↵

fname : [Pathname] filename [Extension]

1 3-158

PAUSE Pause Command Input

PAUSE ↵2 3-159

Commands for Automatic Command Execution Page

Appendix

A-37

LIST Listing (Redirect the Console output to Disk file)

LIST ∆ fname ↵

fname : [Pathname] filename [Extension]

1 3-161

NLST No Listing (Cancel the Console output Redirection)

NLST ↵2 3-162

> Call OS Shell

>DOS command ↵3 3-163

CCLK Display/Change Clock Mode

CCLK [∆ mnemonic] ↵

HIN, HOUT, LIN, LOUT

4 3-164

CIPS Display/Change Interface Power Supply

CIPS [∆ mnemonic] ↵

mnemonic : INT, EXT

5 3-165

EXPAND Expand Code Memory

EXPAND [∆ mnemonic] ↵

mnemonic : ON, OFF

6 3-166

EXIT Terminate the Debugger and Exit to OS

EXIT ↵7 3-168

Other Commands Page

	NOTICE
	TABLE OF CONTENTS
	Chapter1 Before Starting
	Confirm Shipping Contents
	Confirm Floppy Disk Contents
	Host Computer
	Operating System
	Floppy Disk Contents

	Chapter2 Overview
	EASE64162/164 Emulator Configuration
	EASE64162/164 Emulation Kit
	ASM64K Cross-Assembler
	EASE64X Debugger
	MASK162/MASK164 Mask Option Generators
	System Configuration

	Program Development With EASE64162/164
	General Program Development and EASE64162/164
	From Source File To Object File
	Generating Mask Option Files
	Files Usable with the EASE64162/164 Emulator

	Chapter3 EASE64162/164 Emulator
	EASE64162/164 Functions
	Overview
	Changing Target Chips
	Emulation Functions
	Realtime Trace Fuctions
	Break Functions
	Performance/Coverage Functions
	EPROM Programmer
	Indicators

	EASE64162/164 Emulator Initialization
	Setting Operating Frequency
	EASE64162/164 Switch Settings
	Connecting The MSM64162/164 ADC POD
	Confirming EASE64162/164 Power Supply Voltage
	Starting the EASE64162/164 Emulator

	EASE64X Debugger Commands
	Debugger Command Syntax
	Character Set
	Command Format
	Command Summary

	History Functions
	Special Keys For Raising Command Input Efficiency
	Command Details
	Evaluation Board Access Commands
	Displaying/Changing Target Chip
	Displaying/Changing Target Chip Registers
	Displaying/Changing Display Registers

	Code Memory Commands
	Displaying/Changing Code Memory
	Load/Save/Verify
	Assemble/Disasemble Commands

	Data Memory Commands
	Displaying/Changing Data Memory

	Emulation Commands
	Step Commands
	Realtime Emulation Commands

	Break Commands
	Setting Break Conditions
	Setting Breaks on Executed Addresses
	Displaying Break Results

	Trace Commands
	Displaying Trace Memory
	Displaying/Changing Trace Contents
	Displaying/Changing Trace Triggers
	Displaying/Changing Trace Enable Bits
	Displaying/Changing the Trace Pointer

	Reset Commands
	Performance/Coverage Commnads
	Measuring Execution Time
	Monitoring Executed Program Memory Areas

	EPROM Programmer Commands
	Setting EPROM Type
	Writing to EPROM
	Reading from EPROM
	Comparing EPROM with Code Memory

	Mask Option File Commands
	Loading Mask Option File
	Verifying Mask Option File
	Writing Mask Option Data to EPROM
	Reading Mask Option Data from EPROM
	Comparing Mask Option Data with EPROM

	Commands for Automatic Command Execution
	Other Commands
	Saving CRT Contents
	Shell Command
	Displaying/Changing the Clock
	Displaying/Changing Interface Power Supply
	Changing Code Memory Area
	Terminating the EASE64X Debugger

	Chapter4 Debugging Notes
	Debugging Notes
	Ports
	LCD Drivers
	Stack Pointer
	HALT Pin
	XT and OSC1 Pins
	ADC POD
	DASM Command
	Breaks
	MSM64162D

	Appendix
	EASE64162/164 External Views
	User Cable Configuration
	Pin Layout of User Connectors
	RS232C Cable Configuration
	For NEC PC9801 ans OKI If800 series computers
	For IBM PC/AT computers

	Emulator RS232C Interface Circuit
	If EASE64162/164 Won't Start
	Mounting EPROMs
	Error Messages
	Command Summary

