OKI

MACG66K Assembler Package
User's Manual

Program Development Support Software

Relocatable Assembler RAS66K
Linker RL66K
Librarian LIB66K
Object Converter OHG66K

THIRD EDITION
ISSUE DATE:Nov. 1993

E2Y0002-29-62

NOTICE

1.

9.

The information contained herein can change without notice owing to product and/or
technical improvements. Before using the product, please make sure that the information
being referred to is up-to-date.

The outline of action and examples for application circuits described herein have been
chosen as an explanation for the standard action and performance of the product. When
planning to use the product, please ensure that the externa conditions are reflected in the
actual circuit, assembly, and program designs.

When designing your product, please use our product below the specified maximum
ratings and within the specified operating ranges including, but not limited to, operating
voltage, power dissipation, and operating temperature.

OKI assumes no responsibility or liability whatsoever for any failure or unusual or
unexpected operation resulting from misuse, neglect, improper installation, repair,
alteration or accident, improper handling, or unusual physical or electrical
stress including, but not limited to, exposure to parameters beyond the specified
maximum ratings or operation outside the specified operating range.

Neither indemnity against nor license of athird party's industrial and intellectua property
right, etc. is granted by usin connection with the use of the product and/or the information
and drawings contained herein. No responsibility is assumed by us for any infringement of
athird party's right which may result from the use thereof.

The products listed in this document are intended for use in genera electronics equipment
for commercia applications (e.g., office automation, communication equipment,
measurement equipment, consumer electronics, etc.). These products are not authorized
for usein any system or application that requires specia or enhanced quality and reliability
characteristics nor in any system or application where the failure of such system or
application may result in the loss or damage of property, or death or injury to humans.
Such applications include, but are not limited to, traffic and automotive equipment,
safety devices, aerospace equipment, nuclear power control, medical equipment, and
life-support systems.

Certain products in this document may need government approval before they can be
exported to particular countries. The purchaser assumes the responsibility of determining
the legality of export of these products and will take appropriate and necessary steps at
their own expense for these.

No part of the contents contained herein may be reprinted or reproduced without our prior
permission.

MS-DOS is aregistered trademark of Microsoft Corporation.

Copyright 1993 Oki Electric Industry Co., Ltd.

TABLE OF CONTENTS

Chapter 1. Introduction

1.1 About The MACGB6K Assembler PaCkagecccovvvieieiiiieiieseseseseeie e 1-1
1.2 SysStem REQUITEMENTScciiiieiieseeieesee e e ettt sae st e e et e e e e eneesenseenearenrs 1-2
1.3 ADOUL TRISIMANUAL ..ottt e ebe e 1-3
1.4 Related DOCUMENES.....cociieciiieeiiriee ettt sttt st se bt se st e st et neerenens 1-4
ST O U G0 T USSP SO PRURPRO 1-5
1.6 Symbol Usage In ThiSManUal........ccceoueieeieiiieeise e 1-6
1.7 Changesfrom Previous MAC66K Assembler Package Ver. 2. XXccocevvevevcvnesrnnnn, 1-7
0 = 7N 1 1-8
O = {1 T 1-13
A T T 1T T 1-15
O @ T 1-15
Chapter 2. Installation and Usage
P25 A 1 01§ oo [Tox ' o SRS 2-1
P D 11 Oa (= g £ SRS 2-2
P2 B 1 g =1 = o SRR 2-3
2.4 ENVIronment VariablES ..o 2-5
2.5 Program DeveloOpmMENt FIOWccocicieicirese e 2-6
2.6 MOdUIE Programmingccccceierieiereeieeeeesesesesesie e s e sressesee e seeseessessesesessesseesessessenns 2-8
2.7 Using The MACG66K Assembler Package Software........ccccveeveveveieveeneceeesce e 2-10
2.7.1 MP: MaCro EXPaNSION....cccciueieieeeieeeeese et stese e e e sttt ss e e e eseese e enesnenns 2-10
272 RASBOK: ASSEMDIEN ...t 2-10
2.7.3 LIB66K: Registering Object Modules In Library Fil€S.......ccoceovevevecceccineceeee, 2-11
274 RLBBK: LINKET ..cviiiieieeiiiieieieeisisieee sttt ssesesensnsnsas 2-11
2.75 OHB6K: Changing FIle FOrMat........ccccouriveeriiiesese e 2-11
2.76 Generating Assembler Level Debugging Informationcceceeveveeveececenienennnnnn, 2-12
Chapter 3. Basic Programming Knowledge
30 A I o oo [H T o o RS 31
G I \V 1= o [0 VS o - Vo= 32
3.21 Overview Of MemMOry SPaCE......ccccouciriereeeeesesesesesiessestesaesssseseeseesessessessessenses 3-2
3.2.2 Memory Space Of nX-8/100, nX-8/200, NX-8/400..........cccecererrereereerreerienenrennns 3-3
3.2.2.1 Program MemOry SPaCE.......c.cocveuereeieeseeriesesieesesseesseessessesssessessesseenes 33
(YL (o g = o) 1= Y == U 34
(2 YA O A I = o 1= N == U 34
3.2.2.2 DaaMemOry SPACE........ccveeeriieierieeeesteeeestesseeseseeseeeesseeeesseensesseenes 3-6
(1) Specia Function Register (SFR) Areas........cccocvveveeveereeieeeeeerennens 3-6
(2) Pointing REJISLEr AT€ac.ccveuieeeeeiesie et re e 3-6
(3) CUIrent Page ATESS.......ccucieeeeieeee s et te e se e e e re e 3-7
(G A (oY 2= o LY A == N 3-8
3.2.3 Memory Space Of NX-8/300ccccueirireeeeese e se st se e sreens 39
3.2.3.1 Program MemOry SPaCE.......cccocveuerrrreeresieesesieestesseesseeseesseseessessesseenes 39

3.3
3.4
35

3.6

(G VA= o (o g I o = Y = S 3-10

(2 VA O Y I o - N = 311

3.2.3.2 DaaMemOry SPaCE.......cccveeireereereereereeeseeseeseesseeeesseensesseessesseessesseesses 312

(1) Specia Function Register (SFR) Areas.........ccccvevvivvevenereseeseeennes 312

(2) Pointing REQISLEr ATEAecveveeieeeeeeeeee e 313

(3) CUITENt Page ATEBS......ccveieeieeieiereereeeeeee et te e s eneens 314

(A= (o] = o Y A = S 315

(5) COMMON and Separate AT€aScceeeeeeeereresrseseeseesseseeseeseesennes 315

3.24 Memory Space Of NX-8/500cccceerereereereeeeeeesesesesese e sreseseeseeseeseeseesaesennes 3-16
3.24.1 Program MemMOrY SPECE........ccoverrreereererseseeseeseessesseessesseessesseesseseesses 3-16

(1) VECLOr TahI@ ATEa....ccueevecieceieieereereee e 317

(2 VA O Y I o - N = S 318

) I N @7 Y I N 1= T 318

(4) ROM WiINAOW ATEa........cceieiieiereereeeeeeeesesesseseesiessesaessesaesesneessnnes 318

3.24.2 DataMemOry SPECE.......cccveeereererreereesieeseeseeseeseeseesseessesseessesseessssseesses 319

(1) Specia Function Register (SFR) Areas.........cccovvevvvveveneseseeseesennes 3-20

(2) CUITENt PagB ATEA. ...o.eeevecieieeeeree ettt s 3-20

(3) FiXed Page Al€a........cceeevieieeeereereeee et 321

(4) Pointing REGISLEr ATEAeivevieiereereeeeeee e 321

(5) Local REQISLEr ATEAocveveeceeieiereereee e e 322

(6) EEPROM AT@A......couiuiriiiriiiriiesieesieseeie sttt ssess e es 3-24

(7) Dual Port RAM ATE8oceieeieiereeeeeeeeeete st se e s se e 324

) IS 2T AN A == 324

(9) ROM WiINAOW ATcecveieiieieieereeeeeeeeresesie e ste e seensesaeseeneeneens 325

(10) COMMON and Separate Areasccceeveereresreseseseseseeseeseesennes 325

3.24.3 MEMOrY MOGEIS......cceeeieieiese ettt s e 325

325 MEMOIY ACCESS....cueeierteeiesteeiesteeseesseesseseesseseesseseesseeeesseessesseensessesssesseensesneenses 3-26
3.25. 1 WIraparOUNG.......ccceveeuesierieieiniesieseeseeeeseeeesessesse e ssesseseesseseeseesnsseneeneesens 3-26

3.25.2 WOrd BOUNGATES......c.covireevereeierieiesieie sttt st st s 3-26

F o (o = = o 3-27
(oo Tor= IS = 0 T S 3-30
Series Correspondence With DCL FileS.....ccouiiceeeieeecesese st e e seeeenens 332
351 INformation IN DCL FIlES.....cioiiiiiieiietsees e 3-32
(1) COre ID NUMDEYcceeiieceeese st e et e e e eneas 332

(2) Microcontroller ID NUMDESccvierereeereeeeerese e e see e e seeeenens 332

(3) Usable range of program memory SPACEccveererererrereseseseeseeseeseeseeneesens 332

(4) Usable range of data MemOry SPECE.......cccereereeerereeesese st seeseesee e seeeenens 332

(5) SFR arearange and permitted range of aCCESS......covvrvrivrvverereseerierereeeenens 333

(6) Reserved words representing addreSSES........ceovevrerererienesesieseseeseeseseeseenens 333

(7) Permitted INSTUCLIONS.......ccoieie e s eneas 333

352 ADOUt DCLBBK.DOC........cciiiriieriiiriinieiesie ettt sttt 3-33
[=R 0 1= ot o o) SR 334

Chapter 4. RAS66K

4.1
4.2
4.3

g1 oo 18 ot Lo o [SO SO TSP 4-1
File Specification DEfAUILS........ccccvciiiiicise e 4-2
USING RASEEK ... ietere sttt ettt et te e et se e e sesnsenens 4-4
4.3.1 EXECUING RASBOKceiuiieisierieieiieieseeeeeeeseeresesse st sne st e seesnenaesaeneeneenenns 4-4
4.3.2 Option SPECITICAIONScceivieieie et ens 4-4

4.4

45

4321 List Of OPLiONS....ccccoveieeieereeesese s sre e sre s s 4-4
4.3.2.2 Option FUNCHONS.......coceeerececere sttt sre s 4-5
(1) Memory Model Specification (/MS, IMC, IMM, IML)......ccccu..... 4-7
(2) Control of Branch Instruction Flag Attribute Checks (/CF, /NCF).. 4-8
(3) Suppression Of Upper And Lower Case Distinction (/CD, /NCD).. 4-9

(4) Warning Check Control (/W, INW)ccovvivieneerereeieeeeeeeseeneens 4-10

(5) Include File Path Specification (/1)......c.cccovvieverereneneeieeeeeeeseeees 4-11

(6) Output of C Source Level Debugging Information (/CC)................ 4-11

(7) Saving File Read BUFFEr (/V)...ccovcveevececese e 4-12

(8) Print File Generation Control (/PR, /INPR)........ccccceevereiereeeseneens 4-12

(9) Absolute Print File Generation (JA) ...occcceeeverererereeeeeeeeeseeseens 4-13

(10) Assembly List Output Control (/L, /NL) ...cccceveeerereeeeereeeseeeees 4-14

(11) Symbol List Output Control (/S, /NS)ccevvvererereereeereeeseeneens 4-14

(12) Cross-Reference List Output Control (/R, /NR)ccccveevrvevrrnnnne 4-15

(13) Print File Characters Per Line Specification (/PW).......ccccceevevvnnene. 4-16

(14) Print File Lines Per Page Specification (/PL)......ccccccevevrcvecvrnnnnnn 4-17

(15) Tab Code Replacement (/T) c..ccveeveerereseneseseeesee e 4-18

(16) Object File Output Control (/O, INO)ccccevererereereeeeereeeseeseens 4-18

(17) Output of Assembly Level Debugging Information (/D, /ND) 4-19

(18) Error Message Output Control (/E, INE)......cccceevereveeeiereeeceeneen 4-20

(19) Generation of EXTRN Declaration Files (/X)ccccceeveverierrerenenn. 4-21

4.3.3 TermMiNation COOB........coorerieiereeiiriete sttt sttt s 4-22
I Y 0100 1= 4-22
Creating Programs oottt ne s 4-23
T R T = I oo = 0o = 4-23
4.4.1.1 Target Microcontroller SpecifiCationccoovveverereresecreeere e 4-23
4412 COMMON Area SpeCifiCation........cccvvivrerererieseeneneneeseeseses s 4-24
4.4.1.3 Memory Model SPeCifiCation........ccccovvieveierieniererererereeeeee e 4-25
4.4.1.4 ROM Window Area SpeCifiCationcc.covvveviereererieresece s 4-25
4415 Code PoSition RESLICIONS.......covririiriieesieesieese e 4-26

4.4.2 Program End SPeCIfiCation........ccoucvvieeeeiniese et 4-27
4.4.3 Writing SOUICE SEALEMENLS.......ccveeererereerereseesresteseeseesee e seeseesee e eeeseesessessesresseees 4-27
4431 Writing InStruction Statements...........ccevvevererereereesereeseeeees e 4-27

4.4.3.2 Writing Directive StatementS.......ccocvvvvevevenese e 4-28
4.4.3.3 Writing Special Statements.......ccocvevvievierevinese e 4-28

444 BIOCK COMIMENES.....oiitiieierieie sttt sttt sttt sttt ettt s st sa et 4-29
Coding LogiCal SEgMENES.......cccieiieieieeeeeeeere e e se e se e snesrenes 4-30
45.1 Source Statements Coded In Logical Segments.........ccccvveveereereereereeiesiesieseseneens 4-31
(1) Source statements coded mainly in the CODE segment.........cccceeeeeveeevriennnns 4-31

(2) Source statements coded mainly in the DATA segmentcccceveeeeeeeerieiennens 4-31

(3) Source statements coded mainly inthe BIT segment........cccceveeeeveeeeeniennnnens 4-31

(4) Source statements coded mainly in the EDATA segment........cccceveeveevevrnnnnns 4-31

(5) Source statements coded mainly in the EBIT segment.........cccceeeveevecvricnnnnnns 4-31

45.2 Absolute Segments And Relocatable Segments.........ccvveveveccereececceceesce s 4-31
4521 ADSOIULE SEGMENLS.....c.cceeeeeeceeere e ene s 4-32

4522 Relocatable SEgMENLSc.ccceeeririiice e 4-34

453 COMMON AFBA......ccirtiririerietereete sttt sttt sttt sttt st se st s be st s et 4-36
4531 DataMemory Space Seen By RASEOKcccoccvveecerieennsieeseseenieneens 4-36

45.3.2 Segment Allocation TO COMMON ATr€a.....cccceveeveereereereeeresieseseeseens 4-37

S = ot 0 (0= 4-39
455 Overlapping Logical SEgMENEScccecveeeireresese e eee e 4-40

4.6

4.7

4.8

[0 Tor= 1 {0 g @ TU] | (= S 4-41

4.6.1 Location Counter INItialiZation.........ccooivieirieireinererseses e 4-41
(D) Initialization of location counters of relocatable segments........ccccceeeveeenene 4-41

(2) Initialization of location counters of absolute segments..........cocvveverereereenne 4-41

4.6.2 Changing Location COUNtEr VAUESccccveereeerere st sie e ses e neeeeneenes 4-42
4.6.3 Referring Location CouNter ValUES........ccceveeeeeerene e e e seeaesaeneeeenennes 4-42
Conditional Assembly and MaCrOS........cccceverierierieriererreeeeesese e e e e seesaeaeseeeenens 4-43
4.7.1 Using Conditional ASSEMDIY.......cccoeierierieiceeiecece s 4-43
4711 IF DITECHVE .ottt 4-44

4.7.1.2 1FDEF DIF€CUIVE.....coeeiriieirieiriesiesesee ettt 4-44

4.7.1.3 IFNDEF DIr€CLVE.....c.eiuiiriiiriiiriiesiereeieseee s 4-45

A U 1 g o 11V o 0T 4-46
[oo =T T = 0 T S 4-47
T R O = = o (= S OSSPSR 4-47
4.8.1.1 Letters, Digits, Underscore, Question Mark, Dollar Sign.........cccve..... 4-47
8 2 VAV T (=S o o 4-47

4.8.1.3 LineFeed Code, Carriage Return Code..........ccceevvevererereseeseeseeeenennes 4-47

4.8.1.4 Special CharaClerS.......ccvvrererereereeieeesese s eeneens 4-48

VI T @ o= = o] = 4-48

4.8.1.6 ESCAPE SEQUENCES........eeeeieeeenieeiesteeeesseeneeseeseeseeseesneestesneessesssessesssenes 4-49

A.8.2 CONSLANESeeueeueriiriierintesie st ste e s e e e e s e s b st sae b e s b sae s e beseese e s e e e e e e eneens 4-50
4.82.1 Integer CONSIANTS......ccceeeerieeierieeeseeree e esee e e see e e see e seesneesre e neeeneenes 4-50

4.8.2.2 AdAress CONSLANES.......coueerieiriieriiisereeteseeie s es 4-52

4.8.2.3 Character CONSLANLS........ccvveeriieriiiseneeeseee s es 4-53

4.8.24 SING CONSLANESccveiveieireeieriereeeeeeeeesesesesrese et te e seeeenseseeseesenses 4-54

G TS Y 1 oo T 4-55
e 3 R WS Y 0o To R 4-55

(1) Absolute SYMDBOIS.......ccvieiireerereeee e e 4-58

(2) Relocatable SymbOoISccovvvecerecee e 4-58

(3) Referring User SymbolS.......cccvceveveeeeeececce e 4-62

(4) Referring User Symbols From Multiple Source Files...................... 4-63

(5) MACro SYMBOIS.coeieecese e 4-63

4.8.3.2 RESEIVEA WOIGS ..ottt 4-63

(1) INSITUCIONS ...ttt s 4-64

(2 I T (= 1AY== 4-64

) IR LS T = £ 4-64

(NI o1] £ 4-64

(5) Fixed microcontroller addreSses........coovvveeeevvsesesesesereseeeeenes 4-64

(6) Local register adareSSes........uvvereereereeereeesese e e e s seee s 4-65

(7) Pointing register addreSSESevvereereeeeeeerere e 4-65

(8) Addressing SPECITIErS.viviirererereceeee e 4-65

(9) Specia operands of INSITUCLIONS........ccccoveeveerire e 4-65

(10) Special operands Of AIr€CtIVES........ccecveeeeerire e 4-65

4.8.4 Location Counter SYMDOL........cccoviiiererieeeceeeces e e 4-66
485 ValUE ALIIDULES..... ..ot bbb 4-67
4.85.1 Numeric Vauesand Address VA UES.........cccoereerenivcniencneneseneens 4-67

4.8.5.2 Usage Types and Physical Segment Attributes.........ccocvvvveverereceennne. 4-68

(1) USAGE TYPES ..eeceeeveieceeste e sees e e see e esee e eresse e steste e sae e e e eneenenns 4-68

(2) Physical Segment AttribULES.......cccoveeveeeeeecere e 4-68

4.85.3 Flag AttrIDULES.......c.coce e 4-73

4.85.4 Addressing AttriBULES.........coveveeeeeecec s 4-74

4.9 OperatorsSand EXPrESSIONS.......ccciviieiuereriereeieeersesiesessessessesteseeseessessessessesessesssssessesessens 4-76

4.9.1 Basic Concepts Of EXPrESSIONS.......ccccvveeereieseresessesieseeseessesseseeseesessessessessessenes 4-76
4.9.1.1 Meaning Of Attributes Of EXPreSSiONS........ccceveverereereereesesresseseseseenns 4-76
4.9.1.2 Using Physical Segment AddreSses.......ccoovvveveveercrereeseeeeese s 4-78
4.9.1.3 Unresolved Expressions During Assemblyccccovevevereeieeienceceseneens 4-79
R I © o 1= ¢ (0] £ S 4-80
4921 ArithmetiC OPEratorS......ccoveeeerereresesese e e e e eae e e sre s s 4-80
4.9.2.2 LOQICAl OPEIGOrS.cceeeeeereereereriesestesieseeseessesseseessessesseseesessesseesessessenes 4-81
4.9.2.3 Bitwise Logical OPEratOrs.......cccvevvirerereseiseseseessesseseeseesessessessessessenes 4-82
4924 Relational OPErators.......ccccooeeieeerieiesiesieseseeseseseeseeseeseeseesessesseeessesseses 4-83
4,925 DOt OPEIAON......cc e ieeeceeieereseeseseeseseees e eeesteeeesseeeesseeseeseessesseessessenns 4-84
4.9.2.6 SPECIAl OPEIELOIS ...cuveueeeeeeereeeeeresteseste s e steseestesteseeseeeeseeseeseesesseesessesseses 4-85
4.9.3 EXPreSSION TYPES....ecueeereereeeeeeeesersesessessessessessessessessessessessessessesssssessssessessessessenes 4-88
4.9.3.1 Constant EXPreSSIONSccccveeeereresieseseeseesseseeseessesseseeseesessessessessesseses 4-90
4.9.3.2 SIMPIEEXPIESSIONS.....cceeeereereeteriereste et te e e e e e e sre s s 4-91
4.9.3.3 GeENEral EXPreESSIONS.....cccveeeeeerteseestesieseeseessesseseessessesseseesessessssessesseses 4-93
4.9.34 Restrictions On Coding EXPreSSionS.........coeverereereeneereeneesessessesessessenns 4-94
(1) Restrictions On ORG Directive Operands..........ccccvereereerereerenreneens 4-94
(2) Restrictions On Operands Of Directives
That Define Local Symbols.........cccvvevevenererereeeeseeeses s 4-95
(3) Restrictions On Operands Of Other Directives........cccceeeeeeevreeneenn 4-95
(4) Restrictions On Microcontroller Instruction Operands.................... 4-96
4.9.4 EXPression EVAIUBLIONccccoveiieerireee s sne s s s 4-96
4.9.4.1 Operator PreCEENCEovviireeirerese e seesee e e e seeee e e se e sre s s 4-96
4.9.4.2 Evauation Of EXpression VAlUESccccvveverereerenereeseeeeese e 4-97
4.9.4.3 Evauation Of Expression AttribUteS...........cccceveveverereiecceeeee e 4-97
(1) Attributes of ParentheSeS () ..cveeveveerevesire e 4-98
(2) Attribute Evaluation of Operators+ and -.........cccceveveeveevercenesennens 4-99
(3) Attribute Evaluation of Operators™*, /, and %.......ccccevveeerceevrennnnnn 4-100
(4) Attribute Evaluation of Logical Operators........ccoceveveereerervenereeneenns 4-101
(5) Attribute Evaluation of Bitwise Logical Operators.........cccceevrvennene 4-102
(6) Attribute Evaluation of Relational Operators........ccccoevvevereeereennenn 4-103
(7) Attribute Evaluation of Dot OPEratorcccceverereereereererieeeneeneens 4-104
(8) Attribute Evaluation of Special Operators.........coceveveereeierceeereneenns 4-105
4,10 CheCK FUNCLIONS.......oiiiiieieee ettt e e et 4-107
4.10.1 Operand Value ChECKS.......cccveieererese st sne e e 4-108
4.10.2 Location Counter Value ChECKS..........ccu et 4-108
4.10.3 USAQE TYPE ChECKS....c.eeeeeeeecececerer ettt s ene e nne s 4-109
4.10.4 Physical Segment Address ChECKS........cccivviiirininiesineseseeseeee e 4-109
(1) DSR ChECKS.....ceciereeiirieiiriecrieesie sttt st sttt ettt e 4-110
(2 T IS RO 11 o 4-111
() O R 4T T 4-112
4.10.5 Word Boundary ChECKScccoeiririeiicise e 4-113
4.10.6 Special Function Register ACCess Checks.........ccovvvvirererereeiereee s 4-113
4.10.7 Current Page CheCKScoucieeeeeecec st 4-114
4.10.8 Program Memory Space Write Checks..........cccovvivvvvinereserceeeeeecee e 4-115
4.10.9 Flag AtIDULE CheCKS......ceeeieececece e 4-116
(1) Flag Attribute Checks of Instructions Affected By Flags........cccceovevveeveivinnnns 4-116
(2) Flag Attribute Checks of Branch INStrUCtIONScccvverevereccececcccne s 4-117
0 I Ao o [=S T o 11, oo = 4-118
4.11.1 Addressing Modes That SpecCify VAlUES........ccccvvvvevvnere e 4-121

4112

4.11.3

4114

4115
4.11.6

4.11.7

4.11.1.1 Immediate AAAreSSING.....c.eovereriereeeeeeeeerese s se e e e seeseeeeneeseeeeseenes 4-121

4.11.1.2 Rotate/Shift AQAreSSINGecveveereeeeeeeceeere s 4-121

AN 1Y N0 o[5S o 4-122

4.11.2.1 Register AArESSINGccvevveriereereeeeeeeeeeese st eeneenes 4-122

(1) Accumulator AdAreSSINGcevereereereereeereeesesesrese e seesseseeseeeeseenes 4-122

(2) Control Register AAAresSiNgccevveeeereereeerereseseseseeseeseeseeseesennes 4-122

(3) Pointing Register AdAreSSiNgcccevveeeeereeerereseseseeseeseseeseeeeeenes 4-123

(4) Local Register AAAreSSiNg.......coeveereereererieeeneseseeseseseeseeseesesseeenns 4-124

(5) REGISLEN SELS....eovicrireieeese st er e ree et ne e ens 4-124

4.11.2.2 Page AdAreSSING......eiieieireerieriereeseeseeseeessesessesreseeseessessessessensensenessessenses 4-125

(1) SFR Page AQAreSSINGcceivereeriereereeeeeeeeresese e sie e seesee e seeeeseens 4-125

(2) Fixed Page Addressingccoeeerereereereeieeeseseseeseseseesseseesessesennes 4-126

(3) Current Page AdAreSSiNg......cceeereereereereeeeeseseseesese e seseeseeeesenns 4-127

(4) Fixed Page SBA Area AddreSSiNg.......coceeeeerereseneseseeseseeseeseeenns 4-128

(5) Current Page SBA Area Addressingcoceeeeveereeseseseeseseesesseesenns 4-128

4.11.2.3 DireCt AdAreSSINg.....cceiereeriereererreereeseeesesesesseseseessessessessessenseseesessenses 4-130

(1) Direct Data AddreSSINgccveeveriereereeeeeeeeesesesresie e seeseeseeseeeeseenes 4-130

4.11.2.4 Pointing Register Indirect Addressingcccceevvevevvneseseneseneereeeenes 4-131

(1) DP/X1 Indirect AAAreSSINg ..ovecvereereeeeeeeeeeseseesesie e s eseeseeeeseenes 4-131

(2) Indirect Addressing With Post-Incrementccocooevvvveveneceennne. 4-131

(3) Indirect Addressing With Post-Decrement..........cccccvvverereereeeennne. 4-132

(4) DP/USP Indirect Addressing With 7-Bit Displacement................... 4-133

(5) X1/X2 Indirect Addressing With 16-Bit Base...........cccccecereervevenene. 4-134

(6) X1 Indirect Addressing With 8-Bit Register Displacement.............. 4-135

Table Data AdAreSSINGocveeieieieire e reeree et ne e ens 4-136

4.11.3.1 Direct AdAreSSiNg.....ccceierueriereererreereeseeesesesessesessessessessessessesseneesessenses 4-136

(1) Direct Table AdAreSSiNg.......coveereereereereeeeeseseseese e seeseseeseeeeeenes 4-136

20 G T2 1 o [= ot X0 (o 1=\ 1 o [4-136

(1) RAM Addressing Indirect Table Addressing.........ccoevvevereereevennnne. 4-136

(2) RAM Addressing Indirect Addressing With 16-Bit Base................. 4-137

Program Code AdAreSSING.......ccooveereieirriereseeseeeeseeeeese s sre e e sses e seesesssesesseens 4-139

4.11.4.1 Direct AdAreSSiNg.....ccceierrerierereereereeseeesesesessesessessessessessensenseseesessenses 4-139

(1) Near Code AdAreSSING.......ccevererereereeereeesese e e e s seeseeeeseens 4-139

(2) Far Code AQArESSINGcveceieerieiereereeeeeeeeresese e ste e see e eneens 4-140

4.11.4.2 Relative AAArESSINGccvevveierereeeeeeeeeees s 4-141

(1) Relative Code AdAressiNgcoeveereereereereeieseseseseseseesseseesesneeennes 4-141

4.11.4.3 Specia Code Addressing For Particular Instructions...........ccccceveeenenee. 4-142

(1) ACAL Code Addressing.......cccceereereereereseneseseseesieseseesseseesessesennes 4-142

(2) VCAL Code Addressing.......cccecereereereeieeeneneseseeseseeseesseseesessesenns 4-142

7 T 7 1 o] 1= ot Y0 (o 1=\ 1 o [4-143

(1) RAM Addressing Indirect Code Addressing........ccccevveereereereereenenne 4-143

ROM Window AdAreSSINGcoveereieiieseseseesieeeseeesesessesressessessessesessesssesssseens 4-144

Addressing For nX-8/100 to NX-8/400.........cccceourerererieseresieseseeseeseeseeseesessesens 4-144

4.11.6.1 Zero Page AdArESSINGccveevereereeeeeeeeesesesesreseseesreste e sseeenseneeseesenses 4-144

4.11.6.2 USP Indirect Addressing With Pre-Increment..........ccccooevveveveneceenene. 4-145

Optimization Of AdArESSING......cccvivirirererereerereee e eenens 4-147
4.11.7.1 Optimization Of RAM Address Specifications

Without Addressing SPeCIfiers.......coevveeverieniesie s e see e 4-147

4.11.7.2 Optimization Of RAM Address Specifications
With The Addressing Specifier ... 4-149

A B T = ox (V7= 4-150

4121
4122
4123
4124
4125
4.12.6

4127

4.12.8

4129

4.12.10
41211
4.12.12
4.12.13

41214

4.12.15
4.12.16
4.12.17
4.12.18

4.12.19

DCL File Specification (TYPE) ..vcovcceeeeeeresesese e sees e seeseeseeesseeeesesne e srenees 4-150
Memory Model Specification (MODEL)......ccccccovvivieriniereseeeeeseeeeese e 4-151
COMMON Area Specification (COMMON)cccvvvrereererrereereeeeeseeesreseens 4-153
ROM Window Area Specification (WINDOW)ccccvivverrrieriereeeeesese e 4-154
Loca Symbol Definition (EQU, SET) ..cccveeveveeeresesesesee e seeessesese e 4-155
Definition of Local Symbols That Represent Addresses
(CODE, CBIT, DATA, BIT, EDATA, EBIT) woooeieveeerere s 4-157
Absolute Segment Definition
(CSEG, DSEG, BSEG, ESEG, EBSEG)cccvurtrererenierenenesineeenesesessenenenens 4-163
Using Relocatable SymbOoIScovcveeeececececc e 4-168
41281 Segment Symbol Definition (SEGMENT)ccocevvevvevercercecireneenens 4-168
41282 Stack Segment Definition (STACKSEG)cccoceveveevercerienerenennens 4-173
4.12.8.3 Relocatable Segment Definition (RSEG)ccocevveveeiererieneriennnnnns 4-174
Segment Group Definition (GROUP)cccvvvvviinene e 4-176
Location Counter Setting (ORG)cceveererereseseseseese e seeeeeeseeeesesesesrenes 4-178
Memory Allocation (DS, DBIT) c..cvceeeeeeeerese e eeee e nes 4-180
Program Memory Initialization (DB, DW)cccceoviiviniereseeeeereee e 4-181
Creating Programs From Multiple Source Fil€Sccovveveverececcecececece 4-183
4.12.13.1 Public Symbol Declaration (PUBLIC).......ccccoereveerererieeerereenens 4-184
4.12.13.2 External Symbol Declaration (EXTRN) ...ccoevveveeveecereeieeereneeeens 4-185
4.12.13.3 Communal Symbol Declaration (COMM)......ccccevveverevrvenreriennnnnns 4-187
4.12.13.4 Using Public, External, And Communal Symboals.........ccccccururnnene 4-188
(1) Referring Public Symbols With External Symbols.................. 4-189
(2) Using Communal Symbols In Multiple Source Files............... 4-190
(3) Referring Communal Symbols With External Symbols........... 4-191
412135 Using Partial SEgMENtS.......cceivvvvirinienerreseseeeeese e ssesese e 4-192
Assumption And Checks Of Program State (USING)ccccoeveeevrceeercveneseenn, 4-194
4.12.14.1 Assumption Of Physical Segment Address
In DataMemory Space (USING DSREG).......ccccceevevvvrennns 4-195
4.12.14.2 Assumption Of Physical Segment Address
In Program Memory Space (USING TSREG)cccccecevvenens 4-198
4.12.14.3 Assumption Of Current Page (USING PAGE)cccccceeveevvivvnenne 4-201
4.12.14.4 Assumption Of Data Descriptor (USING DATA) ..ccoceeeeevvieveennne 4-203
412145 Assumption Of Stack Flag (USING OPRT) ..c..coeeveevvriecirencenne 4-205
4.12.14.6 Flag Attribute Checks Of Branch Instruction (CHK)cc........ 4-206
4.12.14.7 Assumption Of Pointing Register Set Bank Number
(USING PREG).....coetriririeerinerineeneeseseseeesesessesenesesessesessnenens 4-208
4.12.14.8 Assumption Of Local Register Set Bank Number
(USING LREG).....cocotniririeienerieieeneseseeeeesesesienensseseesssesenenens 4-210
INclude File (INCLUDE)ccooiiiieeeeeeceeesese ettt e e sne e 4-212
Program Termination (END)cc.ccvevuerieerienere et neas 4-213
Module Name Setting (NAME)oveireeeeee e 4-213
Register Bank DeCIarations...........coveeueveeeeeresesese e seeseseseeseeeseeeesese e srenes 4-214
4.12.18.1 Poainting Register Bank Declaration
(PRBANK, NOPRBANK)covetriiririeirenesinieeneseseeseresenenens 4-214
4.12.18.2 Local Register Bank Declaration
(LRBANK, NOLRBANK).....cceurieriririnererinieeneseseessesenenens 4-215
Conditional Assembly (IF, IFDEF, IFNDEF, ELSE, ENDIF)cccccoccovevrvinnas 4-216
4.12.19.1 Conditional Assembly On Expression Value (IF).......ccccceevveernennne 4-217

4.13

4.14

4.15

412.19.2 Conditional Assembly On Symbol Definition

Or Non-Definition (IFDEF, IFNDEF)cccovvivvvvvrereeeenens 4-218
4.12.20 Macro Definition (DEFINE)covoereeeeeeeeeeee s 4-219
4.12.21 C Source Level Debug Information (CFILE, CFUNCTION, CLINE).............. 4-220
4.12.22 Optimization Of Branch INStructionsccccvvveeveneviesesene e s 4-221
412221 Optimization Of Jump Instructions (GIMP)ccceceveverereeeenene 4-221
412222 Optimization Of Call Instructions (GCAL)ccccvvevevevreereereeeenne 4-222
4.12.23 Print Fil@ CONIOLc.oiuiiiiiriiseeeee st 4-223
412231 Print File Output Control (PRN, NOPRN).........cceevvierrreeriereeeennne 4-223
4.12.23.2 Force Page Break (PAGE without operand)ccocevevvverieieennene 4-224
4.12.23.3 Lines Per Page and Characters Per Line Specification
(PAGE With Operands)cccceeeeeerrereseneseseseseesesseeseeseesens 4-225
412234 Title Specification (TITLE) ..ccoveveeveivere e 4-226
412235 Date Specification (DATE) ..ccccoveeeeeirere e seesesee e seeeenens 4-226
412236 Assembly List Output Control (LIST, NOLIST) ..cccccevvveeieeeenene 4-227
4.12.23.7 Symbol List Output Control (SYM, NOSYM)ccceeevvvvereereenenne 4-228
412238 Cross-Reference List Output Control (REF, NOREF)................... 4-229
412239 Tab Code Replacement (TAB)....ccccvevveveverie e seseseeseereeeeseeeenens 4-230
4.12.24 ObJECt File CONIOL......ccveieeecie et 4-231
4.12.24.1 Object File Output Control (OBJ, NOOBJ)........cccceververeereereeennnns 4-231
4.12.24.2 Assembly Level Debugging Information Output Control
(DEBUG, NODEBUG)ccoviirieinieninienesie st seeienens 4-232
4.12.25 Error Message Output Control (ERR, NOERR)ccccvovvvveninveseeseseeeeene 4-233
PIINE FIIES. ittt bbb et et sa b e b e 4-234
4131 How To Read ASSEMDIY LiStS....cieiereereeerirecesise e se e e eee e 4-235
4132 How To Read Cross-Reference ListS......coocieererennenneses s 4-237
4133 How To Read Symbol ListS....ccccoviereeeeieeeesese e 4-238
4.13.3.1 Symbol INfOrmMation........cccceeeeeerierienesese e 4-238
4.13.3.2 Segment INFOrMatioNccveoveeeereeecese e 4-240
4.13.3.3 Segment Group INfOrmation..........ccoceevveveseniesesesese e 4-241
4.13.4 How To Read Termination MESSAgES.......ccueveeerererenerieseses e seeseeeeseeseeeenenns 4-242
EXTRN Declaration FilES........cccoiiiiniineeneenee sttt st s 4-244
4.14.1 Purpose Of EXTRN Declaration Fil€s.......c.cccovrivevienieveicsese e 4-244
4142 Use Of EXTRN Declaration Files.........cccoeiiiirinninninneeesees e 4-244
g 0 Y= Vo =SS 4-246
4.15.1 Format Of Error MESSAgES......ciuervereereeeeeeeeessesessesessestessessesseseessessessensssessennes 4-247
4152 List Of ErrOor MESSAGESccvvvvereiieierieeeeeeeessessessessestessessessesseseessessessenssssssennes 4-248
41521 Fatal Error MESSAgESveoveeeeereeereeesteseseestesiesaeseessessessessnseseeseesens 4-248
41522 Assembler Error MESSAgESccevuveeerererestesieseeseessessessessesseseesessens 4-251
41523 WarNing MESSAQES......ccveeueeeeeeeereeesteseseestesesteseessessessssssseseesesens 4-257
41524 Interna Processing Error MEeSSages........ccoovvvverereeneneeseeseeseeseesennens 4-260

Chapter 5. RL66K

5.1
52

g1 oo 18 ot Lo o [SO SO TSP 51
Memory SPace ManageMENTc.ccverireerr e eree s eee e e e e e ae e sneeeesneeneesneeneeas 52
5.2.1 Program MeEmMOrY SPACE......cuecireerieeeereeeeseeeseessesneesseeseessessessesssessesssesseesseseesses 52
5.2.2 DalaMEMOIY SPBCEcceeieeieeiieteeriieeeseeeseeseeeseessesneesseeseessesssesseesesseessesseessesneesses 53
523 EEPROM SPECE ..ottt sttt st sttt 5-3
5.24 Dual POrt RAM SPBCE......ccoiiiriesiieiereeseeeeeese s ese et se sttt s sae e neeseeneenes 5-3

53

54

55

56
57

USING RLBBKooeeeeeeveeeeeeeessseeeeeeeeeeeesessesesseessssseesessessssssesssssseeesessssssesssssssseeessssssenee 5-4

531 Command Line FOrMEL........ccceureirieirieiriiseees e 5-4
5311 object fileSFIEId ... 55
5.3.1.2 absolute file Field......ccccoeieiececce e 5-6
5313 map_file Field. ..o 5-6
5314 [ibrari@S FIEld. ..o 5-7
53.1.5 Command EXAMPIESc.coveeeieeeecese s 5-7
532 EXECULION....uitiiiitiietiiete ettt ettt et 5-8
5321 Prompt-Based INPUL........cccoeeeeeeiecere e 5-8
5.3.2.2 Specifying Response File INPUL.........cccoeevieienesie e 59
533 Termination COUB.......c.coureirieirieirieere et 5-11
1G] NG o] 5-12
54.1 Option SPECITICAIONScceieeeeeeeeeeeee et ere e 5-12
LY N RS Y | - TSR 5-12
BA.L12 USBHE....i ittt et 5-12
5.4.1.3 NaME ATQUMENLS......cuerieeiireeieeeeenteseeseeseeseeseeseeseessesssessesssessesssessennes 5-12
5.4.1.4 VAU AIQUMENES.ccveeeeeeeeeeeeeeteseseeste e see e e seenae s e eneenessessesrenes 5-13
L 2 IR = O O o)1 o 1= 5-14
L G T @ o1 o [U= 5-15
54.3.1 Assembly Level Debugging Information Output Control (/D, /ND)..... 5-15
5.4.3.2 Map File Data Output Control (/S, INS)ccccevvrerereeeeeeeesee e 5-15
5.4.3.3 CODE Segment Allocation Control (/CODE)cceceevevvereereeerereneeen 5-16
5.4.34 DATA Segment Allocation Control (/DATA) .ccvceveeeeeeeeereeeeeeen 5-19
5.4.35 BIT Segment Allocation Control (/BIT) ..cccecvvereveneereeieeeeeesese e 5-20
5.4.3.6 EDATA Segment Allocation Control (/EDATA) ...cceeeeevveeeeereeeeeeen, 5-21
5.4.3.7 EBIT Allocation Control (/EBIT) ...ccceevveriereserere s 5-22
5.4.3.8 Segment Allocation Order Control (/ORDER)ccccoceevevveceeerereeeenn, 5-23
5.4.3.9 Program Memory Space Maximum Address Setting (/CM).................. 5-24
5.4.3.10 DataMemory Space Maximum Address Setting (/DM)......cccccecvvvevenee. 5-24
5.4.3.11 Emulation Library Automatic Search (/CC)ccvcevevveererieeenereseeeeen 5-25
5.4.3.12 C Source Level Debugging Information Output Control (/SD, /INSD).. 5-25
5.4.3.13 Stack Segment Size Change (/STACK)ccvvvvrievcerrceeeeeesese e 5-25
5.4.3.14 ABL File Generation Control (/A, INA)cccceveeievcereeeeeeeeeeee e 5-26
I] 0075\ 1 o 5-27
55.1 Global Symbol MatChingc.cceeeeeeerereeesese s nes 5-27
55.2 Segment LinKiNG ...ccocieeieiiceieeeeeren e 5-27
55.3 Communal Symbol LiNKiNgccccceeveririrenisnseseseseseeseeseseeseseeseeseeessesse e ssenes 5-30
554 Segment AllOCAIONccveieeeeeeeeeeecee e ene e 5-31
55.4.1 Allocation SpacesS AN ATEBS.......cccuvvverereiesesesesseseeseeseesesessessessesees 5-32
B5.5.4.2 QUASI-SEGMENLS.....ccueieeeeeeeireeesreseseeste e seesees e seesseseseeeeessessessesrenees 5-35
55.4.3 AllOCation PreCEUENCE.coireireerieerterien e 5-36
555 SEOMENT GrOUDSoocvieiieeeeieeeiesieeeeseeeesteeeeseeeee e e aesse e e sseensesseensesseesseeneesnnenens 5-40
55.6 ReServing The StACK AT€a.......ccceiueieerere s e st se e sne e snenes 5-40
55.6.1 Stack Segment (BSTACK) ..uovveirieirierirrierees s 5-40
55.6.2 Stack Symbol ((BBSSP)cccevveiriririeerirrienees s 5-40
B5.5.7 FiIX-UP PrOCESSINGcviieiesieeeieieeeeesesestesestestes e ste e sses e saesssnsenessessessessessessenses 5-41
Y= T o N = 5-42
RLBBK MESSAQES.cceerieeiisieeiieeesieseeseeseeseesseesseesesseessesseesesseessesseesseensssseessesseessessenns 5-49
5.7.1 Messages Indicating Processing StatUS.........ccvcvvvrerereneneseseseeseeseeeeesesesrenes 5-49
5.7.2 Error MeSSage FOIMMELcccuveeerieeeese e seeee st este s et sre et sneenae e sneeneesnnenees 5-49

5.7.3 Error Message REITECHONc.ccveieerere st 5-51

5.7.4 LiSt Of EITOr MESSAgES.vecveiieriereiieiereeeeseeesessessessessessessessessessessesssssessessessessnnes 5-52

5.74.1 Command Line Error MESSAgES.........coeveeerereresesesesesieseesessaeneeneesens 5-52
5.7.4.2 Fatal Error MESSAgES. ... cccvivirierieriereeieieeseeessesessessessessessesseseessessessensesens 5-52
B5.7.4.3 EITOr MESSAgES.c.eeivieeierteeeeseeeeesteeeeseeenaesseeeesseestesseensesseensesseensesseenss 554
5.7.4.4 Warning MESSAQEScccvvuerrrrrerieriereeeeseeseesessesessessessessessessessessessessenessens 5-56
5.7.5 Internal Processing Error MESSAQESccvcveeeeeerene e sesie s stes e seeseeee e e eseenennes 5-59

Chapter 6. LIB66K

6.1

6.2

6.3

6.4
6.5

g1 oo 18 ot Lo o [OOSR 6-1
6.1.1 LIBBBK FUNCHONS.....c.ciiitirieiirieiirieicrie ettt 6-1
6.1.2 Advantages Of USiNg LIBBOKccccerierierieieeieeiesesesieseseseseesteseeseesaeeeseeneenens 6-2
6.1.3 Differences Between File Names And Module Namesccccvvevvnnenncnineene 6-2
EXECULING LIBBOBKc.eeeeeeeeeeeeeeee sttt st sttt e e e ene e 6-3
6.2.1 Command Line EXECULION........covuiiriiirieirieistereeieseete s 6-3
(1) library fil@ FIEIdccociie e 6-4
(24 0] o= = UiT0) 1S = o SRR 6-5
(B) lIStAIEFTEI. i 6-6
(4) output_library file FIeldcccviiiereseeeeeeeeces s 6-6
() O 011 o =SSR 6-7
6.2.2 Prompt-Based EXECULIONcceveieieiieiereceeee ettt e eeenens 6-8
6.2.3 Using Command Line And Prompts TOGELhErccccovvvvvviennvesiese e 6-10
L R S = [= ot (o RS 6-10
6.25 Redirecting OULPUL MESSAgES.ccueiverieriereeieeeeeeeessessesresteseessessessessessessesessessens 6-11
6.2.6 TerMINAiON COUE......coiiuireeierieierieer et 6-11
[ST 01T Q@] o1 = o] 1 1S 6-12
6.3.1 Creating NeW Librari€S......ccocvviiiieieiiierereeeese sttt s eenens 6-12
LSRG 72 N (o 11 1o 1Y, oo 1] =S SRS 6-14
6.3.3 Adding Library FIlES.......ccooiiiiiieie ettt s enens 6-15
6.3.4 DeEEting MOUUIES.........oceieii et s eenens 6-16
6.3.5 RePIACING MOAUIES........ccereieiciisie ettt st e e enens 6-17
6.3.6 COPYING MOUUIES.......oceeieriiie ettt st s e e enens 6-18
6.3.7 EXIraCting MOQUIEScccociieiciisie ettt ettt st s na e enens 6-19
6.3.8 OpEration PreCEUENCEcccvvirirerierierieiereeseeeeeeeeresesesrestestesre e aessesaenaeneeneenens 6-20
6.3.9 Cautions DUNNG EXECULIONcceieerieieiereeeeeeeeeetesese e steseesre e eeseesaenseseenennens 6-20
(1) DiSK CAPBCILY ...cuveueeeeereerisesiesesesres e e seeseeeesee e esessesesresresaesaesseseesaesenaeneeneenens 6-20
(2 I 100 = Y 1 == SRR 6-21
LISt FIlE FOIMAL.....iiiiiiiieiieie ettt st st s ne e e 6-22
g 0 Y= T =SS 6-24
6.5.1 Error MesSage FOMMELccveviieeieieere e see e ees e eee st ne e e eneesreeneesneeneeas 6-24
6.5.2 Fatal ErrOr MESSAQES......ccvveieirtisiesieseesiesteseeseeseseeeesessessessestessessessessessessensesessennens 6-25
6.5.3 EITOr MESSAJES....ceeceieeeeee st eree sttt e et e e saeeneesneeneesneeneesnneeens 6-28
6.5.4 WarNiNg MESSAGES.......cceeiuriiuirtirieriesiesiesteseeseeeeseeeesessessessestessessessessessessessesessennens 6-29

Chapter 7. OH66K

7.1
7.2

10

) oo 18 T f o o 7-1
L LS T o T L 1 SR 7-3
7.2.1 Command Ling CONVEISION........ceeeeeireieeieeireiesteeseeeresseeessessaresssesssesssbesssesssessans 7-3

(1) ODJECE_FIIE FIBIG.nrrrvoeeeeereeeeeesesesseeseseeeeesesssssseessssesseesssssseesssseeeeesssssee 7-3

(2) DEX_FHEFIEIU . 7-3
() O oo P 7-5
7.2.2 Prompt-Based CONVErSION.......ccccoeieerereeesesesiesesieseesseieseesessseseeseesessessesssssesees 7-6
7.2.3 Redirecting OULPUL MESSBgES........cveerereerreriesesresiesteseesseteseesessseseesessessessessessesses 7-7
724 TermiNation COUB.......c.ocireirieirieirer et 7-7
7.3 FilesUsed With OHBBKcccoiiiiiiininenee e 7-8
50 R 1 0T o 11 B = 7-8
T © 1 11 o 11 | B 1= 7-8
(1) INtEl HEX S ..ottt sttt 7-9
[IS o)1 0 A = 7-11
(3) Debugging INfOrMEtioNccereeeeeeeeeeee e enen 7-13
7.3.3 Input And Output File EXAMPIES......cccovveieieiecese s 7-15
A = o 1o o Y | = 7-18
A Y o g =S T [P 7-19
741 Error MeSSage FOIMMALcccuieieeieeee e e s e see st ste et sre et enae e nneeneesneeneas 7-19
T7.4.2 Fatal ErrOr MESSA0ES....ceieieeeeeeeeeesessesessestessessestesteseessesseseesssssesssseesessessessessenses 7-20

Chapter 8. Absolute Print File Generation

S0 A I o oo (U T o o RS TS 81
8.2 Absolute Print File Generation Procedure.........oireenieieneenienese s 81
8.3 Link Processing For Absolute Print File Generationc.ccocvevvvrerereereeieniesesenens 8-3
8.4 Re-Assembly For Absolute Print File Generationccocvvvivvevenereneereeseeie e 8-4
8.5 REASSEMDIY ErTOFS.uiiiiiceceseieses e see e e s e ettt sae s e e e sae e e e ene e e enenrennenns 8-6
I = = o G A Lo =R 8-7
Appendices

AppPendixX A. List Of Dir€CLIVES......cccicieiereieie ettt s e e eresne e nne s A-1
Appendix B. List Of RESEIVED WO US.....cc.coeieeeeecieeeie s sae e se e e e esesse e s A-5

11

12

Chapter 1
Introduction

The MAC66K Assembler Package is software for developing OLMS-66K Series assembly lan-
guage programs.

This manual describes the following software in the MAC66K Assembler Package:

Relocatable Assembler RA S66K

Linker RL66K
Librarian LIB66K
Object Converter OH66K

This chapter explains various information needed to read the rest of the manual. Read this chapter
first before moving on to other chapters.

Chapter 1, Introduction

1.1 About The MAC66K Assembler Package

Thank you for your purchase of the MAC66K Assembler Package. This package contains software
needed to create assembly language programs for the one-chip microcontroller OLMS-66K Series.

e Package Contents

1 Floppy Disk

1 MAC66K Assembler Package User’s Manual (this manual)

1 Macroprocessor MP User’s Manual

The floppy disk contains the following software.

e Software

Relocatable Assembler RAS66K

RASGE6K generates an object file from a source file coded in assembly language. The object file
will contain object code corresponding to the source file, as well as information needed for linking
and debugging. RAS66K also generates a print file and error file.

Linker RL66K

RL66K links one or more object modules and generates a single absolute object file. It also gener-
ates amap file, which shows public symbols and segment allocation.

Librarian L1B66K

LIB66K is software for creating and managing library files. A library file is a single grouping of
multiple object files which are used by RL66K.

Object Converter OH66K
OHB66K converts an absolute object file generated by RL66K or RAS66K into aHEX file.
M acr opr ocessor M P

MP is software that parses macros coded in a source file and expands them to corresponding text.

Chapter 1, Introduction

1.2 System Requirements

The MAC66K Assembler Package software requires the following environment to operate.
Operating system : MS-DOS (version 3.1 or higher)

Host computer . Personal computer running MS-DOS

Free memory . Atleast 180 Kbytes

In the explanations to follow, MS-DOS is referred to simply as DOS.

Chapter 1, Introduction

1.3 About This Manual

This manual describes the software in the MACE6K Assembler Package. However, for MP refer to
the Macroprocessor MP User’s Manual.

This manual assumes that the reader is familiar with assembly language and DOS, and that he can
create and edit assembly language source files. This manual is not an introductory text.

An overview of each chapter is given below.
Chapter 1. Introduction

Chapter 1 isthis chapter.

Chapter 2. Installation And Usage

Chapter 2 explains how to install the MAC66K Assembler Package and provides an overview of
program devel opment.

Chapter 3. Basic Programming Knowledge

Chapter 3 discusses basic knowledge needed to develop programs with the MAC66K Assembler
Package.

Chapter 4. RAS66K

Chapter 4 explains how to use the relocatable assembler RAS66K and describes RAS66K assembly
language.

Chapter 5. RL66K

Chapter 5 explains how to use the linker RL66K.

Chapter 6. LIB66K

Chapter 6 explains how to use the librarian LIB66K .
Chapter 7. OH66K

Chapter 7 explains how to use the object converter OH66K .
Chapter 8. Absolute Print File Generation

Chapter 7 explains how to generate absolute print files.
Appendices

The appendices provide charts of directives, and reserved words.

Chapter 1, Introduction

1.4 Related Documents

In addition to this manual, the MAC66K Assembler Package provides the following separate docu-
ments. Refer to them as needed.

» Macroprocessor MP User’s Manual

Manual for the macroprocessor MP.
* MAC66K.DOC

Text file containing recent information not included in this manual.
» DCL66K.DOC

Text file containing an explanation of DCL files used by RAS66K.

MAC66K.DOC and DCL66K.DOC are text-format files on the provided floppy disk. They can be
referred with the DOS TY PE command or with your own editor.

In addition to the above documents, the MAC66K Assembler Package also contains some related
documents. These related documents may be a microcontroller hardware manual, an instruction
manual, an emulator or simulator manual for use in debugging, etc. The MAC66K.DOC file
describes which related documents are included, so please refer to it.

Points in this manual where you should refer to these related documents will be indicated by
“Please refer to related documents.”

Chapter 1, Introduction

1.5 CPU Core

OLMS-66K one-chip microcontrollers are constructed from common CPUs with different 1/O
peripherals and different memory capacities.

The common CPU is called the CPU core, or smply the core. Multiple CPU cores exist in the
OLMS-66K Series. Refer to MAC66K.DOC for the most recent information about devices and
their CPU cores.

e Examplesin this manual

The explanations of this manual include numerous program examples. These examples use
OLMS-66K Series microcontroller instructions. Note that these may not be usable with your target
microcontroller. You can confirm which instructions are usable with which CPU core by checking
Appendix B, “List Of Reserved Words.”

Chapter 1, Introduction

1.6 Symbol Usage In This Manual

To make explanations easier to understand, this manual makes use of several types of symbols. The
symbols and their meanings are listed below.

Symbol Explanation

SAMPLE These characters indicate messages displayed to the screen, command line
input examples, or examples of generated list files.

CAPITALS Upper-case |etters indicate that the characters should be input as shown.

italics Italics indicate that the characters should not be input as shown, but instead
that they should be substituted with needed information.

[] The contents of brackets are input as needed. They may be omitted.

The contents immediately preceding the ellipses may be repeated as
necessary.

{choicel|choice?2} The braces contain choices separated by vertical bars, one of which should
be input. Unless the choices are enclosed by brackets[], one of them must
be input.

valuel to value2 The value will be equal to or between value 1 and value 2.

Ctrl+C Pressthe “Ctrl” key and “C” key simultaneously.

PROGRAM A vertical line of dotsindicates a partial omission of a program example.

PROGRAM

When an “H” is appended to the end of a number in this manual, that value will be hexadecimal.
For example, 1234H will indicate the hexadecimal 1234.

1-6

Chapter 1, Introduction

1.7 Changes From Previous MAC66K
Assembler Package Ver. 2.XX

This manual explains the use of MAC66K Assembler Package Ver.4.XX. The MACG66K
Assembler Package Ver. 4. XX is software that supports al devicesin the OLMS-66K Series, or in
other words, supports all CPU cores nX-8/100, 200, 300, 400, and 500. It is an upgrade from the
MAC66K Assembler Package Ver. 2.XX, which supported the nX-8/200, 300, and 400 cores.

This section describes the changes and additions to the previous version (Ver. 2.XX) for its users.
New users who are starting with the latest version (Ver. 4.XX) may skip this section.

The major changes and additions to the previous version (Ver. 2.XX) are asfollows.

e nX-8/100 and 500 cor e support

Ver. 4. XX adds new support for the CPU cores nX-8/100 and 500. Assembly language specifica-
tions that woud not clearly support the complex architecture of the nX-8/500 core have been clari-
fied. Therefore the check functions of RAS66K and RL66K have been stregthened.

e Object fileformat changes

The format of object files has changed. Accordingly, object files generated by the previous version
of RAS66K cannot be linked with the new version of RL66K or converted to HEX files with the
new version of OH66K. Creation and management of libraries using LIB66K is still the same.

The following sections explain the changes and additions to the previous versions of each software

in the package (RAS66K, RL66K, OH66K, LIB66K). The old version of the software is expressed
as“old xxx" and the new version as* new xxx.”

1-7

Chapter 1, Introduction

1.7.1 RAS66K
m Starting RAS66K
The new RAS66K supports only the following format of starting command line.
RAS66K source file[options]
The following input will display RAS66K usage and terminate.
RAS66K
m Options
The format of old RAS66K options was the same as for directives, but new RAS66K options are
specified as a dlash (/) followed by a one or two-character specification. For example, to generate a
cross-reference list and symboal list, input the following.
RAS66K foo /S /IR
In addition, the following options have been added.

/W [type] Perform warning checks of the specified type.

INW [type] Disable warning checks of the specified type.

/CD Recogni ze upper-case and lower-case distinctions.
INCD Ignore upper-case and lower-case distinctions.
/CC Read C source level debugging information file.

/linclude_path Specifiesinclude file path.

IV[buffer_size] When sourcefileisread, saveit in amemory buffer of buffer_size bytes.
This speeds up assembly during floppy disk-based operation.

/X Generate an EXTRN declaration file.
For details, refer to Section 4.3.2, “Option Specifications.”
m DCL file search order and search locations

The old RAS66K searched for DCL filesin the following order.

1. Current directory
2. Directory specified by PATH environment variable

However, the new RAS66K searchesin the order below.

1-8

Chapter 1, Introduction

1. Current directory
2. Directory containing RAS66K.EXE
3. Directory specified by DCL environment variable

m Print fileformat

Print file format has changed. Refer to Section 4.13, “Print Files,” for the new RAS66K print file
format.

m EXTRN declaration files

The new RASG66K can generate an EXTRN declaration file if the /X option is specified. The
EXTRN declaration file codes EXTRN declarations corresponding to the public symbols in the
source program. The usage types of public symbols and external symbols must completely match
with the new RL66K, so EXTRN declaration files could be used to prevent link errors from coding
mistakes and type mismatches. For details, refer to Section 4.14, “EXTRN Declaration Files.”

m Upper-case and lower -case distinctions

Upper-case and lower-case distinctions of letters in symbols defined in the source program can be
specified with the new RAS66K.

If /CD is specified, then upper-case and lower-case distinctions are recognized.
If INCD is specified, then upper-case and lower-case distinctions are ignored.
If neither option is specified, then upper-case and lower-case distinctions are ignored.
m Address constants
The new RAS66K allows coding of addresses that include physical segment addresses. For exam-
ngsz\,lsz.:\n address with physical segment address 3 and offset address 1000H would be coded as fol-

3:1000H

Refer to Section 3.2.1, “Overview Of Memory Space,” regarding physical segment addresses.
Refer to Section 4.8.2.2, “Address Constants,” regarding address constants.

Chapter 1, Introduction

m New operators

The new RAS66K adds the following operators.

SEG expression Returns the physical segment address of an address expression
OFFSET expression Returns the offset address of an address expression.

PAGE expression Returns the page number of an address expression.

BPOS expression Returns the hit offset (0-7) of abit address expression.

SIZE segment_symbol Returns the segment size.
For details, refer to Section 4.9.2.6, “ Special Operators.”
m Expression attributes
The new RASG6K strictly manages the inheritance of attributes in expressions. As aresult, calcula
tion error checking is considerably more severe than in the old RAS66K. Calculations that are con-
tradictory will cause warnings. For details, refer to Section 4.9.1.1, “Meaning Of Attributes Of
Expressions.”

m Stack segment

The new RAS66K now allows a stack segment to be defined. The stack segment is a special relo-
catable segment for use as a stack area. It isdefined asfollows.

STACKSEG stack size
For details, refer to Section 4.5.4, “ Stack Segment.”
m Segment groups

Segment groups have meaning for nX-8/300 and 500 cores, which have multiple physical seg-
ments.

The new RAS66K can allocate several relocatable segments to a single physical segment. Thisis
called segment grouping. Segments in the same group can be accessed without switching physical
segments (L RB bits 13-15 for the 300 core, and DSR for the 500 core).

Segment groups are defined as follows.

GROUP [#physical _segment] segment_symbol [segment_symboal]...

For details, refer to Section 4.12.9, “ Segment Group Definition.”

1-10

Chapter 1, Introduction

m DSR checks

DSR checks have meaning for nX-8/300 and 500 cores, which have multiple physical segments.
The DSR check function checks whether or not the currently selected RAM physical segment (LRB
bits 13-15 for the 300 core, and DSR for the 500 core) matches the physical segment addresses
coded in operands.

DSR is the name of the register that indicates the RAM segment address for the nX-8/500 CPU.
RAS6E6K assembly language uses the same term as for MSM 663X X.

The current RAM physical segment is set by coding one of the following.
USING DSREG address
or
USING DSREG #physical_segment
For details, refer to Section 4.10.4, “Physical Segment Address Checks.”
m SFR access attribute checks
The new RAS66K checks whether or not accesses to SFRs are correct. Incorrect accesses will
cause warnings. SFR access attributes are defined in DCL files. For details, refer to Section
4.10.6, “Specia Function Register Access Checks.”

m Communal symbols

Communal symbols are symbols in a communal area of memory common to multiple modules.
They are defined as follows.

symbol COMM segment_type size [relocation_type]

The symbol will represent the first address. For details, refer to Section 4.12.13, “Creating
Programs From Multiple Source Files.”

m Conditional assembly functions

The new RAS66K adds three directives for conditional assembly.
IF expression
IFDEF symbol
IFNDEF symbol

For details, refer to Section 4.7.1, “Using Conditional Assembly.”

1-11

Chapter 1, Introduction

m Macro functions

A string can be assigned to a symbol by defining a macro with the DEFINE directive. By using
macros, you can replace instructions with different names or reduce the amount of repetitive code
you must write. Macros are defined as follows.

DEFINE symbol “string”

For details, refer to Section 4.7.2, “Using Macros.”

1-12

Chapter 1, Introduction

1.7.2 RL66K

m Starting RL66K

The start command input has changed with the introduction of a semicolon (;), which means all fur-
ther input is to be omitted. This also dightly changes how response files are written. For details,
refer to Section 5.3, “Using RL66K.”

m Options

The following options have been added to the new RL66K.

/ORDER (segment_name) Control allocation order of segments of the same
precedence.

/CM (address) Set maximum address of program memory space.

/DM (address) Set maximum address of data memory space.

ISTACK (size) Change stack size.

/cC Automatically search for standard libraries LONG.LIB
and FLOAT.LIB.

IS Outputs public symbol list to map file.

INS Do not output public symbol list to map file.

/A [abl_file] Generate an ABL file.

INA Do not generate an ABL file.

/SD Output CDB debugging information.

/INSD Do not output CDB debugging information.

Also, physical segment addresses can be specified with /CODE, /DATA, /BIT, /EDATA, and
/EBIT directives. However, this is only allowed when the physical segment attribute is ANY for
the nX-8/300 and 500 cores, which have multiple physical segments.

For details, refer to Section 5.4, “RL66K Options.”

m Library filesearch

The new RL66K introduces the environment variable LIB66K for setting the directory that contains

library files. When library file specifications do not include paths, the library files are searched for
in the following order.

1-13

Chapter 1, Introduction

1. Current directory

2. Directory set by environment variable LIB66K
m Map file format

The map file format has greatly changed. Refer to Section 5.6, “Map Files,” regarding RL66K map
file format.

m Allocation order of segmentswith same precedence

The old RL66K allocated segments with the same precedence in the order that modules were input,
but the order is not defined by the new RL66K. To control alocation, use the /ORDER option.

m Restriction on symbol usage

The old RL66K restricted the total number of symbols that it could handle, but the new RL66K is
limited only by main memory. In this case, symbols are segment symbols, communal symbols, and
public symbols.

m Segment symbol matching

The old RL66K matches segment symbols and external symbols, but the new RL66K does not
match segment symbols and other symbols.

m Stack segment
The new assembler package introduces a new special relocatable segment called the stack segment.

The stack segment is allocated to memory with specia processing different than that of ordinary
relocatable segments. For details, refer to Section 5.5.6, “Reserving The Stack Area.”

® Segment grouping

Segment grouping has meaning for nX-8/300 and 500 cores, which have multiple physical seg-
ments.

The new RL66K can allocate multiple relocatable segments with the same group ID to a single
physical segment. This is called a segment group. For details, refer to Section 5.5.5, “Segment
Groups.”

m Dynamic segments
The new assembler package introduces new special rel ocatable segments called dynamic segments.
Dynamic segments is alocated to memory with special processing different than that of ordinary

relocatable segments. For details, refer to Section 5.5.4.4, “Allocation of Areas With Special
Attributes.”

1-14

Chapter 1, Introduction

1.7.3 LIB66K
m Options

The new LIB66K adds the following options to restrict which modules can be registered when cre-
ating anew library file.

/cpu_core Restrict registered modules to those of the core specified by
cpu_core.

/memory_model Restrict registered modules to those of the memory model specified
by memory_model.

For details, refer to the description of the options field in Section 6.2.1, “Command Line
Execution.”

m Additional functions

In addition to module addition, deletion, replacement, and copying, the new LIB66K adds a new
extraction function. Extraction saves a particular module from a library file into its own file, and
then deletes the module from the library file. The operation symbol for executing extraction is the
ampersand (&).

In addition, a function for linking library files has been added. For details, refer to Section 6.3.3,
“Adding Library Files.”

1.7.4 OH66K

m Options

The option to indicate output of debugging information was /S in the old OH66K, but that has been
changed to /D in the new OH66K. Inthe new OH66K, the /S option specifies that the output file is

to bein Motorola S format.

For details, refer to the options field in Section 7.2.1, “Command Line Conversion.”

1-15

Chapter 2
Installation And Usage

This chapter explains how to install the MAC66K Assembler Package and provides an overview of
program development.

Chapter 2, Installation And Usage

2.1 Introduction

This chapter explains how to install and use the MAC66K Assembler Package. It first describes
how to install the MAC66K Assembler Package and to set the operating environment. It then
explains module programming and the flow of program development using the MACG66K
Assembler Package. Finally, it gives a basic introduction to the various software in the package.

You must understand DOS in order to install the MAC66K Assembler Package. If you are not
familiar with DOS, then please read the DOS User’ s Manual or an introductory text on DOS before
beginning installation.

Chapter 2, Installation And Usage

2.2 Disk Contents

Before beginning installation, verify the contents of the floppy disk provided in the MACG66K
Assembler Package. This floppy disk contains the following files.

File Name Description

RAS66K.EXE Relocatable Assembler RAS66K executable file.

RL66K.EXE Linker RL66K executablefile.

LIB66K.EXE Librarian LIBE6K executablefile.

OH66K.EXE Object Converter OH66K executablefile.

MP.EXE Macroprocessor MP executable file.

M66XXX.DCL DCL file. Thisis atext file used by assembling with RAS66K. The 66X XX actually
indicates the OLMS-66K Series device name, such as 66301 or 66507.

MAC66K.DOC Text file that includes a list of &l files on the floppy disk and additions or changes

made after this manual was written. If the contents of your floppy disk differs from
thelist of files, then please contact Oki Electric.

DCL66K.DOC Text file that explains how to read DCL files.

The floppy disk may aso include additional files. If so, they will be explained in the
MAC66K.DOC file. The MAC66K.DOC file can be displayed using the DOS MORE command as
shown below, or it can be referred with your own editor.

MORE < MAC66K.DOC

2-2

Chapter 2, Installation And Usage

2.3 Installation

The MAC66K Assembler Package software is run from either floppy disk or hard disk. Y ou use the
software directly off your purchased floppy disk. However, a hard disk provides faster execution
and larger capacity compared to afloppy disk, so you may be more pleased using a hard disk.
Toinstall the MAC66K Assembler Package, perform the following steps.

Step 1. Makea back-up copy of theoriginal floppy disk.

Y ou can use the original floppy disk provided to perform the installation. However, if for some rea-
son the floppy disk contents are damaged, installation may become impossible. Therefore, please
make a back-up copy of this floppy disk before starting installation. This floppy disk is not copy
protected. When you finish making the back-up copy, store the original disk in a safe place and use
the back-up copy for the rest of the installation procedure.

Step 2. Decide wher e you will copy thefiles.

If copying to a hard disk, then you should create a new directory in which to copy the files. If
copying to afloppy disk, then it does not matter whether or not you create a directory.

Step 3. Copy thefiles.

Copy all needed files to the directory decided upon in Step 2 with the DOS COPY command. Files
that have extensions other than “.EXE” or “.DCL" are not necessary for software execution, so you
can delete them from the directory after you have verified their contents.

Step 4. Set the DOS environment.

¢ Set the environment variable PATH

If you will invoke the MAC66K Assembler Package from a directory other than the installation
directory, then set the environment variable PATH to the installation path.

Refer to the DOS User's Manual for an explanation of how to set the environment variable
PATH.

» Update the CONFIG.SY Sfile

Update the the FILES and BUFFERS commands coded in the DOS system configuration file
CONFIG.SYS.

The FILES command sets the maximum number of files that can be open simultaneously when a
program is running. If this number is less than the actual number of files that will be open simulta-
neously during program operation, then the program cannot operate correctly.

Chapter 2, Installation And Usage

The BUFFERS command sets the number of areas to hold data temporarily. If this number is small,
then program processing speed may be slowed.

The number of FILES and BUFFERS should be set to about 20 when using the MAC66K
Assembler Package.

Refer to the DOS User’s Manual for details on CONFIG.SY' S, FILES, and BUFFERS.

Chapter 2, Installation And Usage

2.4 Environment Variables

Some environment variables are used in the MAC66K Assembler Package software. Table 2-1
shows these environment variables. These environment variables do not have to be set, but should

be set as needed.

Table2-1. Environment Variables Used By Software

Environment Variable Description

DCL The environment variable DCL is used when RAS66K searches for a
DCL file. When the DCL file is not in the current directory or in the
directory that contains RAS66K.EXE, RAS66K will use the environment
variable DCL to search for it. For details, refer to Section 4.4.1, “DCL
File Specification.”

LIB66K The environment variable LIB66K is used when RL66K searches for a
library file. When the library file is not in the current directory, RL66K
will use the environment variable LIB66K to search fot it. For details,
refer to Section 5.3.1.4, “libraries Field.”

2-5

Chapter 2, Installation And Usage

2.5 Program Development Flow

This section describes the flow of developing assembly language programs using the MAC66K
Assembler Package. Program debugging is not explained in this manual, so please refer to the
manual of the debugger that you are using.

Figure 2-1 shows the program development flow. In this figure, squares indicate files. If afile has
only one default extension, then that extension will be shown in the square. Ovalsindicate software.
Diamonds indicate decision pointsin the flow.

Read through the following description while referring to the corresponding numbers in the figure.

(1) Write the program using a commercial text editor. Call the file that contains the program code
the source file (ASM file).

(2) If the source file contains macros, then expand them using MP to generate an expanded source
file (Qfile).

(3) Assemble the source file using RAS66K to generate an object file ((OBJfile). Also generate a
print file (.PRN file). Error messages can also be output to afile.

(4) The object file ((OBJ file) can be registered in alibrary file (.L1B file) using LIB66K. Library
files can be used as input to RL66K. A list file (.L66 file) can also be generated, which lists all
object files and public symbols registered in alibrary file.

(5) Link all object files comprising one program using RL66K to generate one object file (ABS
file). RL66K resolves external references between object files and allocates logical segments to
memory. It aso generates amap file (M66 file).

(6) Convert the object file (ABSfile) to aHEX file using OH66K. Refer to Chapter 7, “OH66K,”
regarding types and formats of HEX files.

Chapter 2, Installation And Usage

.DCL

files \

Include /

files

Other

files

.OBJ
fles | Ta
LB /

(1) Text Editor

ASM
file

Include
files

Macro
Library

files

:

:

.ABS
file

(6) OHB6K

HEX
file

Figure2-1. Program Development Flow

Expand Y »
macros? (2) MP
y
Q
file
(3) RASB6K PRN
file
.OBJ O(;Er LiB
file . file
files
Register in
"grary? _— (4) LIB66K
.M66 .LIB .L66
file file file

Chapter 2, Installation And Usage

2.6 Module Programming

When developing a very large application program, one generaly splits the program into several
functional modules. The program is developed in modules. This section explains how to develop
programs in modules using the MAC66K Assembler Package.

Consider developing a program divided into three functions. These three functions will each
become a module. The development process is shown below. This process corresponds to the figure
on the next page.

(1) Program the function of one module in one source file. This will result in the creation of three
source files. (Assume the names of the three source files are MAIN.ASM, SUB.ASM, and
STANDARD.ASM.)

(2) Assemble each source file with RAS66K. This will generate object files (MAIN.OBJ, SUB.
OBJ, and STANDARD.OBJ).

(3) Register the STANDARD.OBJfilein alibrary fileusing LIB66K.

(4) Use RL66K to extract STANDARD module registered in the library file, link it with
MAIN.OBJand SUB.OBJ, and generate an .ABSfile.

Thisis an example of programming by implementing a single source file from the various modules.
The MAC66K Assembler Package handles an object file generated by one assembly as a single
module.

In order to explain more concretely, focus on the module implemented as source file STAN-
DARD.ASM in this example. RAS66K generates the object file STANDARD.OBJ from the
module. LIB66K registers the object file STANDARD.OBJ in a library file. RL66K extracts
STANDARD module from the library file.

The ability to register STANDARD.OBJ in a library file and then to extract STANDARD.OBJ
from the library file and link it is critical to developing programs in modules. This is because the
reason for developing programs in modules is not only to make programming easier, but aso to
allow modules to be reused. By programming a module as one source file, each object file created
by assembly corresponds to one module. These modules can then be registered in library files and
later extracted from the library files and linked.

Therefore the MAC66K Assembler Package handles an aobject file as a single module. This means
that an object file alone or an object file registered in a library file is called an object module.
Object modules are sometimes called modules for short.

Chapter 2, Installation And Usage

7
MAIN.ASN SUB.ASM STANDARD.ASM é
file file file 7
2
Y
RAS66K RAS66K RAS66K
\ Y Y
2
MAIN.OBJ SUB.OBJ STANDARD.OBJ é
file file file 7
2
LIB66K

Module name 7]
STANDARD 7|

RL66K

.ABS
file

Figure2-2. Module Programming

Chapter 2, Installation And Usage

2.7 Using The MAC66K Assembler Package
Software

This section provides a simple introduction to using the MAC66K Assembler Package software and
shows concrete examples. Details of each software are explained in other chapters and manuals.

2.7.1 MP: Macro Expansion

For source files that include macros, al macros must be expanded using MP before assembling
with RAS66K. The format of the command line to invoke MP is as follows.

MP source_file [options]

The source file field specifies the source file for macro expansion. The options field can specify
MP options.

For details on MP usage and options, refer to the Macroprocessor MP User’s Manual .
m Examplem

MP MAIN GEN
MP DISPLAY GEN

In this example, first the macros of source file MAIN.ASM are expanded, generating the macro
expansion file MAIN.Q. Then the macros of source file DISPLAY.ASM are expanded, generating

the macro expansion file DISPLAY.Q. Both commands specify the GEN option, so the portions
defined as macros will be output as comments in the expanded source file.

2.7.2 RASG66K: Assembler

Source files are assembled using RAS66K. The format of the command line to invoke RASE6K is
asfollows.

RAS66K source_file [options]

The source file field specifies the source file for assembly. The options field can specify RAS66K
options.

For details on RAS66K usage and options, refer to Chapter 4, “RAS66K.”
m Examplem

RASG66K MAIN.Q
RASG66K DISPLAY.Q

In this example, the source files MAIN.Q and DISPLAY.Q are assembled, generating the object

files MAIN.OBJ and DISPLAY .OBJ. Because the default source file name extension is “.ASM,”
the extension “.Q" must be used explicitly.

2-10

Chapter 2, Installation And Usage

2.7.3 LIB66K: Registering Object Modules In Library Files

Object files generated with RAS66K can be registered in library files using LIB66K. The format of
the command line to invoke LIB66K is asfollows.

LIB66K library_file [operations] [, [list_file]
[, [output_library m 1I;]

Thelibrary file field specifies the input library file to work with. The operations field specifies the
operation be performed with the library specified in the library file field. The operations available
are addition (+), deletion (-), replacement (%), copying (*), and extraction (&). The list_file field
specifiesthe list file name. The output_library field specifies the output library file name.

For details on LIB66K usage and options, refer to Chapter 6, “LIB66K.”

m Examplem

LIB66K MODULES +PROC1 +PROC2;

In this example, the two object files PROC1.0BJ and PROC2.0BJ generated by RAS66K will be
added to the library file MODULES.LIB.

2.7.4 RL66K: Linker

RL66K links object files output by RASE6K, generating a single object file. The format of the
command lineto invoke RL66K is as follows.

RL66K object_files [, [absolute_file 1 [, [map_file] [,[libraries I [;]
The object_files field specifies the names of object files and library files to be linked. The
absolute file field specifies the name of the object file to be generated. The map_file field specifies
the name of the map file. The libraries field specifies the library files to use to resolve unresolved
external references. Options can be specified anywhere on the command line.

For details on RL66K usage and options, refer to Chapter 5, “RL66K.”
m Examplem

RL66K MAIN DISPLAY,SYSV,,MODULES

In this example, the object files MAIN.OBJ and DISPLAY.OBJ are linked, generating a single
object file SYSV.ABS. MODULES.LIB is used to resolve unresolved references.

2.7.5 OHG66K: Changing File Format

If an object file is to be written to ROM, perhaps by a PROM programmer, in binary format, then
format conversion using OH66K is necessary. The format of the command line to invoke OH66K is
asfollows.

OH66K object_file [hex_file 1 [:]

2-11

Chapter 2, Installation And Usage

The object file field specifies the object file to be converted. The hex file field specifies the HEX
file in which to output the converted contents. Options can be specified anywhere on the command
line. OHB6K provides several conversion formats, which can be specified using options.

For details on OH66K usage and options, refer to Chapter 7, “OH66K.”
m Examplem
OH66K SYSV;

In this example, the object file SYSV.ABS is converted to a HEX file, generating the HEX file
SYSV.HEX.

2.7.6 Generating Assembly Level Debugging Information

Debugging information of assembly language programs is called assembly level debugging infor-
mation. This debugging information is used when debugging programs with a symbolic debugger.
The method for generating debugging information is as follows.

RAS66K HELLO /D
RAS66K WORLD /D
RL66K HELLO WORLD /D;
OH66K HELLO /D;

The first two commands assemble HELLO.ASM and WORLD.ASM, generating HELLO.OBJ and
WORLD.OBJ. Because the /D option is specified, debugging information will be output to
HELLO.OBJ and WORLD.OBJ. The third command links HELLO.OBJ and WORL D.OBJ, gener-
ating the object file HELLO.ABS. Because the /D option is specified, debugging information will
be output to HELLO.ABS. The last command converts the format of HELLO.ABS, generating
HELLO.HEX. Because the /D option is specified, debugging information will be output to
HELLO.HEX.

In this example, debugging information was output to all modules comprising the program (the two
modules HELLO and WORLD), but as shown in the following example, debugging information
can be output to only specific modules.

RAS66K HELLO /D
RAS66K WORLD

RL66K HELLO WORLD /D;
OH66K HELLO /D;

In this example, when WORLD.ASM is assembled the /D option is not specified, so debugging

information will not be output to WORLD.OBJ. Accordingly, RL66K and OH66K will only handle
debugging information of the module HEL L O.

2-12

Chapter 3

Basic Programming
Knowledge

This chapter gives an overview of the OLMS-66K Series architecture, and explains how each piece
of the MACG66K assembler package works with it. This chapter also provides other basic knowl-
edge that may be needed when reading this manual.

Chapter 3, Basic Programming Knowledge

3.1 Introduction

The MAC66K Assembler Package is software for OLMS-66K Series program development. In
order to perform OLMS-66K Series program development using this software, you must under-
stand the hardware of your target microcontroller.
This chapter gives an overview of the OLMS-66K Series architecture, and explains how each piece
of the MACG66K assembler package works with it. This chapter also provides other basic knowl-
edge that may be needed when reading this manual. For details on microcontroller functions, please
refer to the related documents.
The contents of this chapter are as follows.
e Memory space

This section discusses OLM S-66K Series memory configuration for each CPU core.
* Address space

This section explains how the address spaces correspond to the memory spaces.
* Logical segments

This section describes logical segments, which are necessary for creating programs.
» Series correspondence with DCL files

This section explains the DCL files that contain fixed information for each microcontroller.

» File specifications

This section explains file specifications used with this manual.

Chapter 3, Basic Programming Knowledge

3.2 Memory Space
3.2.1 Overview Of Memory Space
OLMS-66K Series microcontrollers have two types of memory space.

* Program memory space
» Datamemory space

Program memory space addresses are assigned by bytes. Data memory space addresses are
assigned by bytes or bits. In other words, program memory space can only be accessed in byte
units, while data memory space can be accessed in byte or bit units.

Each memory space is configured as severa physical segments. The size of one physical segment
is 64K bytes for both program memory space and data memory space. This manua calls the num-
ber of a physical segment the physical segment address, and the address within a physical segment
the offset address.

Physical segments are distinguished through the use of physical segment addresses. Physical seg-
ment addresses are assigned to each physical segment, beginning with 0. To change physical seg-
ments, the user must manipulate the segment registersin his program. The segment registers select
the current physical segment.

The number of physical segmentslogically allowed differs depending on the microcontroller’s CPU
core. Even some microcontrollers with CPU cores that support multiple physical segments may
themselves have only one physical segment.

The explanations of this manual assume that program memory space and data memory space each
have multiple physical segments. If the microcontroller you are using has only one physical seg-
ment, then you need not pay special attention to explanations regarding physical segments.

The physical segment address range of each memory space differs depending on the target micro-
controller. Refer to Section 3.5, “ Series Correspondence With DCL Files.”

Program memory space and data memory space configurations are explained below for each CPU
core type.

3-2

Chapter 3, Basic Programming Knowledge

3.2.2 Memory Space Of nX-8/100, nX-8/200, nX-8/400

Microcontrollers with nX-8/100, nX-8/200, and nX-8/400 CPU cores can have one physica seg-
ment in program memory space and one physical segment in data memory space.

3.2.2.1 Program Memory Space

The figure below shows program memory space for nX-8/100, nX-8/200, and nX-8/400 CPU cores.

Physical Segment

0
0000H
Vector Table Area
0027H
0028H
VCAL Table Area
0037H
0038H
OFFFFH

Program Memory Space Example

Each of the special areas is described next.

Chapter 3, Basic Programming Knowledge

(1) Vector Table Area

The vector table area stores the addresses to be executed when the system is reset or an interrupt is
generated. These addresses can be set using the DW directive.

m Examplem
TYPE (M66201)
CSEG AT O
DW PowerOnReset ;Reset Pin

DW PowerOnReset ;:BRK
DW PowerOnReset ;WDT

MAIN SEGMENT CODE
RSEG MAIN
PowerOnReset:

In this example, addresses are set in the vector table area using the DW directive.

Chapter 3, Basic Programming Knowledge

(2) VCAL TableArea

The VCAL table area stores addresses of subroutines to be executed by VCAL instructions. These

addresses can be set using the DW directive.
m Examplem
TYPE (M66201)

CSEG AT 28H
VCAL_VCTO00: DW VCAL_FUNCO00
VCAL_VCTO01: DW VCAL_FUNCO1
VCAL_VCTO02: DW VCAL_FUNCO02

VCAL_ROUTINES SEGMENT CODE
RSEG VCAL_ROUTINES
VCAL_FUNCOO:

CSEG
VCAL VCAL_VCTO00

In this example, addresses are set in the VCAL table area using the DW directive.

Chapter 3, Basic Programming Knowledge

3.2.2.2 Data Memory Space

The figure below shows data memory space for nX-8/100, nX-8/200, and nX-8/400 CPU cores.
Addresses are shown as assigned by bytes.

Physical Segment

0
0000H
SFR Area
007FH
0080H
Pointing Register Area
00BFH
00COH
Zero Page Area
OOFFH
OFFFFH

Data M emory Space Example

Each of the special areas is described next.
(1) Special Function Register (SFR) Area

The microcontroller’s internal peripheral functions and the registers that control them are assigned
to the special function register area. The addresses in this area are provided with reserved word
names that correspond to the peripheral functions. These reserved words can be coded in programs
instead of the address values. The reserved words differ depending on the target microcontroller.
Refer to Section 3.5, “ Series Correspondence With DCL Files.”

(2) Painting Register Area

The pointing register area is 64 bytes (8 bytes x 8 banks) to which the pointing register sets (X1,
X2, DP, USP) are mapped. One of the 8 banks is selected by setting the SCB value in the PSW.
Toinform RAS66K of the SCB vaue, use the USING PREG directive.

Chapter 3, Basic Programming Knowledge

The figure below shows a pointing register area and an example program that correspondingly sets
the pointing register set.

0080H X1

7777777777777777777777 SCB=0

0088H X1

7777777777777777777777 SCB=1

00B8H X1

7777777777777777777777 SCB=7

Pointing Register Area
m Examplem
TYPE (M66201)
USING PREG 3
ANDB PSWL, #1111 _1000B
ORB PSWL, #0000_0011B

In this example, the program sets SCB of the PSW to 3 in order to select bank 3 of the pointing reg-
ister set. It codes a USING PREG directive to inform RAS66K of the SCB vaue.

(3) Current Page Area

In data address space, the 256-byte spaces from base addresses on 256-byte boundaries are called
pages. One physical segment in data address space is configured from 256 pages.

The current page is the page specified from bit 5 to bit 12 of the LRB. The current page area can be
accessed using current page addressing. To inform RAS66K of the current page vaue, use the
USING PAGE directive.

Chapter 3, Basic Programming Knowledge

The figure below shows a current page area and an example program that correspondingly sets the

XX
I R 1 T O I

current page.
0000H
Page O
00FFH
XXO00H <
Page XX Value of LRB bit 5-bit 12
XXFFH indicates a page.
OFFOOH LRB
Page 255 15 1312
OFFFFH
Current Page Area
m Examplem
TYPE (M66201)
DSEG AT 1000H
BUF1 LR:DS 8
BUF1: DS 100H-8
CSEG

USING PAGE BUF1_LR

MOV

LRB , #BUF1_LR>>3

54 0

In this example, in order to make the page containing the symbol BUF1 LR the current page, the
program sets the page number in LRB. It codes a USING PAGE directive to inform RASGE6K of
the current page number.

(4) ZeroPageArea

The zero page is the area of page O, from 0000H to OOFFH. The zero page area can be accessed
using zero page addressing.

3-8

Chapter 3, Basic Programming Knowledge

3.2.3 Memory Space Of nX-8/300

Microcontrollers with nX-8/300 CPU cores can have one physical segment in program memory
space and up to eight physical segments in data memory space.

3.2.3.1 Program Memory Space

The figure below shows program memory space for nX-8/300 CPU cores.

Physical Segment

0
0000H
Vector Table Area
0027H
0028H
VCAL Table Area
0037H
0038H
OFFFFH

Program Memory Space Example

Each of the specia areasis described next.

Chapter 3, Basic Programming Knowledge

(1) Vector Table Area

The vector table area stores the addresses to be executed when the system is reset or an interrupt is
generated. These addresses can be set using the DW directive.

m Examplem
TYPE (M66301)
CSEG AT O
DW PowerOnReset ;Reset Pin

DW PowerOnReset ;:BRK
DW PowerOnReset ;WDT

MAIN SEGMENT CODE
RSEG MAIN
PowerOnReset:

In this example, addresses are set in the vector table area using the DW directive.

3-10

Chapter 3, Basic Programming Knowledge

(2) VCAL TableArea

The VCAL table area stores addresses of subroutines to be executed by VCAL instructions. These
addresses can be set using the DW directive.

m Examplem
TYPE (M66301)
CSEG AT 28H
VCAL_VCTO00: DW VCAL_FUNCO00

VCAL_VCTO01: DW VCAL_FUNCO1
VCAL_VCTO02: DW VCAL_FUNCO02

VCAL_ROUTINES SEGMENT CODE
RSEG VCAL_ROUTINES
VCAL_FUNCOO:

CSEG

VCAL VCAL_VCTO00

In this example, addresses are set in the VCAL table area using the DW directive.

3-11

Chapter 3, Basic Programming Knowledge

3.2.3.2 Data Memory Space

The figure below shows data memory space for a physical segment address range 0-7. Addresses
are dlocated in byte units.

Physical Physical Physical Physical
Segment O Segment 1 Segment 2 Segment 7
OO [
007FH | SFR Area |
0080H _—

\ Pointing Register Area |
0BFH | | | b0 % -
00COH \ Zero Page Area |
OFFH | | L0b7 7 i 95 /77— | | |

COMMON Area
common mex | L 1
Separate
Area
OFFFFH

Data M emory Space Example

Data memory space can have up to eight physical segments. The physical segment is selected by
setting its address in bit 13 to bit 15 of the local register base (LRB). To inform RAS66K of the
physical segment address, use the USING DSREG directive.

Each of the special areasis described next.
(1) Special Function Register (SFR) Area

The microcontroller’s internal peripheral functions and the registers that control them are assigned
to the specia function register area. The addresses in this area are provided with reserved word
names that correspond to the peripheral functions. These reserved words can be coded in programs
instead of the address values. The reserved words differ depending on the target microcontroller.
Refer to Section 3.5, “ Series Correspondence With DCL Files.”

3-12

Chapter 3, Basic Programming Knowledge

(2) Painting Register Area

The pointing register area is 64 bytes (8 bytes x 8 banks) to which the pointing register sets (X1,
X2, DP, USP) are mapped. One of the 8 banks is selected by setting the SCB value in the PSW.
Toinform RAS66K of the SCB value, use the USING PREG directive.

The figure below shows a pointing register area and an example program that correspondingly sets

the pointing register set.

0080H X1

X2

DP

USP

SCB=0

0088H X1

X2

DP

UsP

SCB=1

00B8H X1

X2

DP

UspP

SCB=7

Pointing Register Area
m Examplem
TYPE (M66301)
USING PREG 3

ANDB PSWL, #1111 _1000B
ORB PSWL, #0000_0011B

In this example, the program sets SCB of the PSW to 3 in order to select bank 3 of the pointing reg-
ister set. It codesa USING PREG directive to inform RAS66K of the SCB value.

3-13

Chapter 3, Basic Programming Knowledge

(3) Current Page Area

In data address space, the 256-byte spaces from base addresses on 256-byte boundaries are called
pages. One physical segment in data address space is configured from 256 pages.

The current page is the page specified from bit 5 to bit 12 of the LRB. The current page area can be
accessed using current page addressing. To inform RASG66K of the current page value, use the
USING PAGE directive.

The figure below shows a current page area and an example program that correspondingly sets the
current page.

0000H

Page 0
OOFFH

XXO00H -<
Page XX Value of LRB bit 5-bit 12
XXFFH indicates a page.
orFoon P 255 LRB \\\\\\X\X\\\I\\\\
age 15 1312 54 0
OFFFFH

Current Page Area

m Examplem
TYPE (M66301)

DSEG AT 1000H
BUF1_LR:DS 8
BUF1l: DS 100H-8

CSEG
USING PAGE BUF1_LR
MOV LRB, #BUF1_LR>>3

In this example, in order to make the page containing the symbol BUF1 LR the current page, the
program sets the page number in LRB. It codes a USING PAGE directive to inform RASE6K of
the current page number.

3-14

Chapter 3, Basic Programming Knowledge

(4) ZeroPageArea

The zero page is the area of page 0, from 0000H to O0OFFH. The zero page area can be accessed
using zero page addressing.

(5) COMMON and Separate Areas

The COMMON areais an area common to all physical segments of data memory space. When the
COMMON area is accessed, this common memory will be accessed regardless of the currently set
physical segment. On the other hand, separate areas are independent memory spaces for each phys-
ical segment. When separate areas are accessed, even if the offset addresses accessed are the same,
different memories will be accessed if the physical segment addresses are different.

The last address of the COMMON area, common_max, can be selected from one of four addresses.
The common_max is selected by setting the value of BCB in the PSW to 0-3. To inform RAS66K
of the value of BCB, use the COMMON directive.

The four possible final addresses of common memory differ depending on the target microcon-
troller. Refer to Section 3.5, “ Series Correspondence With DCL Files.”

3-15

Chapter 3, Basic Programming Knowledge

3.2.4 Memory Space Of nX-8/500

Microcontrollers with nX-8/500 CPU cores can have up to 256 physical segmentsin program mem-
ory space and up to 256 physical segmentsin data memory space.

3.2.4.1 Program Memory Space

The figure below shows program memory space for nX-8/500 CPU cores.

Physical Physical Physical Physical
Segment O Segment 1 Segment 2 Segment 0FFH

0000H
Vector Table

Area
0049H

004AH

VCAL Table
Area

0069H
006AH

1000H

ACAL Area

17FFH

romwindow_min

ROM Window Area

romwindow_max

OFFFFH

Program Memory Space Example

Program memory space can have up to 256 physical segments. There are two segment registers
that indicate physical segmentsin program memory space, the code segment register (CSR) and the
table segment register (TSR).

When program memory space is accessed as code, CSR is the register that specifies the physical
segment. If thisregister existsin the target microcontroller, then it will be alocated to the SFR area
of data memory. The CSR is automatically rewritten by jumps between physica segments (FJ
instruction) and calls between physical segments (FCAL instruction).

When program memory space is accessed as table data, TSR is the register that specifies the physi-
cal segment. If thisregister exists in the target microcontroller, then it will be allocated to the SFR
areaof datamemory. To inform RAS66K of the value of TSR, use the USING TSREG directive.

Each of the special areasis described next.

3-16

Chapter 3, Basic Programming Knowledge

(1) Vector TableArea

The vector table area stores the addresses to be executed when the system is reset or an interrupt is
generated. These addresses can be set using the DW directive.

m Examplem
TYPE (M66507)
CSEG AT O
DW PowerOnReset ;Reset Pin

DW PowerOnReset ;BRK
DW PowerOnReset ;WDT

MAIN SEGMENT CODE
RSEG MAIN
PowerOnReset:

In this example, addresses are set in the vector table area using the DW directive.

3-17

Chapter 3, Basic Programming Knowledge

(2) VCAL TableArea

The VCAL table area stores addresses of subroutines to be executed by VCAL instructions. These
addresses can be set using the DW directive.

m Examplem
TYPE (M66507)
CSEG AT 4AH
VCAL_VCT00: DW VCAL_FUNCO00

VCAL_VCTO1: DW VCAL_FUNCO1
VCAL_VCTO02: DW VCAL_FUNCO02

VCAL_ROUTINES SEGMENT CODE
RSEG VCAL_ROUTINES
VCAL_FUNCOO:

CSEG
VCAL VCAL_VCTO00

In this example, addresses are set in the VCAL table area using the DW directive.
(3) ACAL Area

The ACAL area contains subroutines to be executed by ACAL instructions. Addresses of subrou-
tines called by the ACAL instruction must be within the ACAL area.

(4) ROM Window Area
The ROM window area is an area of data memory space allocated to program memory space.

Addressing data memory space in the ROM window will access program memory space. For
details, refer to Section 3.2.4.2, “Data Memory Space.”

3-18

Chapter 3, Basic Programming Knowledge

3.2.4.2 Data Memory Space

The figure below shows data memory space for a physical segment address range O-OFFH.

Addresses are allocated in byte units.

Physical Physical Physical Physical
Segment O Segment 1 Segment 2 Segment OFFH
oo —m, e - - @
SFR Area
00FFH
0100H
XSFR Area
01FFH
0200H
Fixed Page Area
02FFH

0300H

common_max

COMMON Area

romwindow_min

ROM Window Area

romwindow_max

OFFFFH

Separate
Area

Data M emory Space Example

Data memory space can have up to 256 physical segments. The data segment register (DSR) indi-
cates physical segment addresses in data memory space. To inform RAS66K of the physical seg-
ment address, use the USING DSREG directive.

Each of the specia areasis described next.

3-19

Chapter 3, Basic Programming Knowledge

(1) Special Function Register (SFR) Area and
Extended Special Function Register (XSFR) Area

The microcontroller’s internal peripheral functions and the registers that control them are assigned
to the SFR area and XSFR area. SFR page addressing can be used to access the SFR page, but it
cannot be used to access the X SFR page.

The addresses in these areas are provided with reserved word names that correspond to the periph-
eral functions. These reserved words can be coded in programs instead of the address values. The
reserved words differ depending on the target microcontroller. Refer to Section 3.5, “Series
Correspondence With DCL Files.”

(2) Current Page Area

In data address space, the 256-byte spaces from base addresses on 256-byte boundaries are called
pages. One physical segment in data address space is configured from 256 pages.

The current page is the page specified by LRBH. The current page area can be accessed using cur-
rent page addressing. To inform RAS66K of the current page value, use the USING PAGE direc-
tive.

The figure below shows a current page area and an example program that correspondingly sets the
current page.

0000H

Page 0
00FFH

XX00H

Page XX | Value of LRBH
XXFFH indicates a page.

OFFOOH LRBH XX
Page 255

OFFFFH

Current Page Area

3-20

Chapter 3, Basic Programming Knowledge

m Examplem
TYPE (M66507)

DSEG AT 1000H
BUF1l: DS 100H

CSEG
USING PAGE BUF1
MOVB ALRBH,#Page BUF1

In this example, in order to make the page containing the symbol BUF1 the current page, the pro-
gram sets the page number in LRBH. [t uses the “page’ operator to determine the page number. It
also codes a USING PAGE directive to inform RAS66K of the current page number.

(3) Fixed Page Area

The fixed page is the area from 0200H to 02FFH. The fixed page area can be accessed using fixed
page addressing.

(4) Pointing Register Area

The pointing register areais 64 bytes (8 bytes x 8 banks) after address 200H to which the pointing
register sets (X1, X2, DP, USP) are mapped. One of the 8 banks is selected by setting the SCB
valuein the PSW. To inform RAS66K of the SCB value, use the USING PREG directive.

The figure below shows a pointing register area and an example program that correspondingly sets
the pointing register set.

3-21

Chapter 3, Basic Programming Knowledge

0200H X1

X2

DP

USP

SCB=0

0208H X1

X2

DP

USP

SCB=1

0238H X1

X2

DP

USP

SCB=7

Pointing Register Area

m Examplem
TYPE (M66507)
USING PREG 3

ANDB PSWL, #1111 1000B
ORB PSWL, #0000_0011B

In this example, the program sets SCB of the PSW to 3 in order to select bank 3 of the pointing reg-
ister set. It codesa USING PREG directive to inform RAS66K of the SCB value.

(5) Local Register Area

The local register area is 2048 bytes (8 bytes x 256 banks) after address 200H to which the local
register sets are mapped. One of the 256 banks is selected by setting the value of LRBL. To

inform RAS66K of the LRBL value, use the USING LREG directive.

3-22

Chapter 3, Basic Programming Knowledge

The figure below shows a local register area and an example program that correspondingly sets the
local register set.

0200H RO
ERO — R1 |
R2
ER1 —— R3
R4 LRBL=0
ER2 —— R5
R6
ER3 —— R7 |
0208H RO
ERO — R1 |
R2
ER1 —— R3]
R4 LRBL=1
ER2 ——— RE
R6
ER3 —— R7 |
09F8H RO
ERO — R1 |
R2
ER1 —— R3
R4 LRBL=0FFH
ER2 —— RE |
R6
ER3 —— R7 |
OAOOH

Local Register Area

m Examplem
TYPE (M66507)

USING LREG 10H
MOVB ALRBL,#10H

In this example, the program sets LRBL to 10H in order to select bank 10H of the local register set.
It codes a USING LREG directive to inform RAS66K of the LRBL value.

3-23

Chapter 3, Basic Programming Knowledge

(6) EEPROM Area

The EEPROM areaisthe areain which the EEPROM s placed. It isthe object of alocation by the
EDATA segments and EBIT segments, which will be described later. EEPROM area memory can
beinitialized by DB or DW directives.

If the target microcontroller has an EEPROM, then the address range of the EEPROM area will be
defined inthe DCL file. Refer to Section 3.5, “ Series Correspondence With DCL Files.”

(7) Dual Port RAM Area
The dual port RAM areais the areain which the dual port RAM is placed.

If the target microcontroller has adual port RAM, then the address range of the dual port RAM area
will be defined in the DCL file. Refer to Section 3.5, “ Series Correspondence With DCL Files.”

(8) SBA Area
The SBA areais areain each page of data memory space where the lower 8 bits of the address are

OCOH-0FFH. SBA areas can be accessed using shaoff addressing. In addition, the SBA area of the
fixed page area can be accessed using shafix addressing.

1000H

10BFH
10COH

10FFH
1100H

SBA Area

11BFH
11COH

11FFH
1200H

SBA Area

SBA Area

3-24

Chapter 3, Basic Programming Knowledge

(99 ROM Window Area

The ROM window area is an area of data memory space allocated to program memory space.
Addressing data memory space in the ROM window will access program memory space.
Therefore, even if external memory is placed in data memory space assigned to the ROM window
area, that external memory cannot be accessed. However, the ROM window function is ineffective
for internal RAM, the EEPROM area, and the dual port RAM area.

The lower 12 hits of the first address of the ROM window area are always 000H, and the lower 12
bits of the last address are always FFFH. The first address of the ROM window is always 1000H or
above. To set the ROM window area, set the upper 4 bits of the first and last address of the ROM
window area as the value of the ROMWIN register in the SFR area. To inform RAS66K of the first
and last address of the ROM window area, use the WINDOW directive.

(10) COMMON and Separate Areas

The COMMON areais an area common to all physical segments of data memory space. When the
COMMON area is accessed, this common memory will be accessed regardless of the currently set
physical segment. On the other hand, separate areas are independent memory spaces for each phys-
ical segment. When separate areas are accessed, even if the offset addresses accessed are the same,
different memories will be accessed if the physical segment addresses are different.

The last address of the COMMON area, common_max, can be selected from one of four addresses.
The common_max is selected by setting the value of BCB in the PSW to 0-3. To inform RAS66K
of the value of BCB, use the COMMON directive.

The four possible final addresses of common memory differ depending on the target microcon-
troller. Refer to Section 3.5, “ Series Correspondence With DCL Files.”

3.2.4.3 Memory Models

For microcontrollers with the nX-8/500 CPU core, the number of accessible physical segmentsin
both program memory space and data memory space can be controlled. This means that four mem-
ory configurations exist for microcontrollers with the nX-8/500 CPU core. These are called memo-

ry models. The memory models and their meanings are given below.

Memory Models

Memory Model Meaning

SMALL Program memory space and data memory space are restricted to one physical
segment each.

COMPACT Program memory space is restricted to one physical segment.

MEDIUM Data memory spaceis restricted to one physical segment.

LARGE There are no restrictions on the number of physical segments of either

program memory space or data memory space.

3-25

Chapter 3, Basic Programming Knowledge

If the SMALL or COMPACT memory model is selected, then FJ, FCAL, and FRET instructions
cannot be used.

To set the memory model, set the appropriate value in the register for memory model setting in the
SFR area. To inform RAS66K of the type of memory model, use the MODEL directive. The
memory model cannot be changed inside the program.

3.2.5 Memory Access
3.2.5.1 Wraparound

In the OLMS-66K Series, all calculations done with offset addresses are performed as 16 bits. For
example, if 1 isadded to offset address OFFFFH, then the result will be offset address 0.

OFFFFH
+ 1H
0000H

As seen in this example, the carry from the most significant bitsis not used. Thus, within a physi-
cal segment when the next byte is taken after the maximum address, it will come from the mini-
mum address in that same physical segment. This is called wraparound. It is used in generating
displacements for relative jump instructions.

m Examplem

CSEG
ORG 10H
LABEL:

ORG OFFEEH
SJ LABEL

The jump destination of the relative jump instruction placed at address OFFEEH (SJ LABEL) is
10H, which is within the allowable range for relative jump. So, assembling this example will not
cause an error.

3.2.5.2 Word Boundaries

When performing word-length (2-byte) accesses in OLMS-66K Series data memory, word bound-
aries exist. Word boundaries are boundaries between words. Word-length accesses are performed
on these word boundaries. In other words, word-length accesses can only be to 2 bytes that start at

an even address.

For example, if an attempt is made to specify aword access at address 1001H, then the least signifi-
cant bit of the address will be dropped and the word from address 1000H will be accessed.

RAS66K and RL66K check for these word boundaries. Refer to Section 4.10.5, “Word Boundary
Checks,” for information about these checks.

3-26

Chapter 3, Basic Programming Knowledge

3.3 Address Space

For the MAC66K Assembler Package, consider that memory space is divided by its assigned
addresses. Theselogical spaces are called address spaces.

The table below shows the types of address spaces.

Address Spaces

Address Space Description

CODE address space Program memory space where addresses are assigned by bytes.

DATA address space Data memory space where addresses are assigned by bytes. (Excludes
EEPROM area.)

BIT address space Data memory space where addresses are assigned by bits. (Excludes
EEPROM area)

EDATA address space EEPROM area where addresses are assigned by bytes.

EBIT address space EEPROM area where addresses are assigned by bits.

The EDATA address space and EBIT address space exist only when EEPROM exists in the target
device.

The physical segment addresses and offset addresses of the various address spaces are configured
asfollows.

Bit 7 0 15 0

Physical segment
address within program Byte address with the physical segment.
memory space.

Addresses In CODE Address Space

Bit 7 0 15 0

Physical segment
address within data Byte address within the physical segment.
memory space.

Addresses In DATA Address Space

3-27

Chapter 3, Basic Programming Knowledge

Bit 7

18 0
Physical segment
address within data Bit address within the physical segment.
memory space.
| |
1 1
118 3 2 0!
Byte address within the physical segment Bit
y phy 9 ’ position
Addresses|n BIT Address Space
Bit 7 0 15 0
Physical segment Byte address within the
address of EEPROM .
physical segment of EEPROM area.
area. Always 0.
AddressesIn EDATA Address Space
Bit 7 0 18 0
Physical segment Bit address within the
address of EEPROM .
physical segment of EEPROM area.
area. Always 0.
| |
1 1
118 3 2 0!
Byte address within the Bit
physical segment of EEPROM area. position

Addresses|n EBIT Address Space

3-28

Chapter 3, Basic Programming Knowledge

Physical segment addresses become part of object code of instructions only in the following cases.
m Examplem

FCAL CODELABEL1
MOVB DSR#SEG DATALABEL1

In this example, the physical segment addresses of CODELABEL1 and DATALABEL1 will
become part of the instructions' object code.

The FCAL instruction is an instruction that can call any physical segment, so the physical segment
address of CODELABEL 1 will become the physical segment address of the jump location in object
code.

The operand “#SEG DATALABEL1" of the MOVB instruction uses the SEG operator to extract
the physical segment address. Accordingly, the physical segment address of DATALABEL1 will
become the value written to DSR in object code.

However, look at the following example.
m Examplem

CAL CODELABEL2
MOVB RO,DATALABEL2

In this example, the physical segment addresses of CODELABEL?2 and DATALABEL2 will not
become part of the instructions’ object code.

The CAL instruction is an instruction that calls within the current physical segment, so the physical
segment address of CODELABEL 2 will not become the physical segment address of the jump loca
tion in object code.

The operand DATALABEL2 of the MOVB instruction specifies an address in the currently set
physical segment address. Accordingly, the physical segment address of DATALABEL2 will not
become part of the object code.

As demonstrated by the second example, the reason that each address includes the physical segment
address even when the physical segment addresses will not become part of the instructions’ object
code isso RAS66K and RL66K can perform checks using the physical segment addresses. Refer to
Section 4.10.4, “Physical Segment Address Checks.”

3-29

Chapter 3, Basic Programming Knowledge

3.4 Logical Segments

The OLMS-66K Series has five address spaces: CODE address space, DATA address space, BIT
address space, EDATA address space, and EBIT address space. When writing a program in assem-
bly language, the user needs to inform RAS66K and RL66K which parts of the program are in
which address space. The concept of logical segmentsis used for this. A logical segment isan area
of contiguous addresses.

For RAS66K, al code in a program belongs to these logical segments. RL66K fixes where the log-
ical segments will be placed in memory space.

The table below shows the types of logical segments.

L ogical Segments

L ogical Segment Description

CODE Segment Logical segment corresponding to CODE address space.
DATA Segment Logical segment corresponding to DATA address space.
BIT Segment Logical segment corresponding to BIT address space.
EDATA Segment Logical segment corresponding to EDATA address space.
EBIT Segment Logical segment corresponding to EBIT address space.

RL66K fixes the allocation of logical segmentsin memory space. However, RL66K does not actu-
ally determine the alocation of all logical segments. Allocation of some logical segments can also
be determined at RAS66K’s level. These logical segments are defined by specifying absolute
addresses for them. They are called absolute segments. Logical segments that do not have their
allocation determined until RL66K’ s level are called relocatable segments.

RL66K checks that the addresses of absolute segments do not overlap addresses of other logical
segments.

To write an absolute segment into a program, the address at which the segment is to be allocated
must be specified in the program. Therefore, changing the address of an absolute segment requires
the source program to be modified and reassembled.

Conversely, when developing a program using relocatable segments, one does not need to specify
the alocation of the segments in the program. RL66K determines the addresses at which these log-
ical segments will be alocated. Thus, the program does not need to specify the allocation in mem-
ory.

This feature of relocatable segments is very important. This is because the alocation of logical
segments that make up a program can change if they are used multiple times in that same program.

Section 4.5, “Coding Logical Segments,” explains the coding of logical segments.

3-30

Chapter 3, Basic Programming Knowledge

m Attention m

When this manual uses the term “segment” it will be using the meaning of logical segment.
However, when related documents use the term “ segment” they may be using the meaning of physi-
cal segment, so be careful not to confuse them.

3-31

Chapter 3, Basic Programming Knowledge

3.5 Series Correspondence With DCL Files

The MAC66K Assembler Package is software for the OLMS-66K Series. The software makes ref-
erences to contents defined in a DCL file. Each DCL file contains particular information about a
target microcontroller. By changing the DCL file, one can use the MAC66K Assembler Package
with the various microcontrollers of the OLMS-66K Series.

DCL files are text format files. DCL file name extensions are aways “.DCL.” The name of the
DCL file to be referred is specified within the source program. The software that refers the DCL

file is RAS66K. RAS66K stores the DCL file information in the object file. RL66K and symbolic
debuggers obtain the DCL file information through this object file.

3.5.1 Information In DCL Files
DCL filesinclude the following information about microcontrollers.
(1) CorelD number

Based on this information, RAS66K, RL66K, and LIB66K distinguish between OLMS-66K Series
CPU core architecture.

(2) Microcontroller 1D number
Based on thisinformation, RL66K determines the target microcontroller.
(3) Usable range of program memory space

Based on this information, RASE6K checks the values of operands accessed in program memory
space. Based on thisinformation, RL66K sets the last address of program memory space.

Information about program memory spaceis as follows.

» Offset address range

* Number of physical segments

» Range of specia areas

(4) Usablerange of data memory space

Based on this information, RAS66K checks the values of operands accessed in data address space
and bit address space. It also checks whether accesses to the SFR area are in an accessible area.
Based on thisinformation, RL66K sets the last address of data memory space.

Information about data memory space is as follows.

» Offset address range

* Number of physical segments

* Range of COMMON area
» Range of specia areas

3-32

Chapter 3, Basic Programming Knowledge

(5) SFR arearangeand per mitted range of access

Based on this information, RAS66K checks accesses to the SFR area. Refer to Section 4.10.6,
“Specia Function Register Access Checks.”

(6) Reserved wordsrepresenting addr esses

From this information, RAS66K obtains values and usage types of reserved words that represent
addresses. RAS66K uses this to replace operands with addresses.

(7) Permitted instructions

RASGE6K only assembles instructions that are permitted for use as defined in the DCL file.
RASGE6K will generate an error for other instructions.

3.5.2 About DCL66K.DOC

This manual is intended for all microcontrollers of the OLMS-66K Series. Particular functions
about respective microcontrollers are described as follows.

“..isdefined in the DCL file.”

The information included in DCL filesis described in DCL66K.DOC.

3-33

Chapter 3, Basic Programming Knowledge

3.6 File Specifications

Files are specified for input and output of the MAC66K Assembler Package software. This manual
defines file specifications as follows.

drive: directory base name.extension

The combination of drive and directory is called the path. The meanings for each part of file speci-
fications are as shown below.

Term Meaning

path Specifies the drive and directory in which the target file exists.
drive Specifies the drive on which the target file exists.

directory Specifies the directory in which the target file exists.

base name Specifies the target file name with a string up to 8 characters.
extension Specifies the target file extension with a string up to 3 characters.

m Examplem
A\MAC66K\SRC\TEST.ASM

In this example, the elements of the file specification are as below.

Term File Specification Element
path A:\MAC66K\SRC\

drive A

directory \MAC66K\SRC\

base name TEST

extension ASM

3-34

Chapter 4

RAS66K

RASE6K is a relocatable assembler for the OLMS-66K Series of one-chip microcontrollers. This
chapter describes information needed to use RAS66K and to create assembly language programs

with RAS66K.

Chapter 4, RAS66K

4.1 Introduction

RAS6E6K is a relocatable assembler for the OLMS-66K Series of one-chip microcontrollers. This
chapter describes information needed to use RAS66K and to create assembly language programs
with RAS66K.

RAS6E6K assembles a source file while referring to the contents of a DCL file. The DCL file con-
tains information about the target microcomputer. By changing this file RAS66K can be used for
any microcomputer of the OLMS-66K Series. A source file is a program written in OLM S-66K
Series assembly language.

RAS6E6K generates four files as aresult of assembly.

* Object file

e Printfile

o Errorfile

e EXTRN declaration file

The object file includes rel ocatable object code and information needed for linking and debugging.

The print file includes the contents of the source file and the generated object code. Names and
values of symbols used can also be output to the print file.

The error file includes error messages and the source statements that generated the errors. Unless
otherwise specified, it will be output to the screen.

The EXTRN declaration file includes a list of EXTRN declarations corresponding to public sym-
bols defined in the program.

Source files that follow the rules of OLMS-66K Series assembly language are basically structured
from two types of statements.

¢ Microcontroller instruction statements
¢ Directive statements

Microcontroller instructions are discussed in related documents. By using directives, the program-
mer can control RAS66K operation or modify output. Directives are explained in this chapter.

Chapter 4, RAS66K

4.2 File Specification Defaults

Input and output files must be specified to use RAS66K. Files are specified on the command line or
as operands of directives. RAS66K file specifications are as follows.

* Source file specification

¢ Include file specification

¢ Object file specification

« Print file specification

« Error file specification

* EXTRN declaration file specification

Refer to Section 3.6, “File Specifications,” for the coding of each file specification.
The drive and directory can be omitted in the above file specifications. Except for source files and
include files, the base name can also be omitted. Defaults when drives, directories, and base names

are omitted are as shown below.

Table4-1. File Specification Defaults

File Specification Drive Directory Base Name Extension
Sourcefile Current drive Current directory Cannot be ASM
Include file of drive omitted Cannot be
omitted
Object file Current drive* Current directory Base name .OBJ
Print file of drive* of sourcefile PRN
Error file .ERR
EXTRN declaration file EXT

NOTE: * If thedrive, directory, base name and extension are all omitted, then the drive and direc-
tory will be that of the sourcefile.

m Examplelm

Below are some examples of source file specifications and the source files that RAS66K will read
based on those specifications.

Sour ce File Specification Sour ce File Read
TEXT.SRC TEXT.SRC
TEXT. TEXT

TEXT TEXT.ASM

Chapter 4, RAS66K

m Example2m

Below are some examples of how RAS66K handles the path and file name of the object file to be
stored, assuming the source file specification is A:\SRC\TEXT.SRC.

Object File Specification Path And File Name Of Generated Object File

TEXT.OUT Generatesthe file TEXT.OUT in current directory of current drive.
A TEXT. Generates the file TEXT in the current directory of drive A.
B:\WORK\TEXT Generates the file TEXT.OBJ in the \WORK\ directory of drive B.

4-3

Chapter 4, RAS66K

4.3 Using RAS66K

4.3.1 Executing RAS66K
This section explains how to execute RAS66K .

At the DOS prompt, type RAS66K, specify the source file and options, and press the return key.
Command line format is as follows.

RAS66K source file [options]

The source file specifies the source file to be assembled. The options can specify the various
options. A dlash (/) must be typed before the letters that indicate the option. Insert spaces between
options.

If only RAS66K is typed without specifying source file, and the return key is pressed, then
RASGE6K displays aguidetoits use and alist of its options on the screen and returns to DOS.

m Examplem
To assemble source file MAIN.ASM with option /S, type the following.
RASB6K MAIN.ASM /S

When the source file name extension is omitted, RAS66K adds the extension “.ASM” to process it.
When the source file drive is omitted, RAS66K assumes the source file is on the current drive.
When the source file directory is omitted, RAS66K assumes the source file isin the current directo-

ry.

If the command line is correctly input, then the RAS66K start message will be displayed on the
screen. Next, the following messages will be displayed in order.

[dd f]loeding.
pessl.
pes2..

RAS66K assembler processing first loads the DCL file. It displays “[dcl_file] loading” while the
DCL fileisbeing loaded. The dcl_file will actually be the name of DCL file loaded.

RASB6K divides its processing into two parts, called pass 1 and pass 2. During pass 1, RAS66K
determines symbol values and program addresses. During pass 2, RAS66K generates an object file
using the results of pass 1. When pass 1 processing begins, “passl...” will be displayed. When
pass 2 processing begins, “pass2...” will be displayed.

If the generated program has errors, then error messages will be displayed. Refer to Section 4.15,
“Error Messages.”

Chapter 4, RAS66K

When assembly ends, RAS66K displays the following messages and returns to DOS.

Print He:foopm
OnectHe:foody
Enor He: Consoe

Emos :0

Warnings : 0 (/Wrpeaus)
Lines :100

Assembly End.

The first three lines are names of generated files. The print file name follows “Print File,” the
object file name follows “Object File,” and the error file name follows “Error File’ (normally this
will be “Console,” indicating screen display).

Following the file names, information about assembly results is displayed. The number of errorsis
shown after “Errors,” and the number of warnings is shown after “Warnings.” The warning types
checked are shown following the “/W.” The number of lines in the source file is shown after
“Lines.”

m Information m
RAS6E6K outputs all messages displayed on the screen to the standard output device. Messages can

be output to afile using the DOS redirection function. To output only error messages and warning
messages from a source program to afile, use the /E option or ERR directive.

4.3.2 Option Specifications

RAS66K operation and output file format can be controlled by specifying options. All options
begin with adlash (/). The option name is specified following the slash. Spaces cannot be inserted
between the slash and the option name. Both upper case and lower case letters can be used for
option names. For many options, directives exist with identical functions.

4.3.2.1 List Of Options
Table 4-2 shows the options provided by RAS66K.
When neither an option or its corresponding directive is specified, RAS66K operation is shown in

the “Default” column of Table 4-2. An asterisk (*) indicates that the function of that option is spec-
ified by default. Numbersindicate the default value set for that option’s function.

Chapter 4, RAS66K

Table4-2. Options With Functions Of Directives

Corresponding

Option Default Directive Function

IMS * MODEL SMALL Set memory model to SMALL mem-
ory model.

MC MODEL COMPACT Set memory model to COMPACT
memory model.

/MM MODEL MEDIUM Set memory model to MEDIUM
memory model.

/ML MODEL LARGE Set memory model to LARGE mem-
ory model.

ICF CHK Check flag attributes of branch
instructions.

INCF * Do not check flag attributes of
branch instructions.

/CD Recognize upper-case and lower-
case distinctions.

INCD * Ignore upper-case and lower-case
distinctions.

/W [warning_type] * Specify type of warningsto check.

INW [warning_type] Specify type of warnings not to
check.

/linclude_path Specify include file path.

/cC Read C source level debugging
information file.

IV [buffer_size] Reserves a buffer for sourcefile
reading.

/PR [print_file] * PRN Generate print file.

INPR NOPRN Do not generate print file.

/A [abl_fil€] Generate absol ute print file.

/L * LIST Generate assembly list.

/NL NOLIST Do not generate assembly list.

/S SYM Generate symbol list.

INS * NOSYM Do not generate symbol list.

R REF Generate cross-reference list.

INR * NOREF Do not generate cross-reference list.

/PWpage_width 79 PAGE Specify characters per linein print
file.

/PLpage_length 60 PAGE Specify lines per pagein print file.

/T [tab_code] 8 TAB Replace tab codes.

4-6

Chapter 4, RAS66K

Table4-2. Options With Functions Of Directives (continued)

Corresponding

Option Default Directive Function

/O [objectfile] * OBJ Generate object file.

/INO NOOBJ Do not generate object file.

/D DEBUG Output debugging information.

/IND * NODEBUG Do not output debugging infor-
mation.

[E [errorfil€] * ERR Set output destination of error mes-
sages.

INE NOERR Output error messages to the screen.

IX [extern_file] Generate EXTRN declaration fie.

4.3.2.2 Option Functions
(1) Memory Model Specification (IMS, /MC, /MM, /ML)
m Syntax m

IMS

IMC
/MM
IML

m Description m

These options set the memory model used by the application program.

The /MS option sets the SMALL memory model; the /MC option sets the COMPACT memory
model; the /MM option sets the MEDIUM memory model; and the /ML option sets the LARGE
memory model. If no memory model is set, the SMALL memory model will be selected.

Refer to Section 3.2.4.3, “Memory Models.”

m Corresponding Directivesm

The MODEL directive can be used to set the memory model instead of specifying these options. If
both an option and the MODEL directive set the memory model, then the option setting will take

precedence.

Refer to Section 4.12.2, “Memory Model Specification (MODEL).”

Chapter 4, RAS66K

m Examplem
To assemble the source file FOO.ASM with the COMPACT memory model, type the following.

RAS66K FOO.ASM /MC

m Attention m

Memory models are particular to microcontrollers with the nX-8/500 CPU core. When using
microcontrollers with other CPU cores, RAS66K will ignore any specifications of memory model
options.

(2) Control of Branch Instruction Flag Attribute Checks (/CF, /NCF)

m Syntax m

ICF
INCF

m Description m

When the /CF option is specified, RAS66K will check whether or not the flag attributes of branch
instruction sources and destinations match.

When the /NCF option is specified, RAS66K will not perform branch instruction flag attribute
checks.

If neither option is specified, then RAS66K will not perform branch instruction flag attribute
checks.

Refer to Section 4.10.9, “Flag Attribute Checks,” for details on flag attributes and flag attribute
checks.

m Corresponding Directivesm

The CHK directive can be used in a program instead of specifying the /CF option. There is no
directive with functions equivalent to the /NCF option.

Refer to Section 4.12.14.6, “Branch Instruction Flag Attribute Checks (CHK).”
m Examplem

To assemble the source file FOO.ASM with branch instruction flag attribute checks, type the fol-
lowing.

RAS66K FOO.ASM /CF

Chapter 4, RAS66K

(3) Suppression Of Upper And Lower Case Distinction (/CD, /NCD)
m Syntax m

/ICD

INCD
m Description m

When the /CD option is specified, RAS66K recognizes distinctions between upper case and lower
case letters used in symbols in the source file. Even when symbols have the same spelling, if just
one character differsin case, then the symbolswill be different.

When the /NCD option is specified, RAS66K ignores distinctions between upper and lower case
letters used in symbols. When symbols have the same spelling, they will be the same symbol even
if the characters differ in case. If the /NCD option is specified, then RAS66K will convert al char-
acters used in symbols to upper case. These converted names will be stored as symbol information
in the print file and object file.

RAS6E6K will ignore case distinctions by default.

Case distinction can be controlled only for user symbols defined in the program, such as labels and
segment names, and SFR symbols defined in the DCL file. Case distinction will be ignored in
reserved words, such as instructions and directives, regardless of the /CD option specification.

m Examplem

To assembl e the source file FOO.ASM with upper case and lower case distinction, type the follow-
ing.

RAS66K FOO.ASM /CD
If the source file FOO.ASM includes the following code, then no double-definition error will occur.

UCSYM EQU 200H
ucsym DATA 200H

DSEG AT 200H
uCsym:
DS 10H

The spelling of symbols UCSY M, ucsym, and uCsY m have the same spelling, but they have differ-

ent combinations of upper and lower case letters. Therefore, RAS66K will handle them as different
symbols. If the code is assembled without the /CD option, then a double-definition error will occur.

4-9

Chapter 4, RAS66K

(4) Warning Check Control (/W, /NW)

® Syntax m

/W [warning_type]
INW [warning_type]

m Description m

The warnings checked by RAS66K during assembly, are classified into severa groups. The /W
and /NW options are used to enable and disable particular warnings.

The /W option enables warnings of the types specified by warning_type.
The /NW option disables warnings of the types specified by warning_type.

The warning_type is a combination of characters that indicate types of warnings. Table 4-3 shows
the relationship of the characters and the warning types they indicate.

Table 4-3. Characters That Indicate Warning Types

Character Type Of Warnings

Rel ocatable segment definition checks
Directive coding checks

Expression coding checks

Addressing coding checks

USING directive checks

nw C > m T =D

SFR access attribute checks

If warning_type is omitted, then all warning types will be assumed specified. In other words, if
only /W is specified, then all warnings will be checked. If only /NW is specified, then no warning
checks will be performed.

The default is to check all warnings.

Refer to Section 4.15.2.3, “Warning Messages,” regarding actual warning messages and their
respective warning types.

m Examplem

To assemble the source file FOO.ASM without performing USING directive warning checks, type
the following.

RAS66K FOO.ASM /INWEU

4-10

Chapter 4, RAS66K

(5) IncludeFile Path Specification (/1)

m Syntax m

1 include_path
m Description m

The /1 option specifies the path of files read by the INCLUDE directive. RAS66K searches for
include filesin the following order.

(1) Firgt, anincludefileis searched for in the current directory. If the target file existsin the
current directory, then that file will be read.

(2) If thetarget file does not exist in the current directory and an include file path has been
specified with the /I option, then the target file will be searched for on that path.

Refer to Section 4.12.15, “Using Include Files (INCLUDE),” regarding INCLUDE directives.
m Examplem

To assembl e the source file FOO.ASM and read include files on the path A:\USR\PROG\INC, type
the following.

RAS66K FOO.ASM /IANAUSR\PROG\INC
(6) Output of C Source Level Debugging I nformation (/CC)
m Syntax m

/cC

m Description m

The /CC option is specified when the source file is an output file of CC66K. When the /CC option
is specified, the source file will be assembled and an object file that includes C source level debug-
ging information will be generated. This option enables C source level debugging. When the /CC
option is not specified, C source level debugging will not be possible.

The name of the file read will be that of the source file with the extension “.DBG.” RAS66K aso
assumes that this file will be located in the same directory as the source file. If RAS66K cannot
find the file, then an error will occur and assembly will stop.

RASGE6K will not distinguish between upper-case and lower-case letters by default. However, if the
/CC option is specified, then RAS 66K will distinguish between upper-case and lower-case |etters
by default.

m Examplem

RAS66K CCFOO /CC

4-11

Chapter 4, RAS66K

In this example, RAS66K will assemble CCFOO.ASM, a source file output by CC66K, and gener-
ate an object file that includes C source level debugging information.

(7) Saving File Read Buffer (/V)
m Syntax m

N [buffer_size]
m Description m

The /V option is used to reserve a buffer for reading the source file. A 512-byte buffer is provided
to read normal files, but the /V option can reserve a buffer up to 32,767 (7FFFH) bytes.

The buffer_size specifies an integer constants that indicates the size of the buffer to be reserved. If
avalue greater than 32,767 is specified or if the /V option is specified without a buffer size, then a
32,767-byte buffer will be reserved.

The purpose of using the /V option isto speed up assembly. In particular, pass 2 processing access-
es multiple files ssimultaneously, so the file buffer size will greatly influence assembly speed.

The effectiveness of the /V option is especially conspicuous when using comparatively slow disks,
such as floppy disks. Conversely, its effectiveness is not so noticeable when using fast disks, such
as hard disks or RAM disks.

m Examplem

RAS66K FOO.ASM /V4000H

In this example, a 4000H-byte buffer is reserved for reading the source file.

(8) Print File Generation Control (/PR, /INPR)
m Syntax m

/PR [print fie]

INPR
m Description m
When the /PR option is used, RAS66K will generate a print file. The print_file specifies the name
of the print file. Refer to Section 4.2, “File Specification Defaults,” regarding defaults when the

operand or part of the file specification is omitted.

When the /NPR option is used, RAS66K will not generate a print file. However, if the /A option is
specified at the same time, then RAS66K will generate a print file, even though /NPR is specified.

If both the /PR and /NPR options are omitted, then RASE66K will generate a print file with the
source file name and an extension changed to “.PRN.”

4-12

Chapter 4, RAS66K

m Corresponding Directivem

The PRN directive can be used in a program instead of specifying the /PR option. The NOPRN
directive can be used in a program instead of specifying the /NPR option.

Refer to Section 4.12.23.1, “Print File Output Control (PRN, NOPRN).”
m Examplem
RAS66K FOO.ASM /PROUTPUT.LST
This example specifies the generation of aprint file OUTPUT.LST.
RAS66K FOO.ASM /NPR

This example specifies no generation of a print file.

(9) Absolute Print File Generation (/A)
m Syntax m

A [adfe]
m Description m

The /A option is specified to generate an absolute print file. An absolute print file includes no unre-
solved machine code or unresolved address information, but does include all resolved information.

The abl_file is the name of an ABL file. ABL files are generated by RL66K in a binary format
with the information needed to generate absolute print files.

Even if the /A option is used, the file name specification rules for the /PR option do not change.
However, the default extension of ordinary print files is“.PRN,” but that of absolute print filesis
“.APR

For details on how absolute print files are created, refer to Chapter 8, “Absolute Print File
Generation.”

m Examplem

To generate the absolute print file of source file FOO.ASM, type the following. In this example,
the ABL file APRINFO.ABL will be read.

RAS66K FOO.ASM /AAPRINFO

4-13

Chapter 4, RAS66K

(10) Assembly List Output Control (/L, /NL)
m Syntax m

/L
INL

m Description m

When the /L option is specified, RAS66K will output each statement to the assembly list until it
encounters aNOLIST directive in the program.

When the /NL option is specified, RAS66K will not output statements to the assembly list until it
encountersa LIST directive in the program. However, statements that include errors will always be
output to the assembly list even if the /NL option is specified.

The default isthe /L specification.

Assembly lists are explained in Section 4.13, “Print File.” Refer to Section 4.12.23.6, “ Assembly
List Output Control (LIST, NOLIST),” regarding the LIST and NOLIST directives.

m Corresponding Directivem

The LIST and NOLIST directives have nearly the same functions as these options. However, the
options take effect from the start of the program, while the LIST and NOLIST directives take effect
after the source statement in which they are coded.

m Examplem

To assemble the source file FOO.ASM and output its contents to the assembly list, type the follow-
ing.

RAS66K FOO.ASM /L

To assemble the source file FOO.ASM without sending its contents to the assembly list, type the
following.

RAS66K FOO.ASM /NL
(11) Symbol List Output Controal (/S, /INS)
m Syntax m

/S
INS

m Description m

When the /S option is specified, RAS66K will output all user symbol information to a symbol list.
When the /NS option is specified, RAS66K will not generate a symbol list.

4-14

Chapter 4, RAS66K

The default isto not generate a symbol list.

Symbol lists are explained in Section 4.13, “Print File.” Refer to Section 4.12.23.7, “Symbol List
Output Control (SYM, NOSYM),” regarding the SYM and NOSY M directives.

m Corresponding Directivem

The SYM directive can be used in a program instead of specifying the /S option. The NOSYM

directive can be used in a program instead of specifying the /NS option. If both an option and

directive are specified, then the option setting will take precedence.

m Examplem

To output all symbols used in the source file FOO.ASM to the assembly list, type the following.
RAS66K FOO.ASM /S

To assemble the source file FOO.ASM without generating a symboal list, type the following.

RAS66K FOO.ASM /NS

(12) Cross-ReferenceList Output Control (/R, /NR)
m Syntax m

IR
INR

m Description m

When the /R option is specified, RAS66K will output the line numbers in which each user symbol
is used to a cross-reference list. When the /NR option is specified, RAS66K will not generate a
cross-reference list.

To be more precise, REF and NOREF directives coded in the program will affect the generation of
the cross-reference list. Even when the /R option is specified, if a NOREF directive is coded in the
program, then no line numbers from its line until the line of a REF directive is encountered will be
output to the cross-reference list. Conversely, even when the /NR option is specified, if a REF
directive is coded in the program, then the line numbers from its line until the line of a NOREF
directive is encountered will be output to the cross-reference list. In other words, the REF and
NOREF directives have the role of cross-reference list output switches.

However, the use described above is not often needed. Accordingly, you can use the /R option to
generate a cross-reference list and the /NR option to not generate one.

The default isto not generate a cross-reference list.

Cross-reference lists are explained in Section 4.13, “Print File.” Refer to Section 4.12.23.8, “ Cross-
Reference List Output Control (REF, NOREF),” regarding the REF and NOREF directives.

4-15

Chapter 4, RAS66K

m Corresponding Directivem

The REF and NOREF directives have nearly the same functions as these options. However, the
options take effect from the start of the program, while the REF and NOREF directives take effect
after the source statement in which they are coded.

m Examplem

To generate a cross-reference list of all symbols used in the source file FOO.ASM, type the follow-
ing.

RAS66K FOO.ASM /R
To assemble the source file FOO.ASM without generating a cross-reference list, type the following.

RAS66K FOO.ASM /NR

(13) Print File CharactersPer Line Specification (/PW)
m Syntax m
/PW page width
m Description m
The /PW option specifies the number of characters per linein the print file.

The page_width specifies an integer constant for the number of characters. Thisisthe number of 1-
byte characters. The page width can be specified in the following range.

7910132
If avalue less than 79 is specified, then the characters per line in the print file will become 79. If a
value greater than 132 is specified, then the characters per line in the print file will become 132.
The default characters per linein the print fileis set to 79.

m Corresponding Directivem

The PAGE directive can be used in a program instead of specifying the /PW option. The number of
characters set as the second operand of the PAGE directive will perform the same setting as with
the /PW option. If both the /PW option and PAGE directive are specified, then the /PW option set-
ting will take precedence.

Refer to Section 4.12.22.3, “Lines Per Page and Characters Per Line Specification (PAGE with
operands),” regarding the PAGE directive.

4-16

Chapter 4, RAS66K

m Examplem
RAS66K FOO.ASM / PW132

In this example, 132 characters per print file lineis specified.

(14) Print File Lines Per Page Specification (/PL)
m Syntax m
/PL page length
m Description m
The /PL option specifies the number of lines per pagein the print file.

The page_length specifies an integer constant for the number of lines. This includes the print file
header and surrounding blank lines. The page |ength can be specified in the following range.

10 to 65535
If avalue less than 10 is specified, then the lines per page in the print file will become 10. If a
value greater than 65535 is specified, then the lines per page in the print file will become 65535.
The default lines per pagein the print fileis set to 60.

m Corresponding Directivem

The PAGE directive can be used in a program instead of specifying the /PL option. The number of
lines set as the first operand of the PAGE directive will perform the same setting as with the /PL
option. If both the /PL option and PAGE directive are specified, then the /PL option setting will
take precedence. Refer to Section 4.12.22.3, “Lines Per Page and Characters Per Line Specification
(PAGE with operands),” regarding the PAGE directive.

m Examplem

RAS66K FOO.ASM /PL100
In this example, 100 lines per print file page is specified.
m Information m
In some circumstances, you may not want to split the print file into pages. For example, you may
output to a printer using software that supports page feed functions or you may want to read the
print file on your PC screen. RAS66K does not provide options or directives that disable page
breaks, but you can use the /PL option to prevent visible page breaks. Do this by specifying a suffi-
ciently large value for /PL. For example, page breaks can be effectively disabled by setting the
lines per page to 65535, as shown below.

RAS66K FOO.ASM /PL65535

4-17

Chapter 4, RAS66K

(15) Tab Code Replacement (/T)
m Syntax m
T [tab width]
m Description m
When the /T option is used, tab codes used in the program will be replaced by the appropriate num-
ber of spaces. Use of the /T option enables properly aligned list output of the print file even when

the printer does not recognize tab codes.

The tab_width is the number of spaces corresponding to one tab code. It can be specified as an
integer constant from 1 to 16. If thetab_width is omitted, then the specification will be 8.

m Corresponding Directivem

The TAB directive can be used in a program instead of specifying the /T option. If both the /T
option and TAB directive are specified, then the /T option setting will take precedence.

If neither the /T option or the TAB directive is specified, then tab codes will be output as is to the
print file.

m Examplem
RAS66K FOO.ASM /T4

In this example, tab codes used in the program will be replaced by up to 4 spaces to align the print
file.

(16) Object File Output Control (/O, /NO)

m Syntax m

o[dectfie]
INO

m Description m

When the /O option is specified, RAS66K will generate an object file. The object_file specifies the
object file name. Refer to Section 4.2, “File Specification Defaults,” when all or part of the file
specification is omitted.

When the /NO option is specified, RAS66K will not generate an object file.

If both the /O and /NO option are omitted, then an object file will be generated. The object file
name will be the source file name with the extension “.0OBJ.”

4-18

Chapter 4, RAS66K

m Corresponding Directivem

The OBJ directive can be used in a program instead of specifying the /O option. The NOOBJ
directive can be used in a program instead of specifying the /NO option. If both an option and
directive are specified, then the option setting will take precedence.

Refer to Section 4.12.24.1, “Object File Output Control (OBJ, NOOBJ),” regarding the OBJ and
NOOBJ directives.

m Examplem
RAS66K FOO.ASM /OOUTPUT.OBJ

In this example, the generation of object file OUTPUT.OBJ s specified.
RAS66K FOO.ASM /NO

In this example, no generation of an object file is specified.

(17) Output of Assembly Level Debugging Information (/D, /ND)
m Syntax m

/D

IND
m Description m
When the /D option is specified, RAS66K will output assembly level debugging information to the
object file. Symbolic debugging of the program is made possible by including debugging informa-

tion in the object file

When the /ND option is specified, RAS66K will not output assembly level debugging information
to the object file.

The default isto not output debugging information to the object file

m Corresponding Directivem

The DEBUG directive can be used in a program instead of specifying the /D option. The NODE-
BUG directive can be used in a program instead of specifying the /ND option. If both an option
and directive are specified, then the option setting will take precedence.

Refer to Section 4.12.24.2, “Assembly Level Debugging Information Output Control (DEBUG,
NODEBUG),” regarding the DEBUG and NODEBUG directives.

4-19

Chapter 4, RAS66K

m Examplem
RAS66K FOO.ASM /D

In this example, assembly level debugging information will be output to the object file.

(18) Error Message Output Control (/E, /NE)
® Syntax m

E [enor fie]

INE
m Description m
The /E option tells RAS66K where to output error messages. When an error file name is specified
for error_file, error messages will be output to that file. Refer to Section 4.2, “File Specification
Defaults,” when all or part of the file specification is omitted.
The /NE option tells RAS66K to display error messages on the screen (standard error).
The default isto display error messages on the screen.
By using the /E option, the output destination of error messages can be controlled only for assem-
bler error messages and warnings. To output to a file error messages including fatal error mes-
sages and internal processing error messages, use the DOS redirection function.
m Corresponding Directivem
The ERR directive can be used in a program instead of specifying the /E option. The NOERR
directive can be used in a program instead of specifying the /NE option. If both an option and
directive are specified, then the option setting will take precedence.

Refer to Section 4.12.25, “Error Message Output Control (ERR, NOERR),” regarding the ERR and
NOERR directives.

m Examplem
RAS66K FOO.ASM /EERROR.LST

This example specifies generation of an error file called ERROR.LST.

4-20

Chapter 4, RAS66K

(19) Generation of EXTRN Declaration Files (/X)
m Syntax m
X [exm fle]
m Description m
When the /X option is specified, RAS66K will generate an EXTRN declaration file. The extrn_file
specifies the EXTRN declaration file. Refer to Section 4.2, “File Specification Defaults,” when all
or part of the file specification is omitted.
The default isto not generate an EXTRN declaration file.
Refer to Section 4.14, “EXTRN Declaration Files.”
m Examplem

RAS66K FOO.ASM /XEXTRN.INC

This example specifies generation of an EXTRN declaration file called EXTRN.INC.

4-21

Chapter 4, RAS66K

4.3.3 Termination Code
RASGE6K returns a value corresponding to its termination state when assembly ends. This valueis

called a termination code. The termination code can be detected using a batch file. Termination
codes are as follows.

Table4-4. Termination Codes

Code Description

0 No errors.

1 Warnings occurred.

2 Assembler errors occurred.

3 Fatal error, internal processing error, or DCL error occurred. Assembly forcibly

terminated.

4.3.4 Symbol Table

RASGB6K maintains a data table to manage symbols. This is generaly caled the symbol table.
Symbols that appear in the program and their related information are stored in the symbol table.
Information needed to generate a cross-reference list will also be stored in this table.

The size of the symbol table depends on the amount of free memory available. If the memory
capacity of the symbol table becomes insufficient, then at that point RAS66K will display an error
message and stop assembling. In such cases the following counter-measures are necessary.

* Reduce the number of user symbols.

* Shorten the length of user symbols.
» Split up the sourcefile.

4-22

Chapter 4, RAS66K

4.4 Creating Programs

A program consists of a sequence of source statements written in OLMS-66K Series assembly lan-
guage. Source statements are constructed from microcontroller instructions, directives, operands,
and comments. This section explains the fundamentals of creating programs.

4.4.1 Initial Program Code

To create an OLMS-66K Series program, you need to specify severa items at the start of the pro-
gram using directives.

» Target microcontroller specification
Specify the name of the target microcontroller using the TY PE directive.

* COMMON area specification
Specify the value set in SCB (which is the last address of the COMMON area) using the COM-
MON directive.

* Memory model specification
Specify the memory model used with the MODEL directive.

* ROM window area specification
Specify the first and last address of the ROM window area using the WINDOW directive.

Among these items, the target microcontroller name absolutely must be specified with the TYPE
directive. Specify the other items as necessary. For example, if the CPU core is nX-8/100~400,
then there is no need to specify the memory model or ROM window. If there is only one physical
segment in data memory space, then there is no need to specify the COMMON area.

If the COMMON area, memory model function, or ROM window function are valid for a target
microcontroller but the program is assembled without making their initial settings, then assembler
processing may appear to terminate correctly. However, the actual program settings and the set-
tings selected by RAS66K might be contradictory. Therefore, you must make the corresponding
initial settings when using a target microcontroller for which the COMMON area, memory model
function, or ROM window function are valid.

These initial settings are required before RAS66K begins interpreting program contents, so they
need to be specified at the start of the program. Refer to Section 4.4.1.5, “Code Position
Restrictions,” regarding the position of each directive.

4.4.1.1 Target Microcontroller Specification

To specify the target microcontroller in a program, specify the DCL file name for the microcon-
troller asthe operand of the TY PE directive. The syntax of the TY PE directiveis asfollows.

m Syntax m
TYPE (dcl_name)

RAS6E6K will read the information of a DCL file with base name dcl_name and extension “.DCL.”

4-23

Chapter 4, RAS66K

Microcontroller names and DCL file base names are very similar, but they are different in that
microcontroller names start with “MSM” while DCL file base names start with “M.” For example,
if your microcontroller is“MSM66507,” then specify “M66507” in the TY PE directive.

RASGE6K searches for the DCL filein the following order.

(1) Current directory

(2) Directory that contains RAS66K.EXE

(3) Directory specified in environment variable DCL

Refer to the DCL66K.DOC file for correct dcl_name specifications. If no TY PE directive is speci-
fied or if no DCL file can be found, then RAS66K will generate a DCL error and forcibly termi-
nate.

RAS66K reads the contents of the DCL file at the start of its assembly process. It will read to the
end of the DCL file even if thereis an error in its contents. In such a case, it will display al DCL
errors generated and forcibly terminated. |f the DCL file is read without problems, then RAS66K
will then assemble the source file.

m Examplem

If the target microcontroller is MSM 66507, then specify the following.

TYPE (M66507)

4.4.1.2 COMMON Area Specification

Microcontrollers based on the nX-8/300 or nX-8/500 CPU core have multiple physical segmentsin
data memory space. They contain an area COMMON to all physical segments called the COM-
MON area. There are four possible addresses for the end of the COMMON area. One of these can
be selected by setting the value of BCB in the PSW from 0 to 3.

To inform RAS66K of the value of BCB, specify the value set in BCB as the operand of the COM-
MON directive. The syntax of the COMMON directiveis asfollows.

m Syntax m

COMMONMCcb_value

The bcb_value specifies the value 0-3 actually set in BCB. The four possible addresses for the end
of the COMMON area differ depending on the target microcontroller.

m Examplem

When BCB is set to 3, specify the following COMMON directive.

COMMON 3

4-24

Chapter 4, RAS66K

4.4.1.3 Memory Model Specification

When using a microcontroller with a nX-8/500 CPU core and multiple physical segments, a memo-
ry model must be specified. To specify the memory model within the program, specify it as the
operand of the MODEL directive. The syntax of the MODEL directive is as follows.

m Syntax m

MODELmemory_model

Specify one of the following for memory_model.

memory_model Memory M odel

SMALL SMALL memory model
COMPACT COMPACT memory model
MEDIUM MEDIUM memory model
LARGE LARGE memory model

Refer to Section 3.2.4.3, “Memory Models.”
m Examplem
When using the LARGE memory model, specify the following.

MODEL LARGE

4414 ROM Window Area Specification

When using a microcontroller with the nX-8/500 CPU core, the ROM window function is available
for use. The ROM window function allocates a particular area of data memory space to the same
address range of program memory space. Thisareais called the ROM window function.

To use the ROM window function, write the values indicating the address range of the ROM win-
dow area to the SFR ROMWIN register. To inform RAS66K that the ROM window function is
being used, specify the start and end address of the ROM window area as operands of the WIN-
DOW directive. The syntax of the WINDOW directiveis as follows.

m Syntax m

WINDOWromwindow_start, romwindow_end

The romwindow_start is a constant expression the indicates the start address of the ROM window
area. The romwindow_start must be at least 1000H, and its lower 12 bits must be O00H.

The romwindow_end is a constant expression the indicates the end address of the ROM window
area. The romwindow_end must be at least 1000H, and its lower 12 bits must be FFFH.

Refer to Section 3.2.4.2 (9), “ROM Window Area.”

4-25

Chapter 4, RAS66K

m Examplem

When the ROM window start address is set to 5000H and end address is set to 6FFFH, specify the
following WINDOW directive.

WINDOW 5000H, 6FFFH

4.4.1.5 Code Position Restrictions

The TYPE, COMMON, MODEL, and WINDOW directives described above inform RAS66K of
initial program settings. RAS66K manages memory space and performs SFR access checks based
on thisinformation. Accordingly, these settings must be coded at the beginning of the program.

Thisleads to the following restrictions on the code position of each directive.

 Directivesthat may be coded before a TY PE or MODEL directive are as follows.

INCLUDE DEFINE F IFDEF IFNDEF ELSE
PRN NOPRN OBJ NOOBJ ERR NOERR DEBUG
NODEBUQIST NOLIST SYM NOSYM REF NOREF

PAGE DATE TITLE TAB

 Directives that may be coded before a COMMON or WINDOW directive are as follows.

INCLUDE DEFINE F IFDEF IFNDEF ELSE

PRN NOPRN OBJ NOOBJ ERR NOERR DEBUG
NODEBUQIST NOLIST SYM NOSYM REF NOREF
PAGE DATE TITLE TAB TYPE EQU SET
CODE CBIT DATA BIT EDATA EBIT MODEL

m Examplem
The example below follows the rules above.
SYM

REF
TAB 4

TYPE (M66507)
MODEL LARGE

ROMWBASE DATA 5000H
ROMWTOP DATA 7FFFH

BCB EQU 3

WINDOW ROMXBASE,ROMWTOP
COMMON BCB

4-26

Chapter 4, RAS66K

4.4.2 Program End Specification
The END directive specifiesthe end of a program. The syntax of the END directiveis asfollows.
m Syntax m

END

RASE6K will not assemble statements following the END directive. If a program has no END
directive, then RAS66K will assemble until the end of thefile.

m Examplem
Here isasimple example of program format.

TYPE(M66507)
NOP
END

This program consists of three source statements. The first source statement “TY PE(M66507)" is a
directive that specifies the microcontroller. The second source statement “NOP” is a microcon-
troller instruction. The third source statement “END” is the directive that indicates the end of the
program.

4.4.3 Writing Source Statements

There are three types of source statements.

 Instruction statements

» Directive statements

e Specia statements

Source statements always reside in some logical segment. That logical segment is determined by
the position in the program where the source statement is located.

4.4.3.1 Writing Instruction Statements

Instruction statements are source statements that code OLMS-66K Series instructions. Instruction
statements have four fields. The order in which the fields appear cannot be changed. Instruction
statements end with a carriage return code.

Instruction statements have the following syntax.

m Syntax m

[b field] operation field [operand field][comment field]

4-27

Chapter 4, RAS66K

m Description m
Each field is described below.

« label_field
A labdl is specified in the labelfield. A label isasymbol that takes the address of the instruction
statement as its value. A colon (;) must be coded after the label. The label takes an address
within the logical segment in which its instruction statement resides. This is sometimes
expressed by saying that the label resides in the logical segment.

» operation field
A microcontroller instruction is specified in the operationfield. Refer to related documentation
for details on instructions.

» operand field
Operands required by the microcontroller instruction are specified in the operandfield. Refer to

related documentation regarding operands required by instructions. Refer to Section 4.11,
“Addressing Modes,” for operand syntax.

o comment_field
A string that begins with a semicolon (;) and ends with a carriage return code is coded in the
commentfield. Strings coded in thisfield have no effect on assembly.

m Examplem
MOV ERO,#0FFFFH ;comment field

This source statement is an instruction statement. MOV is the microcontroller instruction.
“ERO,#0FFFFH" are the operands. Following the semicolon (;) isacomment.

4.4.3.2 Writing Directive Statements

Directive statements are source statements that code RAS66K directives. The syntax of directive
statements differs for each directive. However, comments that begin with a semicolon (;) and end
with a carriage return code can be coded at the end of all directive statements. The end of a direc-
tive statement is a carriage return code.

Refer to Section 4.12, “ Directives,” to see how to write each directive statement.

4.4.3.3 Writing Special Statements

Specia statements are source statements that are neither instructions nor directives. A specia state-
ment is a source statement that consists of a carriage return only or a label or comment only fol-
lowed by acarriage return. Special statements have the following syntax.

m Syntax m

[label field] [comment field]

4-28

Chapter 4, RAS66K

m Examplem

LABEL1:
LABEL1X:

MOV ERO,#0FFFFH ;comment field
LABEL2: ;source statement with label and comment only

;source statement with comment only
This example includes several special statements. The first and second lines are source statements
with labels only. The fourth line is a source statement with only a carriage return code. The fifth

line is a source statement with a label and comment only. The sixth line is a source statement with
acomment only.

4.4.4 Block Comments
m Syntax m

[* characters*/
m Description m
Multi-line comments are possible by using block comments.
A block comment starts with /* and ends with */. RAS66K assembly ignores these block com-
ments. The characters are coded with a string. The string can be built from characters including
carriage return codes, except for the block comment termination code (*/). Thus, block comments
can cross multiple lines. Block comments can be nested.

m Examplem

Below is an example that makes use of several block comments.

SYM1 EQU 100H FThisis

a block comment. %
MOV ERO#SYM1 ;comment field
/*

Thislineisablock comment
*/
[* Thisis/* ablock comment /*
nested */ three levels */
deep.
*/

4-29

Chapter 4, RAS66K

4.5 Coding Logical Segments

Logical segments are contiguous areas in address space. When you create a program using OLMS-
66K assembly language, all source statements reside in these logical segments.

Logica segment types correspond to address space as below.

Table4-5. Logical Segments

L ogical Segment Description

CODE segment Logical segment that residesin CODE address space.
DATA segment Logical segment that residesin DATA address space.
BIT segment Logical segment that residesin BIT address space.
EDATA segment Logical segment that residesin EDATA address space.
EBIT segment Logical segment that resides in EBIT address space.

Which parts of the source file become which logical segments is defined using directives. Below
are the directives that define each logical segment.

Table 4-6. Directives For Defining L ogical Segments

L ogical Segment Directive
CODE segment CSEG, RSEG
DATA segment DSEG, RSEG
BIT segment BSEG, RSEG
EDATA segment ESEG, RSEG
EBIT segment EBSEG, RSEG

There are two types of directives for defining logical segments. The RSEG directive is explained
later. An example using CSEG, DSEG, and BSEG directives is described below.

m Examplem
DSEG —
DATA segment range
iBSEG —
BIT segment range
.CSEG _
CODE segment range

4-30

Chapter 4, RAS66K

In this example, the DATA segment begins where the DSEG directive is coded. After that, the BIT
segment begins where the BSEG directive is coded. After that, the CODE segment begins where
the CSEG directive is coded.

Thus, alogical segment definition is valid until the next logical segment is defined. A logical seg-
ment in a program is a group of contiguous source statements. A source statement will always
reside in some logical segment.

A logical segment is allocated within a single physical segment. Logical segments that extend
across multiple physica segments cannot be defined. In addition, logical segments cannot be
placed in the SFR area.

4.5.1 Source Statements Coded In Logical Segments

To create a program in assembly language, one must be aware of logical segments. In other words,
source statements for CODE address space must coded after the CODE segment is defined.
Similarly, source statements for DATA address space, BIT address space, EDATA address space,
and EBIT address space must be coded after the corresponding segment is defined. The following
source statements are coded mainly in their respective logical segments.

(1) Source statements coded mainly in the CODE segment
 Instruction statements

« DB and DW directive statements for initializing specified values
e GJIMP and GCAL directives for conversion to optimal branch instructions

(2) Source statements coded mainly in the DATA segment

» DSdirective statements for reserving byte-wide data

(3) Source statements coded mainly in the BIT segment

« DBIT directive statements for reserving bit-wide data

(4) Source statements coded mainly in the EDATA segment

« DB and DW directive statements for initializing specified values
« DSdirective statements for reserving byte-wide data

(5) Source statements coded mainly in the EBIT segment

« DBIT directive statements for reserving bit-wide data

Source statements other than those above can be coded in all logical segments.
4.5.2 Absolute Segments And Relocatable Segments
The various logical segments can be divided into two types.

e Absolute segments
« Relocatable segments

4-31

Chapter 4, RAS66K

Absolute segments are logical segments for which RAS66K can determine addresses during assem-
bly. Relocatable segments are logical segments for which RAS66K cannot determine addresses
during assembly. RL66K determines rel ocatable segment addresses.

Each type of logical segment is defined using directives.
4.5.2.1 Absolute Segments

Absolute segments are logical segments for which RAS66K can determine addresses during assem-
bly. Absolute segments are managed in each physical segment. The following items can be speci-
fied when defining an absolute segment.

 Starting address of the absolute segment.
» Physical segment address where the absolute segment resides.

If these items are not specified, then they will inherit their specifications form the preceding speci-
fied absolute segment. For details on how they are inherited, refer to Section 4.12.7, “ Absolute
Segment Definitions.”

If multiple absolute segments have the same physical segment address within a single program,
then unless the starting addresses of the absolute segments are specified, these absolute segments
will be placed contiguously in memory. In other words, these absolute segments will become a sin-
gle absolute segment.

The source statements from the start of the program until the first logical segment is defined will be
an absolute segment residing in code address space. Accordingly, if no logica segments are
defined in a program, then the entire program will be this segment. This segment’s physical seg-
ment address will be 0, and it will start at address O within the physical segment.

Terminology for absolute segments depends on the address space in which they reside.

Table 4-7. Absolute Segments

Absolute Segment Description

Absolute CODE segment Absolute segment residing in CODE address space.
Absolute DATA segment Absolute segment residing in DATA address space.
Absolute BIT segment Absolute segment residing in BIT address space.
Absolute EDATA segment Absolute segment residing in EDATA address space.
Absolute EBIT segment Absolute segment residing in EBIT address space.

The absolute segments that reside in each address space are defined using the following directives.

4-32

Chapter 4, RAS66K

Table 4-8. Directives For Defining Absolute Segments

Directive Description
CSEG Defines an absolute CODE segment.
DSEG Defines an absolute DATA segment.
BSEG Defines an absolute BIT segment.
ESEG Defines an absolute EDATA segment.
EBSEG Defines an absolute EBIT segment.
m Examplem
CSEG #1 AT 100H ;Absolute CODE segment definition (1)
NOP
DSEG #0 ;Absolute DATA segment definition (1)
LABELTY:
bs 2
CSEG #1 ;Absolute CODE segment definition (2)
MOV ERO#0
DSEG ;Absolute DATA segment definition (2)
LABELS:
LS 2

In this example, four absolute segments are defined. Absolute CODE segment definition (1) speci-
fies the physical segment address as 1 and the starting address in that physical segment as 100H.
Absolute CODE segment definition (2) does not specify a starting address, so it will inherit the
address of absolute CODE segment (1) in the same physical segment. In other words, the “MOV
RO,#0" instruction will be placed at the address following the NOP instruction.

Absolute DATA segment definition (1) defines the physical segment address as 0, but does not
specify a starting address in that physical segment. Absolute DATA segment definition (2) does
not specify either a physical segment address or a starting address. This segment will therefore
inherit the address of absolute DATA segment (1).

4-33

Chapter 4, RAS66K

4.5.2.2 Relocatable Segments

Relocatable segments are logical segments for which RAS66K cannot determine addresses during
assembly. RL66K determines relocatable segment addresses. RASG66K manages relocatable seg-
ments with segment symbols. |f there are multiple relocatable segments in a single source file
defined using the same segment symbol, then these rel ocatable segments will be allocated contigu-
ously in memory. They will be allocated in their order of definition.

If relocatable segments are defined in different source files using the same segment symbol, then
RL66K will link them before allocating them in memory. The value of the segment symbol will be
the starting address of the linked segment. The relocatable segments linked by RL66K are called
partial segments. Refer to Section 5.5, “Link Processing,” regarding address resolution and linking
order of relocatable segments.

Terminology for relocatable segments depends on the address space in which they reside.

Table 4-9. Relocatable Segments

Relocatable Segment Description

Relocatable CODE segment Rel ocatable segment residing in CODE address space.
Relocatable DATA segment Relocatable segment residing in DATA address space.
Relocatable BIT segment Relocatable segment residing in BIT address space.
Relocatable EDATA segment Relocatable segment residing in EDATA address space.
Relocatable EBIT segment Relocatable segment residing in EBIT address space.

The relocatable segments that reside in each address space are defined using the following direc-
tive.

Table 4-10. Directive For Defining Relocatable Segments

Directive Description
RSEG Defines a rel ocatable segment.

Segment symbols are specified as operands of RSEG directives. They are defined using SEG-
MENT directives. When one defines a segment symbol, one also specifies the address space in
which their relocatable segments will reside is also specified.

4-34

Chapter 4, RAS66K

m Examplem

CODESEG2 SEGMENT CODE #1 ;Segment symbol (CODESEG2) definition
DATASEG2 SEGMENT DATA ;Segment symbol (DATASEG?2) definition
RSEG CODESEG2 ;Relocatable CODE segment definition
NOP
RSEG DATASEG2 ;Relocatable DATA segment definition
LABEL9:
bs 2
RSEG CODESEG2 ;Relocatable CODE segment definition
MOV ERO#0

In this example, two segment symbols (CODESEG2 and DATASEG?2) are defined. These are used
to define relocatable segments. Segment symbols are defined using the SEGMENT directive.
Relocatable segments are defined using the RSEG directive. When one defines a segment symbol,
one aso specifies the address space in which relocatable segments corresponding to that segment
symbol will be allocated. The physical segment in which they will be alocated can also be speci-
fied.

In this example, when the segment symbol CODESEG?2 is defined, its allocation in code address
space (CODE) and allocation in a physical segment (#1) are specified. When the segment symbol
DATASEG? is defined, its alocation in data address space (DATA) is specified, but its alocation
in which physical segment is not specified. In this case RL66K will determine in which physical
segment the relocatable segment will be allocated.

Also in this example, two relocatable CODE segments are defined using the one segment symbol
CODESEG2. These two relocatable CODE segments will be allocated contiguously in memory. In
other words, the“MOV ERO,#0" instruction will be placed following the NOP instruction.

As shown by this example, an absolute address for allocated a rel ocatable segment cannot be speci-
fied. The purpose of relocatable segments is to allow programs to be written independent of the
absolute addresses at which those logical segments will be placed. To specify the absolute address
at which arelocatable segment isto be allocated, specify it as an option when RL66K isinvoked.

4-35

Chapter 4, RAS66K

4.5.3 COMMON Area
4.5.3.1 Data Memory Space Seen By RAS66K

The COMMON area of data memory space is an area common to all physical ssgments. This area
does not reside in any particular physical segment. In other words, the concept of physical segment
addresses does not exist within the COMMON area.

In order to realize this feature, RAS66K handles the COMMON area and the individual physical
segments as independent logical spaces. Data memory space can therefore be considered to have
the following memory map.

Physical Physical Physical Physical
Segment 0 Segment 1 Segment 2 Segment max.

0000H

RAS66K handles the COMMON area as
COMMON independent, separate address spaces.

area However, the COMMON areas are physically
the same space.

common_max

Each physical segment is physically
independent of the others.

OFFFFH

As shown in this figure, the COMMON areais independent of other physical segments. Its address
range is O000H to common _max. The address range of each physical segment is 0000H to
OFFFFH.

The programmer should be aware of the following point. This figure appears to show that the
COMMON area and the address spaces from 0000H to common_max are mutually independent.
However, this is how RAS66K views the address space. Actually the range from 0000H to com+
mon_max existsin only one physical space.

4-36

Chapter 4, RAS66K

4.5.3.2 Segment Allocation To COMMON Area

The programming technique for allocating a DATA segment or BIT segment to the COMMON
area is dightly different from the techniques introduced until now. The difference is that the key-
word “COMMON” must be added.

Below is an example showing an absolute DATA segment allocated to the COMMON area.

m Examplem

DSEG AT 200H COMMON
DS 10H

In this example, a 10H-byte area from COMMON area address 200H will be reserved. In examples
until now physical segment addresses like “#1” were specified, but here “COMMON" is specified.

Next is an example showing arelocatable DATA segment allocated to the COMMON area.

m Examplem

COM_TBL SEGMENT DATA COMMON
RSEG COM TBL
DS 10H

Asin the first example this reserves a 10H-byte area, because it is a rel ocatable segment there is no
start address. However, “COMMON?” is specified when segment symbol COM_TBL is defined, so
RL66K will allocate this segment to the COMMON area.

Thus, by specifying “COMMON" when a segment is defined (whether absolute or relocatable), it
is guaranteed to be allocated to the COMMON area. Segments that are clearly allocated in the
COMMON areawith the“COMMON?" specification are called common segments.

Ordinary segment addresses are expressed as a physical segment address and an offset address, but
common segment addresses have no physical segment address. Addresses greater than the end
address of the COMMON area cannot be reserved in the common segment. DSR checks are not
performed when addresses in a common segment are accessed. These are the differences in how
RAS66K handles common segments and ordinary segments.

4-37

Chapter 4, RAS66K

m Information m

Specifications that allocate rel ocatable segments with special conditions, such as“COMMON,” are
called special area attributes. Other special area attributes are “WINDOW,” which specifies alo-
cation to the ROM window area, and “ACAL,” which specifies allocation to the ACAL area.

Specifications that place conditions on the boundary values of start addresses of relocatable seg-
ments are called boundary value attributes. These are “WORD,” which specifies allocation on
word boundaries, and “PAGE,” which specifies allocation on page boundaries.

Refer to Section 4.12.8.1, “Segment Symbol Definition (SEGMENT),” regarding specia area
attributes and boundary value attributes.

4-38

Chapter 4, RAS66K

4.5.4 Stack Segment

The stack segment is a relocatable segment that represents the stack area. The stack segment is
allocated to physical segment O of data memory space.

Use the STACKSEG directive to define the stack segment. Specify the stack size as the operand of
the STACK SEG directive.

The stack segment is a rel ocatable segment, so its start address and end address cannot be obtained
directly. However, they can be obtained by referring symbols.

The stack segment start address can be obtained by referring the symbol $STACK. $STACK isthe
name of the stack segment. It is automatically generated by RAS66K when the stack segment is
defined.

The initia value of SSP is also one less than the stack segment end address. It can be obtained by
referring the symbol _$$SSP. $$SSP is not automatically generated. To refer $$SSP, it must be
declared using the EXTRN directive beforeit is used in a program.

$STACK

Stack Segment

_$$ssP

m Examplem

STACKSEG 200H
EXTRN DATA._$$SSP
MOV SSP# $$SSP

This example first defines a stack segment with stack size of 200H bytes. Then it declares _$$SSP
with EXTRN. Finally it setsthe stack area end address _$$SSP to the stack pointer SSP.

4-39

Chapter 4, RAS66K

4.5.5 Overlapping Logical Segments

RAS66K does not check for overlapping addresses of different logical segments, but RL66K does.
However, neither RAS66K nor RL66K checks for overlapping addresses within the same logical
segment. Refer to the following examples.

m Examplelm

CSEG #0 AT 100H
DW 0

ORG 200H

DwW 1

CSEG #0 AT 200H
DW 2

In this example, two absolute segments overlap at address 200H. However, this will not cause an
error during assembly. RL66K will output a message during linking.

m Example2m
CSEG #0 AT 300H
DW 3
ORG 300H
DW 4

In this example, address 300H of the CODE segment is initialized twice. This is fundamentally
incorrect code, but no error will occur during assembly or linking.

4-40

Chapter 4, RAS66K

4.6 Location Counter

During assembly, RAS66K normally stores the address of the logical segment that it is currently
assembling. The counters that store these addresses are called location counters.

Relocatable segments each have their own location counters. For absolute segments, a location
counter is provided for each physical segment of address space.

4.6.1 Location Counter Initialization

(1) Initialization of location counter s of relocatable segments

Relocatable segments each have their own location counters. When a segment symbol is defined,
the corresponding location counter isinitialized to zero.

(2) Initialization of location counter s of absolute segments

For absolute segments, a location counter is provided for each physical segment of address space.
Each location counter isinitialized when RASE6K isinvoked.

Absolute segment |location counters are initialized in the following ways.

CODE address space location counters

All physical segment location counters are initialized to the minimum address of physical seg-
ments in CODE address space, as defined in the DCL file.

DATA address space location counters

The location counters of the COMMON area and physical segment O are initialized to the mini-
mum address outside the SFR but within the offset addresses of DATA address space, as defined
in the DCL file. Location counters of physical segments above O are initialized to the starting
address of the separate area.

BIT address space location counters

The location counters of the COMMON area and physical segment O are initialized to the mini-
mum address outside the SFR but within the offset addresses of BIT address space, as defined in
the DCL file. Location counters of physical segments above O are initialized to the starting
address (bit address) of the separate area.

EDATA address space |ocation counter

The location counter of EDATA address space is initialized to the starting address of the EEP-
ROM area, as defined in the DCL file.

EBIT address space location counter

The location counter of EBIT address space is initialized to the starting address (bit address) of
the separate area, as defined in the DCL file.

4-41

Chapter 4, RAS66K

4.6.2 Changing Location Counter Values

The various location counters are modified by using the microcontroller instructions or directives
explained below.

 Starting address specification when absol ute segment is defined.

If a starting address is specified when an absolute segment is defined, then the location counter
will be changed to that address value.

» Microcontroller instructions

The value of CODE segment location counters will increase by the number of words in each
instruction.

* GJIMP, GCAL directive

The value of CODE segment location counters will increase by the number of bytes of the con-
verted branch instruction.

» DSdirective

The value of DATA, EDATA, and CODE segment location counters will increase by the value
of the operand.

» DBIT directive

The value of BIT and EBIT segment location counters will increase by the value indicated by
the operand.

» DB, DW directive

The value of CODE and EDATA segment location counters will increase by the total number of
words in the operands.

* ORG directive

The value of segment location counters will become the value of the operand.
4.6.3 Referring Location Counter Values
By using the dollar sign ($), a source statement can refer the value of the current location counter of
the logical segment in which it resides. The dollar sign ($) is called the location counter symbol.

For details, refer to Section 4.8.4, “Location Counter Symbol,” and Section 4.8.5.2, “Usage Types
and Physical Segment Attributes.”

4-42

Chapter 4, RAS66K

4.7 Conditional Assembly and Macros

Conditional assembly and macros can raise program development efficiency and make programs
easier to read and maintain. This section explains the use of conditional assembly and macros.

4.7.1 Using Conditional Assembly

By using conditional assembly, you can control assembly such that blocks in a program are assem-
bled only when particular conditions are met.

Below isasimple example.
m Examplem

IF Sw==1

BUFSIZE EQU 200H
ELSE

BUFSIZE EQU 400H
ENDIF

In this example, if the value of SW is 1, then BUFSIZE will be set to 200H. Otherwise, BUFSIZE
will be set to 400H.

As shown here, conditional assembly is realized by coding conditional assembly directives.
Conditional assembly directives have the following syntax.

I Fxxx conditional _operand
true_conditional_body
ENDIF

or

I Fxxx conditional_operand
true_conditional _body
ELSE
false_conditional_body
ENDIF

Here | Fxxx represents one of the following conditional assembly directives.

IF IFDEF IFNDEF

The conditional_operand provides the true or false condition for conditional assembly. The speci-
fication for conditional_operand differs depending on the conditional assembly directive.

If the condition is true, then the statement block of true_conditional _body will be assembled. If the
condition is false, then the statement block of true_conditional_body will be skipped. If thereis an
ELSE directive in this case, then the false conditional_body will be assembled. Conditional
assembly directives can be nested up to 15 levels.

4-43

Chapter 4, RAS66K

The next sections explain the syntax of conditional assembly directives and how they determine if
conditions are true or false.

4.7.1.1 IF Directive
m Syntax m

F constant_expression

m Description m
The constant_expression is a constant expression that does not include forward references.

The condition will be true if constant_expression evaluates to a value other than 0. The condition
will befalse if constant_expression evaluates to 0.

m Examplem

SW EQU 1

IF Sw==1

INCLUDE (SYMDEFL.INC)
ELSE

INCLUDE (SYMDEF2.INC)
ENDIF

In this example, the value of SW is 1, so the condition will be true. Therefore SYMDEF1.INC will
be included.

4.7.1.2 IFDEF Directive
m Syntax m

IFDEF symbol

m Description m
The symbol is any symbol other than areserved word.

The condition will be true if symbol is a symbol that has already been defined. The condition will
be false if symbol was not defined before this |FDEF directive was encountered.

4-44

Chapter 4, RAS66K

m Examplem

DEFSYMEQU 1

IFDEF DEFSYM

INCLUDE (SYMDEF1.INC)
ELSE

INCLUDE (SYMDEF2.INC)
ENDIF

In this example, DEFSYM was previously defined, so the condition will be true. Therefore,
SYMDEF1.INC will beincluded.

4.7.1.3 IFNDEF Directive
m Syntax m

IFNDEF symbol

m Description m
The symbol is any symbol other than a reserved word.

The condition will be true if symbol was not defined before this IFNDEF directive was encoun-
tered. The condition will be falseif symbol isasymbol that has already been defined.

m Examplem
DEFSYM EQU 1
IFNDEF DEFSYM
INCLUDE (SYMDEF1.INC)
ELSE
INCLUDE (SYMDEF2.INC)
ENDIF

In this example, DEFSYM was previously defined, so the condition will be false. Therefore,
SYMDEF2.INC will be included.

4-45

Chapter 4, RAS66K

4.7.2 Using Macros

Macros assign text strings to symbol names. Frequently used repetitive code can be programmed
more easily through the use of macros.

m Syntax m
DEFINE symbol “ macro_body ”

The symbol specifies the macro symbol being defined. The macro_body specifies the string to be
assigned to symbol.

A macro can be used after the DEFINE directive statement that definesit. When RAS66K encoun-
ters the macro symboal, it replaces the macro with the original macro_body string before assembling.

m Examplem

DEANELA LA

DEFINE RWSEG "SEGMENT CODE WINDOW"
LA ERO

LA X1]

SEG1 RWSEG

In this example, “L A” isassigned to LA, and “SEGMENT CODE ROMWINDOW” is assigned to
RWSEG.

Separate macros can be coded in macro_body. Thisis called macro nesting. Macros can be nested
up to 8 levels.

m Information m
The RAS66K macro functionisvery simple. RAS66K cannot define macros of multiple statements
or macros with parameters. If you want to use high-level macro functions, you should use the

macroprocessor MP.

Refer to the Macroprocessor MP User's Manual for more information about the macroprocessor
MP.

4-46

Chapter 4, RAS66K

4.8 Program Elements

Program elements are character set, constants, symbols, and location counter symbol that RA S66K
uses in programs.

4.8.1 Character Set
The following types of characters can be used in programs.

« Letters, digits, underscore, question mark, dollar sign
* White space

« Linefeed code, carriage return code

e Specia characters

e Operators

» Escape sequences

However, character constants, string constants, and comments can use all characters expressible
with 1-byte codes (OOH-0FFH).

4.8.1.1 Letters, Digits, Underscore, Question Mark, Dollar Sign

Upper-case and lower-case |etters, decimal Arabic digits, the underscore (_), and question mark (?)
, and dollar sign ($) can be used in programs. These are listed below.

Usable characters

Upper-case | etters ABCDEFGHIJKLMNOPQRSTUVWXY Z
Lower-case |etters abcdefghijklmnopgrstuvwxyz

Decimal digits 0123456789

Underscore

Question mark ?

Dollar sign $

4.8.1.2 White Space

Spaces (20H) and tabs (09H) have the role of delimiting adjacent elements in source statements.
These are called white space. A string of white space characters has the same meaning as a single
white space character.

4.8.1.3 Line Feed Code, Carriage Return Code

A line feed code (OAH) indicates the end of a source statement. Carriage return codes (ODH) have
no syntactical meaning. RAS66K skips over carriage return code.

4-47

Chapter 4, RAS66K

4.8.1.4 Special Characters

Specia characters are characters that give special meaning to the elements that precede or follow
them. Specia characters are listed below.

Table4-11. Special Characters

Character Description

Specifies immediate addressing.
Specifies physical segment address.
$ Specifies |ocation counter symbol.
, Used for operator delimiters.
Specifies alabel.
Used to delimit usage type and symbol in EXTRN and COMM directives.
Used to delimit physical segment addresses and offset addressesin address

expressions.
Starts a comment.
[] Specifies indirect addressing.

Specifies a character constant.
Specifies a string constant.

\ Specifies current page addressing.

4.8.1.5 Operators

Operators are specified by either single characters or groups of characters. Refer to Section 4.9.2,
“Operators,” for the function of each operator. Operators are listed below.

() -

- - * / %
< >

< <= > >= = 1=
& A | & &

l
HIGH MID LOW SEG OFFSET
PAGE LREG BPOS SIZE

4-48

Chapter 4, RAS66K

4.8.1.6 Escape Sequences

Escape sequences can be used in character constants and string constants. An escape sequence is a
backslash (\) followed by a character or digits. The types of escape sequences are listed below.

Table4-12. Escape Sequences

Syntax Description

\nnn The nnn indicates an octal number of one to three digits. The escape sequence will be
replaced by the value of this octal number. The value of the octal number must be within
the range 0-255.

\xnn, \Xnn The nn indicates a hexadecimal number of one or two digits. The escape sequence will be
replaced by the value of this hexadecimal number. The value of the hexadecimal number
must be within the range 0-255.

\a Thisis converted to 07H.

\b Thisis converted to 08H.

\f Thisis converted to OCH.

\n Thisis converted to OAH.

\r Thisis converted to ODH.

\t Thisis converted to 09H.

\v Thisis converted to OBH.

\char The char indicates an ASCII character. other than a, b, f, n, r, t, and v. The escape code

will be replaced by the 1-byte code corresponding to this character.

m Examplesm

Examples of escape sequences are shown below. The value that each escape sequence will become
is shown as a hexadecimal number.

Escape sequence Value
\0 00H
\47 27H
\377 OFFH
\8 38H
\047 27H
\x0 00H
\XA OAH
\XFF OFFH
\xOF OFH
\F 46H
\a 07H
\n 0OAH

4-49

Chapter 4, RAS66K

4.8.2 Constants

Constants are numbers, characters, and strings that are used as a fixed value in the program.
RASG6K recognizes the following constants.

¢ Integer constants

¢ Address constants

¢ Character constants

e String constants

4.8.2.1 Integer Constants

m Syntax m

§68686

m Description m

Integer constants are integers expressible by 32 bits. Binary, octal, decimal, and hexadecimal num-
bers can be used as integer constants. The radix is specified by appending a radix specifier to the
number. If the radix specifier is omitted, then the number will be taken as decimal.

The hdigits, ddigits, odigits, and bdigits code hexadecimal, decimal, octal, and binary, respectively.
In order to distinguish them from symbols, integer constants must have a digit 0-9 as their first
character. Thus, if the first character of a hexadecima number would be a letter, then it must be
prefixed with the digit O.

To make programs easier to read, underscores () can be used within strings that express numbers.
However, an underscore () cannot be the first character of an integer constant.

The characters that can be used in constants of each radix and the radix specifiers are listed below.

Table4-13. Radix Specifiers

Radix Specifier Description Usable Characters

H, h Hexadecimal 0123456789ABCDEFabcdef _
D,d Decimal 0123456789

0,0,Q,q Octal 01234567_

B,b Binary 01

Either upper-case or lower-case letters can be used as radix specifiers. Also, both upper-case and
lower-case |etters can be used in hexadecimal numbers.

4-50

Chapter 4, RAS66K

m Examplesm

The decimal number 256 specified in hexadecimal, decimal, octal, and binary are coded as below.

Description
Hexadecimal 100H
Decimal 256 256D
Octal 4000 400Q
Binary 1000000008

Also, the meaning of the integer constant will not change even if several digits O are prefixed to it.
The following code also show decimal 256.

Description
Hexadecimal 00100H
Decimal 0256 00256D
Octal 0004000 000400Q
Binary 0001000000008

Shown below are some examples of decimal 256 using underscores.

Description
Hexadecimal 1 00H 1.00H
Binary 1.0000_0000B 1 0000 0000 B

4-51

Chapter 4, RAS66K

4.8.2.2 Address Constants
m Syntax m
integer_constantl linteger_constant2
m Description m
Address constants directly express addresses in address space.
Address constants are expressed with two fields: a physical segment address and an offset address.
The integer_constantl is an integer expression that indicates the physical segment address. Its
value must be 0-OFFH. The integer_constant? is an integer expression that indicates the offset

address. Its value must be O-7FFFFH.

The integer_constant1 and integer_constant2 are delimited by a colon (:). Spaces and tabs cannot
be inserted before or after the colon ().

An address expression itself does not express the type of address space. RAS66K determines the
address space for the address expression based on the instruction or directive of the source state-
ment in which it is coded.

m Examplem

The example below expresses an addressin DATA address space at physical segment address 2 and
offset address 1000H.

MOV ERO,2:1000H
D_ADR DATA 2:1000H

The example below expresses an address in CODE address space at physical segment address 2 and
offset address 1000H.

FJ 2:1000H
C_ADR CODE 2:1000H

4-52

Chapter 4, RAS66K

4.8.2.3 Character Constants
m Syntax m

"char '
m Description m
Character constants are converted to the 1-byte codes of their specified characters. The char
specifies a character expressed by a 1-byte code. It can also be an escape sequence that expresses a
1-byte code. If the character or escape sequence is omitted, then the character constant’s value will
be OH.

m Examplesm

Examples of character constants are shown below. The value represented by each character con-
stant is shown by a hexadecimal integer constant.

Character Constant Value
O0H
A 41H
0 00H
M7 27H
\377 OFFH
8 38H
047 27H
w0 00H
A OAH
WFF OFFH
WOF OFH
v 46H
\ 27H

4-53

Chapter 4, RAS66K

4.8.2.4 String Constants
m Syntax m

"characters "
m Description m
String constants are strings enclosed in double quotation marks (*) that are used to initialize code
memory. The characters specify astring. All escape sequences and all characters expressed by 1-
byte codes can be coded within a string. Strings must be expressible with 256 bytes of code or
fewer.

m Examplesm

Some examples of string constants used as operands of DB and DW directives are shown below.
The code values are shown as hexadecimal integer constants in the comments.

DB "STRING" ;53H, 54H, 52H, 49H, 4EH, 47H

DB "\111\222" ;49H, 92H
DB "10\XFF" ;10H, OFFH

4-54

Chapter 4, RAS66K

4.8.3 Symbols
Symbols are names that represent the following items.

Numbers

Addresses

Rel ocatable segments
Instructions

Directives

Registers

Register addresses

Operators

Addressing types

Special operands of instructions
Specia operands of directives
Macros

Symbols are either symbols defined in a program or symbols aready provided by RASG66K.
Symbols defined in a program are called user symbols, and symbols provided by RAS66K are
called reserved words. Symbols representing numbers and addresses include both user symbols
and reserved words. Symbols that represent relocatable segments and macros are all user symbols.
Other symbols are all reserved words.

Each symbol is a string of 1 to 32 characters consisting of letters, digits, underscores, question
marks, and dollar signs. The first character must be a letter, underscore, question mark, or dollar
sign. If a symbol exceeding 32 characters is coded, then all characters beyond 32 will be ignored.
Unless it is defined using a SET directive, a symbol can be defined only once within a source file.
If asymbol is defined twice or more within a source file, then an error will occur.

4.8.3.1 User Symbols

User symbols are symbols defined by the user within the program. Reserved words cannot be
defined as user symbols.

Whether or not RAS66K will distinguish between upper-case and lower-case letters that make up
user symbols can be controlled with the /CD and /NCD option. If the /CD option is specified in a
program, then RAS66K will distinguish between upper-case and lower-case letters. If the /INCD
option is specified, then RAS66K will not distinguish between upper-case and lower-case |etters.
RAS6E6K will not distinguish between upper-case and lower-case |etters by default. However, if the
/CC option is specified, then RAS66K will distinguish between upper-case and lower-case letters
by default.

User symbols can be defined as labels or defined using directives. The methods for defining each
type of user symbol are shown below.

4-55

Chapter 4, RAS66K

Table4-14. Defining User Symbols

User Symbol Symbol Typeor Directive To Define
User symbols representing numbers EQU directive, SET directive, EXTRN directive
User symbols representing addresses Label, EQU directive, SET directive,

CODE directive, CBIT directive, DATA directive,
BIT directive, EDATA directive, EBIT directive,
COMM directive, EXTRN directive

User symbols representing SEGMENT directive
rel ocatable segments
User symbols representing macros DEFINE directive

Symbols that represent macros correspond to text strings. Any user symbol other than a macro has
avalue. Thisvalue is assigned when the symbol is defined. Symbols that represent numbers take
those numbers as values. Symbols that represent addresses take those addresses as values.
Symbols that represent relocatable segments take the first address of the areas in which the relocat-
able segments are allocated as values.

m Examplelm

Examples of definitions of user symbols that represent numbers are shown below. In this example,
SYMEQU1, SYMSET1, and SYM_EXT _NUM21 will become user symbols that represent
numbers.

SYMEQU1 EQU OFFH
SYMSET1 SET 100H
EXTRN NUMBER:SYM_EXT_NUM1

m Example2m
Examples of definitions of user symbols that represent addresses are shown below.

EXTINTOCODE 3H

EXTINTLEQU EXTINTO+1

SYMDAT1 DATA 80H

SYMBIT1BIT 80H.0

SYMSET2 SET 10H+SYMDAT1
SYM_COMM_DAT1 COMM DATA 2
EXTRN BIT:SYM_EXT_BIT1

In this example, EXTINTO, EXTINT1, SYMDAT1, SYMBIT1, SYMSET2, SYM_COMM_DAT]1,
and SYM_EXT_BIT1 will become user symbols that represent numbers.

4-56

Chapter 4, RAS66K

m Example3m

Examples of definitions of user symbols that represent relocatable segments are shown below. In
this example, MAINCOD, TABLEL, and COMBUFL1 will become user symbols that represent
relocatable segments.

MAINCOD SEGMENT CODE #0
RSEG MAINCOD

TABLE1 SEGMENT CODE #1
RSEG TABLE1
DwW 000OH
DwW 0001H

COMBUF1 SEGMENT DATA 2 COMMON
RSEG COMBUF1
052
m Example4 m

An example of a user symbol that represents a macro is shown below. In this example, MCRSYM
will become a user symbol that represents a macro.

DEFINE MCRSYM “MACROBODY”
The following explanation classifies user symbols into different types. The reason for this is that
the symbol type determines where in a program a symbol can be used. The following classifica-
tions do not include symbols representing macros.

The types of user symbols are given below.

» Absolute symbols
» Relocatable symbols

Absolute symbols are symbols for which RAS66K can determine avalue. Relocatable symbols are
symbols for which RAS66K cannot determine avalue. RL66K determines the values of relocatable
symbols.

4-57

Chapter 4, RAS66K

(1) Absolute Symbols

Absolute symboals include absolute symbols that represent numbers and absolute symbols that rep-
resent addresses. An absolute symbol is defined in one of the following ways.

» Define the symbol by coding a constant expression as the operand of alocal symbol definition
directive (EQU, SET, CODE, CBIT, DATA, BIT, EDATA, EBIT).

» Definealabel residing in an absolute segment.
m Examplem

An example of absolute symbol definitions is shown below. In this example, SYMCOD, SY M-
DAT, SYMBIT, SYMEQU, SYMSET, DATALABEL, and CODELABEL will be absolute sym-
bols.

SYMCOD CODE 100H
SYMDAT DATA 8OH

SYMBIT BIT 80HO

SYMEQU EQU (1)

SYMSET SET 10H+SYMDAT

DSEG #0 AT 280H
DATALABEL:
DS 2
CSEG #0 AT 100H
CODELABEL:
NOP
(2) Relocatable Symbols
Relocatable symbols include the following types.
e Simplerelocatable symbols
e Segment symbols
e External symbols
e Communal symbols
Each of these types of relocatable symbolsis explained below.
e Simplerelocatable symbols
Simple relocatable symbols are symbols that represent addresses of relocatable segments in the
same source program. Symbols that represent relocatable segments (segment symbols) are not

simple relocatable symbols. A ssimple relocatable symbol is defined in one of the following ways.

* Define alabel residing in arel ocatable segment.

4-58

Chapter 4, RAS66K

« Define the symbol by coding an expression that uses a simple relocatable symbol as the
operand of alocal symbol definition directive (EQU, SET, CODE, CBIT, DATA, BIT,
EDATA, EBIT).

Simple relocatable symbols reside in relocatable segments. The relocatable segment in which a
simple relocatable symbol residesis determined in one of the following ways.

« For alabel defined in arelocatable segment, the simple relocatable symbol will reside in that
relocatable segment.

« For asimple relocatable symbol defined using alocal symbol definition directive (EQU, SET,
CODE, CBIT, DATA, BIT, EDATA, EBIT), the ssimple relocatable symbol will reside in the
same segment as the simple rel ocatable segment specified in the operand.

m Examplem
An example of simple relocatable symbol definitions is shown below.

DATSEG SEGMENT DATA
RSEG DATSEG
LBUF:
051
HBUF:
051

CODSEG SEGMENT CODE
RSEG CODSEG
START:
NOP

SIMCOD CODE START+1
SIMDAT DATA LBUF+2
SIMBIT BIT (LBUF+2).0
SIMEQU EQU HBUF+2
SIMSET SET LBUF+4

In this example, LBUF, HBUF, START, SIMCOD, SIMDAT, SIMBIT, SIMEQU, and SIMSET

will become simple relocatable symbols. DATASEG and CODESEG are symbols that represent
relocatable segments; they are not simple relocatable symbols.

4-59

Chapter 4, RAS66K

e Local Symbols And Public Symbols

Unless some declaration is made for an absolute symbol or simple relocatable symbol, then that
symbol can be referred only within the source file that defines it. Such absolute symbols and simple
relocatable symbols are called local symboals.

To refer alocal symbol from another source file, the local symbol must be declared public using a
PUBLIC directive. Local symbols declared public are called public symbols.

The fact that alocal symbol can be referred only from within the source file that defines it is very
important. In general, each source file will have some independent functions, so each source file
will be created separately. If alocal symbol with the same name is used in another source file but is
not handled as a separate symbol, then there may be problems with symbol name management.

m Examplem
The following example shows an example of declaring a public symbol.

PUBLIC SYMEQU DATABUF1 ;A public symbol declaration

SYMEQU EQU 1

DATSEG2 SEGMENT DATA

RSEG DATSEG2

DATABUF1:

0s 2

In this example, SYMEQU is an absolute symbol and DATABUFL is asimple relocatable symbol.
Accordingly, these two symbols are local symbols. This example declares |ocal symbols SYMEQU
and DATABUF1 to be public using the PUBLIC directive.
e Segment Symbols
Segment symbols are symbols that represent relocatable segments. Segment symbols are defined
using the SEGMENT directive. If a segment symbol is coded as the operand of an RSEG directive,
then a relocatable segment with the name of that segment symbol will be defined. This meansthat a
segment symbol may be a segment name.
Segment symbols take as values the first address of the area in which the relocatable segment is
placed. To refer a segment symbol of another source file, one must define that segment symbol
using the SEGMENT directive.
m Examplem

WORKDAT SEGMENT DATA COMMON

CHARBUF SEGMENT DATA #2

SUB1 SEGMENT CODE

In this exampl e, the segment symbols WORKDAT, CHARBUF, and SUB1 are defined.

4-60

Chapter 4, RAS66K

e External Symbols

Public symbols and communal symbols of other source files can be referred by using external sym-
bols. External symbols are declared using the EXTRN directive.

m Examplem
The following example shows external symbol declaration

EXTRN DATA:EXTSYM1 EXTSYM2
EXTRN NUMBER:EXTSYM3 CODE:EXTSYM4

In this example, EXTSYM1 and EXTSYM2 are external symbols that represent data addresses.
EXTSYM3 is an external symbol that represents a number. EXTSY M4 is an external symbol that
represents a code address.

e Communal Symbols

A communal symbol represents the first address of a data area common to multiple source files.

If acommunal symbol with the same name has been declared in other source files, then RL66K will
alocate memory based on the maximum size of all declarations of communal symbols with the
same name. The communal symbol will represent the first address of that area.

If no communal symbol with the same name has been declared in other source files, then RL66K
will allocate memory based on the specified area size at the time of the communal symbol’s decla
ration. The communal symbol will represent the first address of that area.

Communal symbols are declared using the COMM directive.

m Examplem

A communal symbol declaration example is shown below.

COMMSYM COMM DATA 10H

In this example, COMMSYM is a communal symbol allocated to DATA address space. The com-
munal symbol’s size specification is 10H bytes.

4-61

Chapter 4, RAS66K

(3) Referring User Symbols

The value of a defined user symbol can be referred from operands of instructions and directivesin
the same sourcefile.

There are two types of user symbol references.
» Backward references

The referred symbol is defined in the source file code before the point of reference.
» Forward references

Thereferred symbol is defined in the source file code after the point of reference.

When a user symbol is referred in a microcontroller instruction operand, both backward and
forward references are permitted.

When a user symbol is referred in a directive operand, backward references are always permitted,
but depending on the directive, forward references might not be permitted. Refer to Section 4.12,
“Directives,” for directive operands that do not permit forward references.

m Examplem

In this example, both backward and forward referred symbols are coded as operands of two micro-
controller instructions (J, MOV) and two directives (DW, ORG).

BACKWARD_VALUE EQU 10H
BACKWARD_SYM EQU 100H
BACKWARD_LABEL:

J FORWARD_LABEL

MOV ERO,#FORWARD_SYM

DW FORWARD_VALUE

ORG FORWARD_VALUE ;error

ORG BACKWARD_VALUE
DW BACKWARD_VALUE
MOV ERO,BACKWARD_SYM
J BACKWARD_LABEL
FORWARD_LABEL:
FORWARD_SYM EQU 200H
FORWARD_VALUE EQU 20H

The backward referenced symbols are BACKWARD_VALUE, BACKWARD_SYM, and BACK-
WARD_LABEL. The forward referenced symbols are FORWARD_VALUE, FORWARD_SYM,
and FORWARD_LABEL. Both backward and forward references are permitted in the operands of
microcontroller instructions and DW directives. However, forward references are not permitted in
the operands of ORG directives. Accordingly, the source statement “ORG FORWARD_VALUE”
will cause an error.

4-62

Chapter 4, RAS66K

(4) Referring User Symbols From Multiple Sour ce Files
To refer the same user symbol from multiple source files, use the following types of symbols.

« Public symbols

« Externa symbols
e Communal symbols
* Segment symbols

Refer to Section 4.12.13, “Creating Programs From Multiple Source Files,” for methods of using
these symbols.

(5) Macro Symbols

Macro symbols are unusual compared to other user symbols. Ordinary user symbols are assigned
values, but macro symbols are assigned text strings. Macro symbols cannot be declared public to
refer them in source files other than whichever source file defined them.

The greatest feature of macro symbols is not the macro symbol itself, but that its assigned text
string has meaning in assembly language. That is why this manual clearly distinguishes between
macro symbols and other user symbols. When this manual mentions “user symbols,” it is nearly
always referring to symbols other than macro symbols.

4.8.3.2 Reserved Words

Reserved words are symbols already provided by RAS66K. Reversed words include the following
types.

* Instructions

 Directives

* Registers

e Operators

* Fixed microcontroller addresses
» Local register addresses

» Pointing register addresses

» Addressing specifiers

» Specia operands of instructions
» Specia operands of directives

Case sensitivity of reserved words that represent fixed microcontroller addresses can be controlled
using the /CD and /NCD options, the same as for user symbols. There is no case sensitivity for all
other reserved words.

Some symbols among the reserved words have multiple functions. Also, some reserved words are
specific only to microcontrollers with a particular CPU core. These reserved words are freed when
using other CPU cores, and can be used as user symbols.

Appendix B lists all reserved words (except those representing fixed microcontroller addresses),
their functions, and their applicable CPU cores.

4-63

Chapter 4, RAS66K

Each type of reserved word is explained below.
(D Instructions

These are microcontroller instructions that RAS66K can assemble. Refer to related documentation
for instruction functions.

(2) Directives

These are directives provided by RAS66K. Refer to Section 4.12, “Directives,” regarding directive
functions.

(3) Registers

These are symbols that represent registers. They are used as operands of microcontroller instruc-
tions. Reserved words that represent register addresses differ from those that express the registers
themselves. Refer to Section 4.11, “Addressing Modes,” for how to write operands using registers.
Hereisalist of reserved words that represent registers.

RO R1 R2 R3

R4 R5 R6 R7

ERO ER1 ER2 ER3

X1 X2 DP USP

X1L X2L DPL USPL

LRB PSW PSWH PSWL SSP
A C PR ER CR

(4) Operators

These are symbols that represent operators. They are used to code expressions. Refer to Section
4.9.2, “Operators,” regarding the use and functions of operators. Hereis alist of reserved words
representing operators.

HIGH LOW MID SEG SIZE
OFFSET PAGE LREG BPOS

(5) Fixed microcontroller addresses

These are symbols that have values of fixed addresses of the target microcontroller. They apply to
register names and register bit names of the SFR areas. RAS66K assembles these reserved words
as absolute symbols. These reserved words are defined in the DCL file. Refer to the
DCL66K.DOC file for reserved words that represent addresses.

Reserved words that represent fixed microcontroller addresses are different from other reserved
words in that they are affected by the /CD and /NCD options. By default, or if /NCD is specified,
symbols with the same spelling will be assembled as the same symbol even if they have different
combinations of upper-case and lower-case letters. If the /CD option is specified, then symbols
with the same spelling will be assembled as the same symbol only when they have the same combi-
nation of upper-case and lower-case letters.

4-64

Chapter 4, RAS66K

(6) Local register addresses

These are symbols that represent addresses in DATA memory space allocated to local registers.
Hereisalist of symbolsthat represent local register addresses.

ARO AR1 AR2 AR3
AR4 AR5 ARG AR7
AERO AER1 AER2 AER3

These symbols can be used only when the CPU core is nX-8/500. Local register addresses change
according to the value set in LRBL. To change the value of LRBL, you need to code a USING
LREG directive. RAS66K calculates local register addresses from the bank number of the local
register set specified with the USING LREG directive, and then resets the values of these symbols.

(7) Painting register addresses

These are symbols that represent addresses in DATA memory space allocated to pointing registers.
Hereisalist of symbols that represent pointing register addresses.

AX1 AX?2 ADP AUSP

Pointing register addresses change according to the value set in SCB of the PSW. To change the
value of SCB, you need to code a USING PREG directive. RAS66K calculates pointing register
addresses from the bank number of the pointing register set specified with the USING PREG direc-
tive, and then resets the values of these symbols.

(8) Addressing specifiers
These are symbols that represent types of addressing. Refer to Section 4.11, “Addressing Modes,”
for how to write operands using addressing specifiers. Here is alist of reserved words that repre-

sent addressing specifiers.

DIR OFF SFR FIX
SBAOFF SBAFIX

(9) Special operands of instructions
These are symbols with special meanings as instruction operands, such as flag names and branch

conditions of conditional jump instructions. Refer to related documentation for their actual mean-
ing and uses. Hereisalist of reserved words that represent special operands of instructions.

GT GE NC EQ NE
NZ LE LT PS NS
LTS LES GTS GES NV
ZF CYy ov NULL

(10) Special operands of directives

These are symbols with special meanings as instruction operands. Refer to Section 4.12,
“Directives,” for their actual meaning and uses.

4-65

Chapter 4, RAS66K

4.8.4 Location Counter Symbol
m Syntax m

$
m Description m
RASG6K always stores the current address of the logical segment being assembled. The counter
that stores this address is called the location counter. The value of the location counter in the cur-
rent logical segment can be referred by using the dollar sign ($). The dollar sign ($) is called the

location counter symbol.

When the location counter symbol is used in source statements in absolute segments, RAS66K will
handl e the location counter symbol as an absolute symbal.

When the location counter symbol is used in source statements in relocatable segments, RAS66K
will handle the location counter symbol as a simple relocatable symbol.

m Examplem
The example below shows use of the location counter symbol.

CODSEG SEGMENT CODE
RSEG CODSEG

MES. DB 'hepmessae’

MES_LENGTH EQU $-MES

In this example, the symbol MES LENGTH will be equal to the length of the string defined from
the address MES.

4-66

Chapter 4, RAS66K

4.8.5 Value Attributes

RASGE6K program elements that express values have severa attributes. Program elements that
express values include constants and symbols themselves, as well as expressions that combine con-
stants and symbols.

The programmer usually does not have to be concerned with the value attributes explained here
while programming. However, in some cases these attributes fulfill a critical role in programming.
For example, RAS66K makes use of value attributes in its addressing checks and addressing opti-
mizations.

4.8.5.1 Numeric Values and Address Values

Values used in programs are either simple values or addresses in memory space. Simple values are
called numeric values, and addresses in memory space are called address values.

A numeric valuesis expressed in 32 bits. An address value consists of a physical segment address
and an offset address. A physical segment addressis expressed in 8 hits, and an offset addressis
expressed in 32 hits.

m Examplem

The example below defines numeric value symbols and address value symbols using EQU, CODE,
and DATA directives.

NUMB_SYM EQU 1000H
CODE_SYM CODE 1000H
DATA_SYM DATA 1000H

In this example, NUMB_SYM is assigned 1000H as its value. Accordingly, the value of
NUMB_SYM can be called a number. CODE_SYM is assighed address 1000H in CODE address
space, and DATA_SYM is assigned address 1000H in DATA address space. Accordingly the val-
ues of CODE_SYM and DATA_SYM can be called addresses.

4-67

Chapter 4, RAS66K

4.8.5.2 Usage Types and Physical Segment Attributes
(1) Usage Types

The usage type is an attribute that indicates the purpose for using a value. Usage types are listed
below.

Table 4-15. Usage Types

Usage Type Meaning

NUMBER Element holds avalue.

CODE Element holds an address in CODE address space.

CBIT Element holds an address in CBIT address space.

DATA Element holds an addressin DATA address space.

BIT Element holds an address in BIT address space.

EDATA Element holds an addressin EDATA address space.

EBIT Element holds an address in EBIT address space.

NONE Element holds an address, but in which address space is not determined.

The usage type NUMBER indicates a value, so saying a value's usage type is NUMBER is com-
pletely equivalent to saying avalue is anumeric value.

The CODE, DATA, BIT, EDATA, and EBIT usage types are called segment types. In this manual,
the types of address spaces in which addresses reside are called segment types. The purposes for
using values and addresses are called usage types.

Usage types have the critical role of protecting addressing. Values can be coded in the operands of
many instructions and directives, but the type of value that should be coded is predetermined.
RAS66K performs checks comparing the usage types that should be used in operands and the usage
types actually used. For details refer to Section 4.10.3, “ Usage Type Checks.”

(2) Physical Segment Attributes

The physical segment attribute indicates the state of the physical segment of an address value.

This manual first described address values as having physical segment addresses, but there are sev-
eral exceptions. For one, values that represent COMMON area addresses are certainly addresses,
but they do not have a physical segment address. For another, the physical segment address of
many relocatable symbols is not known during assembly. The attribute that expresses these states
of physical segments of address valuesis the physical segment attribute.

Physical segment attribute types are listed below.

4-68

Chapter 4, RAS66K

Table 4-16. Physical Segment Attribute Types

Physical Segment Attribute Meaning

Fixed The physical segment addressis fixed.

COMMON Addressisin COMMON area

ANY The physical segment address is not fixed.

None Thereis no information about the physical segment.

RAS6E6K uses physical segment attributes for addressing checks on physical segment registers and
code generated from jump and call instructions between physical segments.

The following explanation describes the usage type and physical segment address of each program
element that represents a value.

» Attributes of Integer Constants and Character Constants

Integer constants and character constants represent numeric values, so their usage type is NUM-
BER, and they have no physical segment.

m Examplem

100H

‘A

0
These integer constants and character constants have usage type NUMBER.
 Attributes of Address Constants
Address constants express addresses but their address space is not fixed, so their usage type is
NONE. Address constants include physical segment addresses, so their physical segment addressis
fixed.

m Examplem

2:1000H
4:200H

These address constants have usage type NONE. The first is fixed in physical segment address 2,
and the second is fixed in physical segment address 4.

« Attributes of User Symbols

The usage types and physical segment attributes of user symbols differ depending on how the sym-
bols are defined. The relation between user symbol definition and usage type is shown below.

4-69

Chapter 4, RAS66K

Table4-17. User Symbol Definitions and Usage Types

Symbol Definition M ethod Usage Type

Label Will be segment type of logical segment in which label resides.
EQU directive Inherits usage type of expression of operand.

SET directive Inherits usage type of expression of operand.

CODE directive Will be usage type CODE.

CBIT directive Will be usage type CBIT.

DATA directive Will be usage type DATA.

BIT directive Will be usage type BIT.

EDATA directive Will be usage type EDATA.

EBIT directive Will be usage type EBIT.

SEGMENT directive
COMM directive
EXTRN directive

Will be usage type specified in operand of directive.
Will be usage type specified in operand of directive.
Will be usage type specified in operand of directive.

m Examplem

DSEG
SYM1:
SYM2 EQU 1
SYM3 CODE 1000H
SYM4 EQU SYM3+10H
SYM5 SEGMENT DATA
SYM6 COMM BIT 4

EXTRN NUMBER:SYM7

The usage types of symbols defined in this example are explained next.

The label SYM1 is coded immediately after the DATA segment is selected with a DSEG directive,
so its usage type will be DATA, which is the segment type of the segment in which it resides.
SYM2 is defined by an EQU directive with a numeric value as the operand, so its usage type will
be NUMBER. SYM3 is defined by a CODE directive, so its usage type will be CODE. SYM4 is
defined by an EQU directive with SYM3 (usage type: CODE) as the operand, so it will inherit the
usage type CODE. SYM5 is specified by a SEGMENT directive with DATA as the operand, so its
usage type will be DATA. SYMBG6 is specified by a COMM directive with BIT as the operand, so
its usage type will be BIT. SYM7 is specified after an EXTRN directive with NUMBER as the
operand, so its usage type will be NUMBER.

The relation between user symbol definition and physical segment attribute is shown below.

4-70

Chapter 4, RAS66K

Table 4-18. User Symbol Definitions and Physical Segment Attributes

Symbol Definition Method

Physical Segment Attribute

Label Inherits physical segment attribute of physical segment in which the
label resides.

EQU directive No physical segment attribute if operand is numeric value. Inherits

SET directive physical segment attribute of operand if operand is address value.

CODE directive Fixed to 0 if operand is numeric value. Inherits physical segment

CBIT directive attribute of operand if operand is address value.

DATA directive

BIT directive

EDATA directive
EBIT directive

Will be COMMON if EEPROM areaisincluded in the COMMON
area. Fixed to 0 if EEPROM areaisincluded in a separate area.

SEGMENT directive
COMM directive

Will be physical segment attribute specified in operand of directive.

EXTRN directive

No physical segment attribute if usage type NUMBER is specified as

the operand. Will be COMMON if usage type EDATA or EBIT is
specified as the operand and the EEPROM areaisincluded in the
COMMON area. FixedtoOif usagetype EDATA or EBIT is
specified as the operand and the EEPROM areaisincluded in a
separate area. Will be ANY for all other cases.

m Examplem
The program below defines segment symbols as an example of physical segment attributes.

SYM1 SEGMENT DATA #1
SYM2 SEGMENT DATA COMMON
SYM3 SEGMENT DATA

In this example, SYM1 is specified with #1 in the operand, so its physical segment address will be
fixedto 1. SYM2is specified with COMMON in the operand, so its physical segment attribute will
be COMMON. SYM3 is has no physical segment information in its operand, so its physical seg-
ment attribute will be ANY.

 Attributes of Reserved Words Representing Fixed Microcontroller Addresses

These are explained in the DCL66K.DOC file.

« Attributes of Reserved Words Representing Local Register Addresses
Local registers are mapped to physical segment 0 in data memory space. Therefore, reserved words

that represent local register addresses will have usage type DATA and will be fixed at physical seg-
ment address 0.

4-71

Chapter 4, RAS66K

m Examplem

TYPE (M66507)
USING LREG 4

L AAERO
In this example, the AERO coded as the second operand of the L instruction will have usage type

data and physical segment address 0. The bank is specified as 4 by the USING LREG directive, so
the offset address of AERO will be 220H (200H+8* 4+00H).

 Attributes of Reserved Words Representing Pointing Register Addresses

Pointing registers are mapped to physical segment 0 in data memory space. Therefore, reserved
words that represent pointing register addresses will have usage type DATA and will be fixed at
physical segment address 0.

m Examplem

TYPE (M66507)
USING PREG 4
L AAXL
In this example, the AX1 coded as the second operand of the L instruction will have usage type

data and physical segment address 0. The bank is specified as 2 by the USING PREG directive, so
the offset address of AX1 will be 210H (200H+8* 2+00H).

 Attributes of Location Counter Symbol

The location counter symbol is used as an operand in source statements. It will inherit its usage
type and physical segment attribute from the physical segment of each source statement in which it
resides.

m Examplem

CSEG #0
% ;Infinite loop

In this example, the location counter symbol ($) has usage type CODE, which is the segment type

of the physical segment of the source statement in which it resides. Its physical segment addressis
fixed to 0.

4-72

Chapter 4, RAS66K

4.8.5.3 Flag Attributes
This section describes user symbol flag attributes after first explaining their application.

Many OLMS-66K Series microcontroller instructions are affected by the data descriptor (DD) or
the stack flag (SF). Other instructions automatically change the state of these flags. It is very
important to manage the states of these flags when creating an OLMS-66K Series application pro-
gram.

Flag attributes indicate the states of DD and SF managed by RASE66K. Only microcontrollers with
the nX-8/300 CPU core have the SF flag.

The critical application of flag attributes is in checking flag attributes of instructions. RAS66K
saves flag states within a program and checks whether instructions are used with the appropriate
flag states. To inform RAS66K of the current flag attributes, you must code USING directives.
When the program specifies the state of DD, use the USING DATA directive. When the program
specifies the state of SF, use the OPRT directive.

The meaning of each flag state and how to specify the USING directives are shown below.

Table 4-19. Data Descriptor (DD) States

State Value Meaning USING Directive Specification
WORD DD valueis1. USING DATA WORD

BYTE DD valueisO. USING DATA BYTE

ANY Do not assume DD value. USING DATA ANY

Table 4-20. Stack Flag (SF) States

State Value Meaning USING Directive Specification
STACK SFvaueis1. USING OPRT STACK

A SFvalueisO. USING OPRT A

ANY Do not assume SF value. USING OPRT ANY

The flag state of ANY can be thought of as meaning the RAS66K will not use its flag attribute
check function. RAS66K setsthe ANY state by default.

m Examplem

USING DATA WORD

STB ARO ;Warning
In this example, the USING DATA directive in the first line assumes that DD is in the word state.
The next STB instruction cannot be used unless DD isin the byte state, so this statement will gener-
ate awarning.

Flag attributes have one more important application. RAS66K checks that the flag attributes of

4-73

Chapter 4, RAS66K

branch sources and branch destinations of branch instructions match. To do this, RAS66K assigns
the flag attribute currently set by the USING directive to each user symbol when defined. In other
words, for each branch instruction RAS66K checks whether or not the flag attribute of the source
statement coding that instruction matches that of the branch destination (which is the symbol speci-
fied as the instruction operand).

m Examplem

USING DATA WORD
J NEXT

USING DATA BYTE
NEXT:

In this example, the data descriptor is coded in the word state for the J instructions, but the data
descriptor of branch destination NEXT isin the byte state. The flag states of the branch source and
branch destination do not match, so awarning will be generated.

4.8.5.4 Addressing Attributes

When the target microcontroller has a nX-8/500 CPU core, RAS66K performs optimization pro-
cessing for RAM addressing.

There are severa types of addressing that directly refer the contents of addresses in data memory.
Addressing specifiers are provided to specify the type addressing. If an addressing specifier is
placed before an address when it is coded as an operand, then it will clarify the addressing type.
However, if only a simple address is coded without an address specifier, then RAS66K will check
the address value and select the addressing that makes the most efficient code.

Below is an example of RAM addressing optimization.

m Examplem
L A,80H ;SFR address, so handled as SFR 80H.
L A,200H ;Fixed page area address, so handled as FIX 200H.
L A,1000H ;Not a special area address, so handled as DIR 1000H.

Operand addresses are fixed in this example, so RAS66K will select the best addressing for each
address value.

However, when an operand is coded in a relocatable segment, the address is not fixed, so RAS66K
cannot select the addressing type. RAS66K solves this problem by giving relocatable symbols an
attribute call the addressing attribute.

Addressing attribute types are shown below.

4-74

Chapter 4, RAS66K

Table4-21. Addressing Attributes

Attribute Meaning
FIX Addressisin fixed page area.
SBA Addressisin SBA area

Symbols with the FIX addressing attribute are optimized to fixed page addressing. Symbols with
the SBA addressing attribute are optimized to SBA area addressing. Symbols with both the FIX
and SBA addressing attributes are optimized to fixed page SBA area addressing.

The method for assigning addressing attributes to each type of rel ocatable symbol is shown below.

Table 4-22. Addressing Attribute Assignment To Relocatable Symbols

Symbol Type Addressing Attribute Assignment
Simple relocatable symbol If the segment in which the symbol resides has the special area

attribute FIX, SBA, or SBAFIX, then that will automatically be
assigned as the addressing attribute.

Segment symbol Specia areaattribute FIX, SBA, or SBAFIX is specified in the SEG
MENT directive.

Communal symbol Specia area attribute FIX, SBA, or SBAFIX is specified in the
COMM directive.

External symbol Specia areaattribute FIX, SBA, or SBAFIX is specified in the

EXTRN directive.

The example below shows how relocatable symbols with the FIX addressing attribute are defined.

m Examplem

FIX_SEG SEGMENT DATA WORD FIX
FIX_ COM COMM DATA2FIX
EXTRN DATA FIX:FX_EXT
RSEG FIX_SEG
AX REL DS 2

CSEG

L AFIX SEG

L AFIX_COM
L AFX_EXT

L AFIX REL

In this example, when the symbols FIX_SEG, FIX_COM, and FIX_EXT are defined, FIX is speci-
fied in the operand of each directive, so they will be given the FIX addressing attribute. FIX_REL
resides in relocatable segment FIX_SEG, so it will also be given the FIX addressing attribute. The
second operands of the four L instructions coded after CSEG will all have fixed page addressing.

4-75

Chapter 4, RAS66K

4.9 Operators and Expressions

Expressions can be used in operands of instructions and directives. An expression consists of mul-
tiple constants and symbols connected by operators. RAS66K evaluates expressions coded in
source statements and converts them to single values. Instead of coding values directly in a pro-
gram, the programmer can code expressions that show the meaning of the values.

This section first explains the basic concepts of expressions in assembly language. It then describes

the types and functions of the various operators, the types of value attributes of expressions, and the
procedure that RAS66K uses to eval uate expressions.

4.9.1 Basic Concepts Of Expressions
4.9.1.1 Meaning Of Attributes Of Expressions

As mentioned in Section 4.8.5, “Value Attributes,” program elements that represent values, such as
constants and symbols, have various attributes.

Just as for constants and symbols, RAS66K classifies expressions as numeric values and address
values, and assigns usage type attributes that indicate the purpose of each value. The attributes of
expression are determined by its types of operators and the types of constants and symbols that are
operated on. In other words, RAS66K manages not only expression values, but expression mean-
ingsaswell.

This explanation may seem too vague, but you can see that these concepts are smple and natura if
you look as some actual examples.

m Examplelm

MOV ERO,TBL+2
In this example, assume that TBL is an address in DATA address space. The expression “TBL+2"
is understood as the address two bytes from TBL. Therefore, “TBL+2" is an expression that repre-
sents an address in DATA address space.
m Example2m

MOV ERO,#END_ADR-START_ADR
In this example, assume that START_ADR and END_ADR are start and end addresses of a table
provided in DATA address space. START_ADR and END_ADR represent addresses, but the

expression “END_ADR-START_ADR” is understood to be a value that indicates the size of the
table.

4-76

Chapter 4, RAS66K

m Example3m

SB D_ADR.4

In this example, assume D_ADR is an address in DATA address space. The expression
“D_ADR.4" isunderstood to be the fourth bit of D_ADR. Therefore, “D_ADR.4” is an expression
that represents an addressin BIT address space.

From these examples, you can see two reasons for expressions having attributes.
(1) RAS66K observes whether or not expressions coded as operands of instructions and directives
are used correctly.

(2) RAS6E6K observes whether or not the meanings of the expressions themselves are contradicto-
ry.

In particular (1) is very important. When an expression is specified as an operand of an instruction
or directive that it should not be, RAS66K will display awarning to inform the programmer that the
operand specification could be in error.

m Example4 m

MOV ERO,CODE_ADR

In this example, assume that CODE_ADR is an address of code memory space. However, the sec-
ond operand of a MOV instruction should be specified as an address in data memory space.
Accordingly, the use of CODE_ADR s clearly incorrect. In such a case, RAS66K will issue a
warning for this source statement.

m Example5m

MOV ERO,#D_ADR1+D_ADR2
In this example, there is no meaning in the expression results. Assumethat D ADR1 and D_ADR2
are both addresses in data memory space. The expression “D_ADR1+D_ADR2" adds two address-
es, s0 the calculation itself has no particular meaning. The programmer might have consciously
intended to code this, but there is a large probability that the usage is mistaken. In such a case,

RASGE6K will issue awarning.

The attributes of expressions and restrictions on how they are coded are important for assuring cor-
rect programs.

4-77

Chapter 4, RAS66K

4.9.1.2 Using Physical Segment Addresses

Address expressions have physical segment addresses and offset addresses. When address expres-
sions are calculated, most operators act only on the offset addresses, and not on the physical seg-
ment addresses.

m Examplelm
DATA_SYM DATA 2:3000H+100H

In this example, the numeric value 100H is added to address 2:3000H. The result of this calcula-
tion is 2:3100H. In other words, for the left address term, the offset address 3000H is the object of
the addition, but the physical segment address 2 is not.

Similarly, most operators do not act on physical segment addresses. However, relational operators
that compare whether values are larger or smaller do act on physical segment addresses. The SEG
operator, which gives physical segment addresses, also acts on them. Below are some actual exam-
ples.

m Example2m

IF 2:2000H>1:1000H
This example uses a relational operator. An address comparison is performed in the operand of an
IF directive. When 2:1000H and 1:1000H are compared, both offset addresses are 1000H, but the
physical segment address of 2:1000H is greater. Since “2:1000H>1:1000H" checks “is 2:1000H

greater than 1:1000H?" the expression evaluates to true, or 1.

m Example3m

DATA_SEG SEGMENT DATA #3
CSEG
MOV DSR#SEG DATA_SEG

In this example, the “SEG DATA_SEG” specified as the second operand of the MOV instruction

gives the physical segment address of the segment symbol DATA_SEG. This was specified as
physical segment #3 by the SEGMENT directive, so the expression’s value will be 3.

4-78

Chapter 4, RAS66K

4.9.1.3 Unresolved Expressions During Assembly

Expressions that consist of elements with fixed values, such as integer constants and absolute sym-
bals, can be resolved during assembly. These are called constant expressions. All operators can be
used in constant expressions.

On the other hand, expressions that include relocatable symbols might not be resolved during
assembly. These expressions are called relocatable expressions. RAS66K outputs information
about relocatable expressions to the object file, and RL66K resolves them.

Examples of relocatable expressions are shown next.

m Examplelm

EXTRN DATA:GL_TBL
MOV ERO,GL_TBL+2

This example adds 2 to the external symbol GL_TBL. The value of GL_TBL is not fixed during
assembly, so the value of the expression “GL_TBL+2" is not fixed during assembly either.

m Example2m

EXTRN DATA:GL_TBL
SB GL TBL4

This example refers bit 4 of the address in data memory space indicated by the external symbol
GL_TBL. Asinexample 1 above, the value of GL_TBL is not fixed during assembly, so the value
of the expression “GL_TBL.4" is not fixed during assembly either.

A few operators cannot be used in calculations on relocatable symbols, and there some restrictions

on coding format. Refer to Section 4.9.3, “Expression Types,” for restrictions on coding relocat-
able expressions.

4-79

Chapter 4, RAS66K

4.9.2 Operators

This section describes the functions of the operators provided by RAS66K. RAS66K provides the
following types of operators.

» Arithmetic operators

e Logica operators

» Bitwiselogical operators
» Relational operators

* Dot operator

e Specia operators

Operators include unary and binary operators. Expressions can be used on the right side of unary
operators and on both sides of binary operators.

In the following explanations, “true” means a non-zero value, while “false” means a value of zero.
Also, the expression, expressionl, and expression2 used in descriptions of syntax indicate expres-
sions.

4.9.2.1 Arithmetic Operators

Arithmetic operators are operators for general arithmetic operations.

Table4-23. Arithmetic Operators

Operator Syntax Meaning
+ expressionl + expression2 Addition
+ expressionl Positive (unary operator)

- expressionl - expression2 Subtraction

- expressionl Negative (unary operator)
* expressionl * expression2 Multiplication
/ expressionl/ expression2 Division
% expressionl % expression2 Modulo calculation (remainder from dividing expressionl

by expression2)

4-80

Chapter 4, RAS66K

m Examplelm

VALUE EQU 100H
ADD ER1,#VALUE+1

In this example, the + operator is used in the operand of an ADD instruction.

m Example2m

BUFSIZE EQU 1024H
DS BUFSIZE*4

In this example, the * operator is used in the operand of aDS directive.
4.9.2.2 Logical Operators

Logical operators evaluate the truth or falseness of expression to the left and right (or just the right)
and return atrue/fal se value according to the condition.

Table4-24. Logical Operators

Operator Syntax Meaning

&& expressionl & & expression2 1if both expressions are true; 0 otherwise.
Il expressionl || expression2 1if either expression istrue; O otherwise.

! I expression 0if the expression istrue; 1 if false.

m Examplem

SW1EQU 0
SW2 EQU 2

IF SW1&&SW2
BUSIZE EQU 1024
ELSE
BUSIZE EQU 2048
ENDIF

In this example, the & & operator is used in the operand of an IF directive.

4-81

Chapter 4, RAS66K

4.9.2.3 Bitwise Logical Operators

Bitwise logical operators execute logical operations on each bit of an expression.

Table 4-25. Bitwise Logical Operators

Operator Syntax

& expressionl & expression2 Logical AND.

| expressionl | expression2 Logical OR.

N expressionl expression2 Exclusive OR.

<< expressionl << expression2 Shifts expressionl to the left by the number of
bits given by expression2. Zeroes are shifted in
from the least significant bit.

>> expressionl >> expression2 Shifts expression1 to the right by the number of
bits given by expression2. Zeroes are shifted in
from the most significant bit.

~ ~expression Bit inversion.

m Examplem

SCB_MSK EQU 1111 1000B
BCB_MSK EQU 1100 1111B

ANDB PSWL,#SCB_MSK&BCB_MSM

In this example, the & operator isused in the operand of an ANDB instruction.

4-82

Chapter 4, RAS66K

4.9.2.4 Relational Operators

Relational operators compare the values of two expressions. |If the condition is satisfied, then the
result will be 1. If the condition is not satisfied, then the result will be 0. Relational operators can
only be used in constant expressions. When two expressions that represent addresses are compared,
the their physical segment addresses will be included in the comparison.

Table 4-26. Relational Operators

Operator Syntax Meaning

> expressionl > expression2 Returns 1 if expressionl is greater than expression2;
otherwise returns 0.

>= expressionl >= expression2 Returns1if expressionl is greater than or equa to
expression2; otherwise returns 0.

< expressionl < expression2 Returns 1if expressionl isless than expression2;
otherwise returns 0.

<= expressionl <= expression2 Returns1if expressionl islessthan or equa to

expressionl == expression2

expressionl != expression2

expression2; otherwise returns 0.

Returns 1 if expressionl is equal to expression2;
otherwise returns O.

Returns 1 if expressionl is not equal to expression2;
otherwise returns O.

m Examplem

IF VALUE1>=VALUE2

ENDIF

In this example, the >= operator isused in an | F directive to perform conditional assembly.

4-83

Chapter 4, RAS66K

4.9.2.5 Dot Operator
The dot operator calculates bit addresses from bit offsets and data addresses.
m Syntax m
expressionl.expression2
m Description m

The expressionl specifies a data address value. The expression2 specifies a bit position within the
data address. The above syntax has the same meaning as the following expression.

((expressionl << 3)+expression?)

RAS66K handles the dot operator the same as an arithmetic operator. In other words, it does not
check the ranges of the values of expressionl and expression2.

m Examplem

Below is an example of dot operator usage. In this example, the user symbols DATSYM1 and
DATSYM2 have usage type DATA. The user symbol EXTNUM1 has usage type NUMBER. Bit
0 of data memory at each of these symbol’s addresses is specified as the operand of an SB instruc-
tion.

DATSYM1 DATA 200H
EXTRN NUMBER:EXTNUM1

DSEG AT 220H
DATSYM2:
051

CSEG

SB DATSYML1.0
SB DATSYM2.0
SB EXTNUM1.0

4-84

Chapter 4, RAS66K

4.9.2.6 Special Operators

Special operators extract strings of bits from expression values. There are several types of special
operators.

Table 4-27. Special Operators

Operator Syntax Meaning

HIGH HIGH expression Identical to ((expression>>16)& OFFH).

MID MID expression Identical to ((expression>>8)& OFFH).

LOW LOW expression Identical to (expression& OFFH).

SEG SEG expression Obtains physical segment address of address expression.
OFFSET OFFSET expression Obtains offset address of address expression.

PAGE PAGE expression Obtains page number of address expression.

LREG LREG expression Obtains bank number of local register set of address

expression in local register area.

BPOS BPOS expression Obtains bit offset value (lower 3 bits) of expression
representing a bit address.

SIZE SIZE segment_symbol Obtains segment size of segment symbol.

As opposed to other general operators, the special operators are provided for effective use of
OLMS-66K Series architecture, so their applications are limited. Accordingly, there are severa
restrictions on expressions that use these operators.

The HIGH, MID, and LOW operators obtain specific bytes of values. These operators can be used
in address expressions, but thiswill cause a warning.

m Examplelm
The following example uses LOW, MID, and HIGH operators.

VALUE EQU 123456H
DB LOW VALUE ;56H
DB MID VALUE ;34H
DB HIGH VALUE ;12H

The SEG operator extracts the physical segment address from an address expression, so it cannot be
used on numeric value expressions. Also, if used on an address expression with the COMMON
physical segment attribute, then awarning will occur and the calculated result will be 0.

The OFFSET operator extracts the offset address from an address expression. It can be used to

convert address expressions to numeric values. The OFFSET operator can be used on numeric
value expressions, but thiswill cause awarning.

4-85

Chapter 4, RAS66K

m Example2m

DATA_SEG SEGMENT DATA
MOVB DSR#SEG DATA SEG :physical segment address

MOV ERO#OFFSET DATA_SEG ;offset address

In this example, the SEG and OFFSET operators are used to get the physical segment address and
starting address of the relocatable segment DATA_SEG.

The PAGE operator extracts the page number from an address expression. When the usage type of
an address expression is CODE, DATA, EDATA, or NONE, the PAGE operator will work the
same as the calculation below.

(expression>>8)& OFFH

When the usage type of an address expression is CBIT, BIT, or EBIT, the PAGE operator will work
the same as the cal culation below.

(expression>>11)& OFFH

The PAGE operator can be used on numeric value expressions, but this will cause a warning and
return avalue that is the same as the calculation below.

(expression>>8)& OFFH
m Example3m

TYPE (M66507)

DATA_SEG SEGMENT DATA WORD INPAGE

MOVB ALRBH#PAGE DATA_SEG ;Obtains page number.
In this example, the PAGE operator is used to obtain the page number of relocatable segment
DATA_SEG. The INPAGE specified in the operand of the SEGMENT directive is a specia area
attribute that all ocates the segment within a page.

The LREG operator is particular to microcontrollers with the nX-8/500 CPU core. It returns the
bank number of local registers. The LREG operator will work the same as the cal culation below.

((OFFSET (expression)-200H)>>3)& OFFH

If the LREG operator is used on an expression without usage type DATA, then a warning will
occur.

4-86

Chapter 4, RAS66K

m Example4 m

TYPE (M66507)

DATA_SEG SEGMENT DATA OCT LREG
MOVB ALRBL#LREG DATA_SEG ;Obtains local register bank number.

In this example, the LREG operator is used to obtain the local register bank number of relocatable
segment DATA_SEG. The LREG specified in the operand of the SEGMENT directive is a specid
area attribute that allocates the segment in alocal register area.

The BPOS operator obtains the bit offset of abit address. It is provided only to access particular bit
positions of a contiguous data area. The BPOS operator will work the same as the calculation
below.

expression & 7

If the BPOS operator is used on an expression without usage type CBIT, BIT, or EBIT, then a
warning will occur.

m Example5m

BSEG
AL.GL DBIT 1

DSEG
D TBL: DS 10H

CSEG
MOV X1,#D_TBL
LOOP:
SB [X1].BPOS FLG1 ;Obtains bit position

In this example, the BPOS operator is used to obtain the bit position that is the same as FLG1 in
D_TBL.

The SIZE operator obtains the size of a relocatable segment. It can only be used with segment
symbols.

m Example6m

DATA_SEG SEGMENT DATA WORD
MOV ERO#SIZE DATA _SEG ;Obtains segment size.

In this example, the SIZE operator is used to obtain the segment size of relocatable segment
DATA_SEG.

4-87

Chapter 4, RAS66K

4.9.3 Expression Types

From the viewpoint of how much RASG6K can resolve expression values, expression can be broad-
ly split into three types.

e Constant expressions
» Relocatable expressions
» Simplerelocatable expressions

RASG6K can resolve the values of constant expressions.

RASG66K cannot resolve the values of relocatable expressions. Relocatable expressions are
resolved by RL66K. All relocatable symbols within the range allowed by syntax can be used in
relocatable expressions.

Simple relocatable expressions are a type of relocatable expression for which the offset address
from the segment base of the program can be determined. Use of relocatable symbols in simple
relocatable expressionsis limited to simple rel ocatable symboals.

m Examplelm

ABS_DATA DATA 1000H
EXTRN DATAEXT_DATA

DATA_SEG SEGMENT DATA WORD
RSEG DATA SEG
D TBL DS 10H

CSEG

MOV ERO#ABS_DATA+10H
MOV ER1#EXT_DATA+10H
MOV ER2#D_TBL+10H

Look at the second operand of the MOV instructions in order. First, the value of ABS DATA is
fixed to 1000H, so the value of the expression “ABS DATA+10H" isfixed to 1010H. Thus, itisa
constant expression.

Second, the expression “EXT_DATA+10H" adds to an address that represents an external symbol,
so RAS66K cannot determine the expression’svalue. Thus, it is arelocatable expression.

Third, the address of D_TBL itself is not fixed, but its offset value from the segment base of this

program is 0. Therefore the value of the expression “D_TBL+10H" is at least fixed to 10H within
this program. Thus, it isasimple relocatable expression.

4-88

Chapter 4, RAS66K

The reason for classifying instructions like this is that there are restrictions on the types of expres-
sions that can be specified in operands depending on the type of instruction or directive.
Expressions coded in instruction and directive operands are classified by how freely they can be
used.

« Constant expressions
* Simple expressions
» General expressions

Constant expressions are expressions for which RAS66K can determine values, as previously
described. Constant expressions can be coded least freely.

Simple expressions are either constant expressions or simple relocatable expressions. They are
expressions for which RAS66K can at least determine the offset address from the segment base of
the program.

General expressions are either constant expressions or relocatable expressions. They include all
permitted syntaxes, so they can be coded most freely.

General expressions can be coded from most operands of basic instructions, but only constant
expressions or simple expressions are recognized as operands of many directives. The reason for
these restrictions is that depending on the type of directive, RAS66K processing might not proceed
correctly unless the operand is a constant expression or simple expression. Section 4.9.3.4,
“Restrictions On Coding Expressions,” shows some actual examples.

Refer to Section 4.11, “Addressing Modes,” regarding expressions that can be used as instruction
operands. Refer to Section 4.12, “Using Directives,” regarding expressions that can be used as
directive operands.

The formats of constant expressions, ssimple expressions, and general expressions are described
below.

4-89

Chapter 4, RAS66K

4.9.3.1 Constant Expressions

Constant expressions are expressions for which RAS66K can determine values. More specifically,
constant expressions consist of integer constants, character constants, absolute symbols, and loca
tion counters of absolute segments, connected by operators. A constant expression cannot use relo-
catable symbols because RAS66K must determine the constant expression’s value. However, in
the following cases even expressions that include rel ocatable symbols will be constant expressions.

» Expressions that evaluate as differences between simple relocatable symbols that reside in the
same relocatable segment will be constant expressions.

» Expressions that perform the dot operation (.) on relocatable symbols that reside in the same
relocatable segment will be constant expressions.

» Expressions that perform the BPOS operation on a dot operation on relocatable symbols will be
constant expressions.

m Examplem
Below is an example using constant expressions.

ABSSYM1 EQU 100H

DATSEG4 SEGMENT DATA
RSEG DATSEG4
LABEL1:
s 2
LABEL2:

Constant expressions that use symbols as defined above and their values are shown below.

Constant Expression Value
100H 100H
‘A’ 41H
ABSSYM1 100H
1+2 3H
(1+2) 3H
+(1+2* ABSSYM1) 201H
100H*'A' 4100H
(LABEL2-LABELY) 2H
(LABEL2.0-LABEL1.0) 10H
BPOS (LABEL1.3) 3H

4-90

Chapter 4, RAS66K

4.9.3.2 Simple Expressions

Simple expressions include no relocatable symbols other than simple relocatable symbols.
Location counter symbols residing in relocatable segments can be used as simple relocatable sym-
bols. Simple expressions include constant expressions.

Simpl e expressions have the following syntax.

m Syntax m
Expression Definition
simple expression constant expression

| simple relocatable symbol

| (simple expression)

| +simple expression

| simple expression + constant expression
| constant expression - simple expression
| simple expression - constant expression
| simple expression.constant expression

| OFFSET simple expression

The vertical bars (]) in this syntax definition indicate that just one of the several itemsis to be speci-
fied.

This syntax has some restrictions. If a dot operator is used in a simple expression that is not a con-
stant expression, then that expression cannot use a further dot operator or OFFSET operator. If a
simple expression includes simple relocatable symbols, then RAS66K cannot determine the value
of the relocatable expression. In these cases, RL66K will determine the final value of the ssimple
expression.

4-91

Chapter 4, RAS66K

m Examplem
Below are examples of simple expressions that are not constant expressions.

DATSEGS5 SEGMENT DATA
RSEG DATSEGS
s 2

LABELS3:
ORG LABEL3

Simple expressions that use symbols as defined above are shown below.

Simple Expression

(LABEL3)
+LABEL3
LABEL3-1
LABEL34
OFFSET LABEL3

4-92

Chapter 4, RAS66K

4.9.3.3 General Expressions

General expressions add expressions that include segment symbols, external symbols, and commu-
nal symbolsto simple expressions. General expressions have the following syntax.

m Syntax m

Expression Definition

general expression constant expression
| relocatable expression
| relocatable operation expression

relocatable expression relocatable symbol
| (relocatable expression)
| + relocatable expression
| relocatable expression + constant expression
| constant expression + relocatable expression
| relocatable expression - constant expression
| relocatable expression . constant expression
| OFFSET relocatable expression

relocatable operation expression HIGH relocatable expression

| MID relocatable expression

| LOW relocatable expression

| SEG relocatable expression

| PAGE relocatable expression
| LREG relocatable expression
| BPOS relocatable expression
| SIZE segment symbol

| (relocatable operation expression)

The vertica bars (|) in this syntax definition indicate that just one of the several items is to speci-
fied.

When arelocatable expression includes a dot operator, it cannot use special operators or additional

dot operators. RASG6K cannot determine values of relocatable expressions. RL66K determines
the final values of relocatable expressions.

4-93

Chapter 4, RAS66K

m Examplem
Below are examples of general expressions that are not simple expressions or constant expressions.

SEGSYM SEGMENT DATA
COMMSYM COMM DATA 2
EXTRN DATA:EEXTSYM BIT:BITSYM

General expressions that use symbols as defined above are shown below.

General Expression
EXTSYM

(COMMSY M)
+EXTSYM
COMMSYM-1
EXTSYM.1

HIGH EXTSYM
LOW (COMMSY M)
SEG (+EXTSYM)
OFFSET (COMMSY M-1)
PAGE SEGSYM
LREG (COMMSYM)
BPOSBITSYM

SIZE SEGSYM

4.9.3.4 Restrictions On Coding Expressions

There are restrictions on where each type of expression can be coded. Also, forward references to
user symbols within expressions are not always permitted. These restrictions are explained below.

(1) Restrictions On ORG Directive Operands

For source statements that reside in an absolute segment, only constant expressions can be specified
as operands of ORG directives. Thisis because the address of the operand must be determined dur-
ing assembly.

For source statements that reside in a relocatable segment, simple expressions can be specified as
operands of ORG directives. However, simple relocatable symbols included in the simple expres-
sions must reside in the current relocatable segment. This is because even though RAS66K cannot
determine the address of the relocatable segment, it must be able to determine the relationship
between relative addresses. If the relationship of relative addresses is determined, then size of a
relocatable segment can be determined. RL66K uses these calculated sizes to allocate logical seg-
ments to memory.

4-94

Chapter 4, RAS66K

m Examplem

TYPE(M66507)
XCODSEG SEGMENT CODE

RSEG XCODSEG
XLABEL:

CODESEG SEGMENT CODE
RSEG CODESEG

ORG 10H
LABEL:
ORG LABEL+100H

ORG XLABEL ;error

The constant expression “10H,” the simple expression “LABEL+100H,” and the simple expression
“XLABEL" are specified in operands of ORG directive statements that reside in the relocatable
segment CODESEG. The operand “XLABEL” is a simple relocatable symbol that does not reside
in the current rel ocatable segment, so an error will occur.

(2) Restrictions On Operands Of Directives That Define L ocal Symbols

Simple expressions can be specified in operands of directives that define local symbols, such as
EQU directives and CODE directives. However, general expressions that are not simple expres-
sions cannot be specified. Also, forward references to user symbols specified in operands of direc-
tives that define symbols are not permitted.

(3) Restrictions On Operands Of Other Directives
There are also restrictions on which expressions can be coded in operands of directives other than

those of Section 4.9.3.4.1 and 4.9.3.4.2. Refer to the description of each directive for these restric-
tions.

4-95

Chapter 4, RAS66K

(4) RestrictionsOn Microcontroller Instruction Operands

Within operands of microcontroller instructions, shift widths of rotate/shift instructions and bit
positions of bit addressing can be specified only by constant expressions. General expressions can
be used for other addressing modes.

Both forward and backward references to user symbols in microcontroller instruction operands are
permitted.

4.9.4 Expression Evaluation

4.9.4.1 Operator Precedence

Operator precedence determines the order of evaluation for expressions. Operators are evaluated in
order from highest precedence to lowest. Operators with the same precedence are evaluated from
left to right in the order they are written.

Operator precedence isasfollows. The higher the precedence, the lower the number of precedence.

Table 4-28. Operator Precedence

Precedence Operators
1 0

2

3 I ~ +(unary) - (unary) HIGH MID LOW SEG OFFSET PAGE LREG
BPOS SIZE

4 * [%

5 + (binary) - (binary)

6 << >>

7 < <= > >=

8 == I=

9 &

10 A

11 |

12 &&

13 [

4-96

Chapter 4, RAS66K

m Examplem

LABEL DATA 200H

MOV LABEL+2*8#0
SB (LABEL+2)7
SB LABEL+27

This example defines the absolute symbol LABEL with usage type DATA. After that are three
instruction statements that have expressions using this symbol as operands.

The value of the destination operand of the instruction on the third lineis 210H. The operand of the
instruction on the fourth line indicates bit 7 of the data memory at address LABEL+2. Pay particu-
lar attention to the operand of the last instruction, which does not indicate bit 7 of the data memory
at address LABEL+2. This is because the dot operator (.) has higher precedence than the + opera-
tor, so the operand is evaluated as“LABEL+(2.7)".

4.9.4.2 Evaluation Of Expression Values

RAS66K handles numbers as unsigned 32-bit numbers. When it calculates numbers in expressions,
calculation results of operators are also handled as unsigned 32-bit numbers. For expressions that
express addresses, the physical segment addresses are handled as unsigned 8-bit numbers.
RAS6E6K calculates numbersin expressions according to evaluation order. It checksthe valid range
corresponding to the appropriate operand for each calculation result.

4.9.4.3 Evaluation Of Expression Attributes

This section explains how RAS66K evaluates attributes of expressions.

For an expression that consists of only one symboal, its attribute will be the attribute of the symbol
For an expression that uses operators, its attribute will differ depending on the operators used and
the attributes of operands. The operators used may restrict the types of operands. RAS66K will
generate an error or warning for an expression that violates these restrictions. It will generate an
error when it cannot calculate the result of an expression. It will generate a warning when it can
calculate aresult of an expression but that result has no meaning.

The following sections explain for each operator how the attributes of calculated results are deter-

mined and how errors and warnings will occur, based on the type of operator and operands. The
explanations make use of the following terms to represent types of expressions.

4-97

Chapter 4, RAS66K

Term M eaning

address_expression An expression that represents an address. In other words, an expression with
usage type NONE, CODE, DATA, EDATA, CBIT, BIT, or EBIT.

number_expression An expression that represents anumber. In other words, an expression with
usage type NUMBER.

code_expression An expression with usage type CODE.

data_expression An expression with usage type DATA.

edata_expression An expression with usage type EDATA.

chit_expression An expression with usage type CBIT.

bit_expression An expression with usage type BIT.

ebit_expression An expression with usage type EBIT.

none_expression An expression with usage type NONE.

segment_symbol A single segment symbol.

(1) Attributesof Parentheses ()
Calculations that use the operators () are evaluated as follows.

Table4-29. Evaluation Of Attributes Of Operator ()

Expression For mat Expression Attribute Errors
(address_expression) Attribute of address_expression
(number_expression) NUMBER

m Description m

The attribute of an expression enclosed in parentheses will not change.

4-98

Chapter 4, RAS66K

(2) Attribute Evaluation of Operators+ and -

Calculations that use the operators + and - are evaluated as follows.

Table 4-30. Evaluation Of Attributes Of Operators+ and -

Expression Format Expression Attribute Errors
+ address_expression Attribute of address_expression

+ number_expression NUMBER

number_expression + number_expression NUMBER

number_expression + address_expression Attribute of address_expression
address_expression + number_expression Attribute of address_expression
address_expression + address_expression NUMBER Warning
- address_expression Attribute of address_expression

- number_expression NUMBER

number_expression - number_expression NUMBER

number_expression - address_expression Attribute of address_expression
address_expression - number_expression Attribute of address_expression
address_expression - address_expression NUMBER Possible error

m Description m

Expression attributes are inherited unchanged with the unary operators + and - .

If either the left term or right term of a binary operator + or - is an address expression, then the

address attribute will be inherited.

Addition of two address expressions will cause a warning. Subtraction of two address expressions
is permitted only when both addresses are in the same logical segment.

4-99

Chapter 4, RAS66K

(3) Attribute Evaluation of Operators*, /, and %
Calculations that use the operators *, /, and % are evaluated as follows.

Table 4-31. Evaluation Of Attributes Of Operators*, /, and %

Expression Format Expression Attribute Errors
number_expression * number_expression NUMBER

number_expression * address_expression NUMBER

address_expression * number_expression NUMBER

address_expression * address_expression NUMBER Warning
number_expression / number_expression NUMBER

number_expression / address_expression NUMBER Warning
address_expression / number_expression NUMBER

address_expression / address_expression NUMBER Warning
number_expression % number_expression NUMBER

number_expression % address_expression NUMBER Warning
address_expression % number_expression NUMBER

address_expression % address_expression NUMBER Warning

m Description m

Use of the *, /, or % operator with two address expressions will cause a warning. A warning will
also occur when the right term of the / or % operator is an address expression.

All calculated results will be of type number.

4-100

Chapter 4, RAS66K

(4) Attribute Evaluation of Logical Operators

Calculations that use logical operators are evaluated as follows.

Table 4-32. Evaluation Of Attributes Of Logical Operators

Expression Format Expression Attribute Errors
number_expression & & number_expression NUMBER

number_expression & & address expression NUMBER Warning
address_expression & & number_expresson NUMBER Warning
address_expression & & address expresson NUMBER Warning
number_expression || number_expression NUMBER

number_expression || address_expression NUMBER Warning
address_expression || number_expression NUMBER Warning
address_expression || address_expression NUMBER Warning
I number_expression NUMBER

I address _expression NUMBER Warning

m Description m

Use of alogical operators with an address expression will cause a warning.

All calculated results will be of type number.

4-101

Chapter 4, RAS66K

(5) Attribute Evaluation of Bitwise Logical Operators

Calculations that use bitwise logical operators are evaluated as follows.

Table 4-31. Evaluation Of Attribute Of Bitwise Logical Operators

Expression Format Expression Attribute Errors
number_expression & number_expression NUMBER
number_expression & address_expression NUMBER
address_expression & number_expression NUMBER
address_expression & address_expression NUMBER Warning
number_expression | number_expression NUMBER
number_expression | address_expression NUMBER
address_expression | number_expression NUMBER
address_expression | address_expression NUMBER Warning
number_expression * number_expression NUMBER
number_expression ” address_expression NUMBER
address_expression * number_expression NUMBER
address_expression ™ address_expression NUMBER Warning
number_expression << number_expression NUMBER
number_expression << address_expression NUMBER Warning
address_expression << number_expression NUMBER
address_expression << address_expression NUMBER Warning
number_expression >> number_expression NUMBER
number_expression >> address_expression NUMBER Warning
address_expression >> number_expression NUMBER
address_expression >> address_expression NUMBER Warning
~number_expression NUMBER
~address_expression NUMBER Warning

m Description m

Use of a hitwise logical operator with two address expressions will cause a warning. A warning
will aso occur when the right term of the << or >> operator is an address expression. A warning
will also occur when an address expression is used with the ~ operator.

All calculated results will be of type number.

4-102

Chapter 4, RAS66K

(6) Attribute Evaluation of Relational Operators
Calculations that use relational operators are evaluated as follows.

Table 4-34. Evaluation Of Attribute Of Relational Operators

Expression Format Expression Attribute Errors
number_expression > number_expression NUMBER

number_expression > address_expression NUMBER Warning
address_expression > number_expression NUMBER Warning
address_expression > address_expression NUMBER

number_expression >= number_expression NUMBER

number_expression >= address_expression NUMBER Warning
address_expression >= number_expression NUMBER Warning

address_expression >= address_expression NUMBER

number_expression < number_expression NUMBER
number_expression < address_expression NUMBER Warning
address_expression < number_expression NUMBER Warning
address_expression < address_expression NUMBER
number_expression <= number_expression NUMBER
number_expression <= address_expression NUMBER Warning
address_expression <= humber_expression NUMBER Warning

address_expression <= address_expression NUMBER

number_expression == number_expression NUMBER

number_expression == address_expression NUMBER Warning
address_expression == number_expression NUMBER Warning

address_expression == address_expression NUMBER

number_expression != number_expression NUMBER
number_expression != address_expression NUMBER Warning
address_expression != number_expression NUMBER Warning
address_expression != address_expression NUMBER

m Description m

Use of arelational operator between an address expression and a number expression will cause a
warning.

A comparison of two address expressions will also compare their physical segment addresses.

However, if the physical segment attribute of either address expression is COMMON, then only the
offset addresses will be compared.

4-103

Chapter 4, RAS66K

All calculated results will be of type number.

(7) Attribute Evaluation of Dot Operator
Calculations that use dot operators are evaluated as follows.

Table 4-35. Evaluation Of Attribute Of Dot Operators

Expression Format Expression Attribute Errors
number_expression . number_expression NUMBER

code_expression . number_expression
data_expression . number_expression

data_expression . number_expression

chit_expression
bit_expressione

ebit_expression

chit_expression . number_expression NUMBER Warning
bit_expression . number_expression NUMBER Warning
ehit_expression . number_expression NUMBER Warning
none_expression . number_expression none_expression

number_expression . address_expression NUMBER Warning
code_expression . address_expression chit_expression Warning
data_expression . address_expression bit_expression Warning
edata_expression . address_expression ebit_expression Warning
chit_expression . address_expression NUMBER Warning
bit_expression . address_expression NUMBER Warning
ebit_expression . address_expression NUMBER Warning
none_expression . address_expression none_expression Warning

m Description m

A warning will occur if an address expression is coded as the right term of a dot operator. A warn-
ing will also occur if an address expression with usage type CBIT, BIT, or EBIT is coded as the | eft
term.

The attribute of the calculated result will differ depending on the usage type of the expression
coded asthe right term.

4-104

Chapter 4, RAS66K

(8) Attribute Evaluation of Special Operators
Calculations that use special operators are evaluated as follows.

Table 4-36. Evaluation Of Attribute Of Special Operators

Expression Format Expression Attribute Errors
HIGH number_expression NUMBER

HIGH address_expression NUMBER Warning
MID number_expression NUMBER

MID address_expression NUMBER Warning
LOW number_expression NUMBER

LOW address_expression NUMBER Warning
SEG number_expression NUMBER Error
SEG address_expression NUMBER

OFFSET number_expression NUMBER Warning
OFFSET address _expression NUMBER

PAGE number_expression NUMBER Warning
PAGE address_expression NUMBER

LREG number_expression NUMBER Warning
LREG data_expression NUMBER

LREG address_expression NUMBER Warning
(other than usage type DATA)

BPOS number_expression NUMBER Warning
BPOS code_expression NUMBER Warning
BPOS data_expression NUMBER Warning
BPOS edata_expression NUMBER Warning
BPOS chit_expression NUMBER

BPOS hit_expression NUMBER

BPOS ehit_expression NUMBER

BPOS none_expression NUMBER Warning
SIZE segment_symbol NUMBER

4-105

Chapter 4, RAS66K

m Description m
A warning will occur when an address expression is used with the HIGH, MID, or LOW operators.

The SEG operator returns a physical segment address, so it cannot be used with number expres-
sions.

The OFFSET, PAGE, LREG, and BPOS operators operate on addresses, so a warning will occur
when oneis used with a number expression. The LREG operator returns alocal register bank num-
ber, so it will cause an error if used with an address that is not usage type DATA. The BPOS oper-
ator returns a bit offset, so it will cause an error if used with an address that is not a bit address.
Only a segment symbol can be coded as the right term of the SIZE operator.

All calculated results will be of type number.

4-106

Chapter 4, RAS66K

4.10 Check Functions

In addition to syntax checking, RAS66K has numerous other check functions for instruction use
and operand contents. These check functions can alert the programmer to possibly erroneous oper-
ation in his program.

RAS6E6K attempts to perform the checks described in this section as much as possible, but in some
cases checks cannot be performed during assembly due to lack of necessary information. For
example, relocatable symbols may be specified as operands. In such cases, RAS66K will output
check information to the object file, and RL66K will perform the checks that could not be per-
formed during assembly instead of RAS66K.

m Attention m

Among the check functions explained in this section, the following operate with “assumptions’
about appropriate register contents by using the USING directive.

* DSR checks
* TSR checks
* Current page checks
» Fag attribute checks

Please pay close attention wherever an “assumption” is given. The USING directive simply

informs RAS66K and RL66K of register values; it does not generate object code for setting regis-
terstovalues. To actually set aregister to avalue, use amicrocontroller instruction.

4-107

Chapter 4, RAS66K

4.10.1 Operand Value Checks

The values of instruction and directive operands are checked to be in permitted ranges. If an
operand is outside its permitted range, then RAS66K will output an error. Operand value ranges
differ depending on instruction addressing modes and directive types.

Vaue ranges for each addressing mode of instructions are described in Section 4.11, “Addressing
Modes.” Valueranges for operands of each directive are described in Section 4.12, “ Directives.”

m Examplem

EXTRN DATA:ZBUF
NUMSYM2 EQU 1000H

MOVB ZBUF#NUMSYM2 ;ERROR

In this example, RAS66K checks whether the value of NUMSYMZ2, the operand of the MOVB
instruction, is within the following ranges.

-80H — -1H (OFFFFFF80H—OFFFFFFFFH)
OH — OFFH

The value of NUMSY M2 falls outside these ranges, so RAS66K will output an error.

Because ZBUF is arelocatable symbol, RL66K will check the value of this operand.

4.10.2 Location Counter Value Checks
RAS66K performs the following checks on location counter values.

» It checks whether absolute segment location counter values are within the range of address
space.

* It checks whether relocatable segment location counter values are smaller than or equa to the
size of the area allocated to the rel ocatable segments.

m Examplem

PAGE_SEG SEGMENT DATA WORD IPAGE
RSEG PAGE_SEG

TBLL: DS 8H

TBL2 DS 8H

TBL3: DS 80H ;ERROR

In this example, the relocatable segment PAGE_SEG is specified to have the special area attribute
INPAGE, so its segment size cannot exceed 100H, which is the maximum size of 1 page. Because
the third DS directive causes the segment size to exceed 100H, RAS66K will generate an error at
the third DS directive.

4-108

Chapter 4, RAS66K

4.10.3 Usage Type Checks

RAS6E6K checks for inconsistencies between operand usage type and instruction or directive func-
tion. If there is an inconsistency, then a warning will occur. Refer to Section 4.11, “Addressing
Modes,” and Section 4.12, “Directives,” for the contents of the checks.

m Examplem

DATSYM2 DATA 200H
CODSYM1 CODE OFEH

LC ADATSYM2 ;Warning
L ACODSYM1 ;Warning

In this example, RAS66K performs the following checks on the operands of the LC and L instruc-
tions.

The second operand of an L C instruction should be an address in CODE address space, so RAS66K
checks whether the usage type of DATSYM2 is CODE, NONE, or NUMBER. In this example,
DATSY M2 has usage type DATA, so awarning will occur.

Similarly, the second operand of an L instruction should be an addressin DATA address space, so
RAS6E6K checks whether the usage type of CODSYM1 is DATA, NONE, or NUMBER. In this
example, CODSY M1 has usage type CODE, so awarning will occur.

Operands with usage type NUMBER can be used anywhere. Operands with usage type NONE can
be used anywhere that an address is expected.

4.10.4 Physical Segment Address Checks
The explanations given in this section take the nX-8/500 CPU core architecture as an example.

OLMS-66K Series data memory space and program memory space are configured from multiple
physical segments. The number of physical segmentsis determined by the type of microcontroller.

To refer a data memory space or program memory space configured from multiple physical seg-
ments, a program must manage the physical segment addresses. Physical segment addresses are
managed by using the segment registers allocated in the special function registers.

Physical segments of data memory space are set using the data segment register (DSR). When
referring program memory space as data, physical segments are set using the table segment register
(TSR). A program will refer only the physical segment specified in the appropriate segment regis-
ter.

The USING DSREG directive supports management of the DSR. The USING TSREG directive
supports management of the TSR. These directives can inform RAS66K and RL66K of the values
of DSR or TSR set within the program. RAS66K and RL66K compare this value to the physical
segment addresses of the instruction and directive operands coded within each specified range.
Because of this physical segment checking, physical segment addresses are included in addresses
specified as operands of instructions.

4-109

Chapter 4, RAS66K

Physical segments of program memory space which contain executable instructions are set using
the program segment register (CSR). The CSR is automatically overwritten by inter-segment jump
and call instructions (FJand FCAL). The programmer cannot directly manipulate the CSR.

RASGE6K has three types of physical segment register checks.

» DSR checks
* TSR checks
* CSR checks

Each of these is explained in the following sections.
(1) DSR Checks

When a DSR value assumption is made using the USING DSREG directive, RAS66K will check if
this assumed value matches the physical segment addresses of instruction operands that represent
addresses in data memory space. However, if an address is in the COMMON area, then this check
will not be performed. If the check does not result in a match, then awarning will occur.

If the operand value and the set segment register value can both be determined during assembly,
then RAS66K will perform the check. If either cannot be determined during assembly, then
RL66K will perform the check.

m Examplem

EXTRN DATA:ADRS1 ADRS2

USING DSREG ADRS1 ;Assume DSR is set physical segment address of ADRS1
MOVB DSR#SEG ADRS1 ;Instruction sets DSR to SEG ADRSI during execution.
MOV EROADRS1 :DSR check performed

MOV ER1ADRS2 :DSR check performed

USING DSREG ANY :DSR check suspended

MOV ER2,200H ;DSR check not performed

In this example, the physical segment addresses of the source operands of the two instructions
below (ADRS1, ADRS2) are checked to match SEG ADRSL.

MOV ERO,ADRS1
MOV ER1,ADRS2

These checks are performed because RAS66K and RL66K are informed by the USING DSREG
directive that the DSR value is SEG ADRS1. ADRSI1 and ADRS2 are relocatable symbols, so
RL66K will perform these checks.

The USING DSREG ANY directive cancels the assumption of DSR value, stopping RAS66K and

RL66K from performing DSR checks. A DSR check is not performed for the MOV instruction
immediately following the USING DSREG ANY specification.

4-110

Chapter 4, RAS66K

(2) TSR Checks

When a TSR value assumption is made using the USING TSREG directive, RAS66K will check if
this assumed value matches the physical segment addresses of instruction operands that represent
addresses in program memory space. If the check does not result in a match, then a warning will
occur.

If the operand value and the set segment register value can both be determined during assembly,
then RAS66K will perform the check. If either cannot be determined during assembly, then
RL66K will perform the check.

m Examplem

EXTRN CODE:C_TBL1C_TBL2

USING TSREG C_TBL1 ;Assume TSR is set physical segment address of
:C_TBLL

MOVB TSR#SEG C_TBL1 ;Instruction sets TSR to SEG C_TBL 1 during execution.

LC AC TBU ;TSR check performed

LC AC TBL2 ;TSR check performed

USING TSREG ANY ;TSR check suspended

LC AA4000H ;TSR check not performed

In this example, the physical segment addresses of the source operands of the two instructions
below (C_TBL1, C TBL2) are checked to match SEG C_TBL1.

LC AC TBUL
LC AC TBL2

These checks are performed because RAS66K and RL66K are informed by the USING TSREG
directive that the TSR value is SEG C_TBL1. C TBL1 and C_TBL2 are relocatable symbols, so
RL66K will perform these checks.

The USING TSREG ANY directive cancels the assumption of TSR value, stopping RAS66K and

RL66K from performing TSR checks. A TSR check is not performed for the LC instruction imme-
diately following the USING TSREG ANY specification.

4-111

Chapter 4, RAS66K

(3) CSR Checks

CSR checks are performed when jump or call instructions within a physical segment (J, SJ, CAL,
ACAL, SCAL) are made. They check whether the physical segment addresses of the branch source
and branch destination match. 1f a check does not result in a match, then awarning will occur.

m Examplem

EXTRN CODE:SUB_PROC1

CSEG #1
SUB_PROC2:
CSEG #2
CAL SUB PROC1 ;RL66K will perform a CSR check.
CAL SUB PROC2 ;RAS66K will perform a CSR check.

In this example, both CAL instructions are coded in physical segment 2. The branch destination of
the first CAL instruction (SUB_PROC1) is an externa symbol, but RAS66K cannot know the
physical segment of SUB_PROC1. Therefore RL66K will perform the CSR check.

On the other hand, it is determined during assembly that the physical segment address of the branch

destination of the second CAL instruction (SUB_PROC?) is 1. In this example, the physical seg-
ment addresses do not match, so awarning will occur.

4-112

Chapter 4, RAS66K

4.10.5 Word Boundary Checks

For OLMS-66K Series data memory, word boundaries exist when accessing words (2 bytes). Word
accesses are performed on word boundaries. In other words, word-length accesses are only possi-
ble when the first byte of aword is at an even address. Word-length accesses are not possible when
the first byte of aword is at an odd address. If such an operand is coded, then the 2 bytes accessed
will start at the address with the least significant bit assumed O.

RAS6E6K will output a warning when an odd address is given as an operand for which a word
access will be performed. However, RAS66K will output a warning only if it can determine the
operand’s value. If RAS66K cannot determine the operand’s value, then RL66K will perform the
word boundary check.

RAS66K and RL66K perform this check only when they can determine the address to be accessed.
When the operand addressing mode is indirect addressing, RAS66K and RL66K cannot determine
the address to be accessed. In such a case, a word boundary check will not be performed. Thisis
because the contents of the register used for indirect addressing would have to be known when the
instruction is executed in order to perform the check. That would require the program’s entire flow
to be examined. Thistype of processing is not the role of an assembler.

m Examplem

MOV ERO0,1000H ;Nowarning
MOV ER1,1001H ;Warning

MOVB R2,1002H ;Nowarning
MOVB R3,1003H ;Nowarning

In this example, the MOV instruction operands are accessed as words. When the operand is the
odd address 1001H, awarning will be output.

4.10.6 Special Function Register Access Checks

OLMS-66K Series data memory has special function registers for controlling microcontroller
peripheral functions. Corresponding to the peripheral functions they control, some special function
registers are limited to read-only or write-only accesses. The restrictions on accesses to these spe-
cial function registers differ depending on the target microcontroller. RAS66K reads information
related to these accesses from the DCL file. Using this information, RAS66K checks whether
accesses to special function registers are correct or not. If an accessis not correct, then a warning
will occur.

RAS6E6K checks accesses to special function registers only when it can determine the addresses to

be accessed. When the operand is indirect addressing, or when RL66K determines the address to
be accessed, RAS66K will not check accesses to special function registers.

4-113

Chapter 4, RAS66K

m Examplem

MOVB WDT,#3CH ;correct access
MOV WDT,#003CH ;warning
MOVB R1WDT ;warning

B P57 ;warning

WNDT can only be accessed by byte, and athough it can be it written, it cannot be read. Also, bit 7
of P5 cannot be accessed. In this example, the first [ine’'s MOV B instruction writes a byte to WDT,
so the access is correct. The second lin€ s MOV instruction accesses WDT as aword, so awarning
will occur. The third line€'s MOVB instruction reads WDT, so a warning will occur. The fourth
line’'s SB instruction accesses an inaccessible bit, so awarning will occur.

4.10.7 Current Page Checks

The OLMS-66K Series provides two addressing modes for accessing the current page area of data
memory space: current page addressing (off address, \address) and current page SBA area address-
ing (sbaoff address, \address). When current page addressing is used, the page number of the
address coded as an instruction operand must be checked to match the page number actually set
when the instruction is executed.

The USING PAGE directive supports management of the current page. This directive can inform
RASE6K and RL66K of each page number set within the program. RAS66K and RL66K compare
this value to instruction operands with current page addressing. If the check does not result in a
match, then awarning will occur.

m Examplem

EXTRN DATA : G_DATA

DAT_SEG SEGMENT DATA WORD
RSEG DAT SEG

TABLEL:DS 100H

CSEG

USING PAGE DAT_SEG ;Assume a page number.

MOVB ALRBH,#PAGE DAT_SEG ;Instruction sets page number during execution.
MOV ERO,0ff G_DATA ;Current page check performed

MOV ER1,0ff TABLEL ;Current page check performed

USING PAGE ANY ;Current page check suspended

MOV ER2,0ff 1234H ;Current page check not performed

In this example, the page numbers of the source operands of the two instructions below (G_DATA,
TABLEDL) are checked to match the page number of DAT_SEG.

MOV ERO,off G_DATA
MOV ER1,0ff TABLE1

4-114

Chapter 4, RAS66K

These checks are performed because RAS66K and RL66K are informed by the USING PAGE
directive that the current page number is that of DAT_SEG. G_DATA and TABLEL are relocat-
able symbols, so RL66K will perform these checks.

The USING PAGE ANY directive cancels the assumption of page number, stopping RAS66K and
RL66K from performing current page checks. A current page check is not performed for the MOV
instruction immediately following the USING PAGE ANY specification.

4.10.8 Program Memory Space Write Checks

Microcontrollers with the nX-8/500 CPU core can use the ROM window function. The ROM win-
dow function allocates a fixed area of program memory to data memory.

The ROM window function allows program memory to be accessed when an instruction that
accesses data memory is used. It allows program memory data to be read but not written. RAS66K
checks that instructions that access the ROM window area do not write to program memory. When
checks cannot be performed during assembly, RL66K performs them.

m Examplem

TYPE (M66507)
WINDOW 5000H,6FFFH

CSEG AT 5000H
ROM_TBL:
DW 100H
DW 112H

CSEG AT 1000H
AND A,ROM_TBL ;Read

MOV ROM_TBL,ER1 ;Write

In this example, the table that starts from ROM_TBL resides in the ROM window area. The AND
instruction reads data of ROM_TBL so it causes no problem, but the MOV instruction writes to
ROM_TBL so it causes awarning.

4-115

Chapter 4, RAS66K

4.10.9 Flag Attribute Checks

Some OLMS-66K Series microcontroller instructions are affected by the data descriptor (DD) or
the stack flag (SF). Furthermore, some instructions automatically change the states of these flags.
(Only microcontrollers with the nX-8/300 CPU core have the stack flag.)

Y ou must be aware of flag states when creating an OLM S-66K Series application program:

» Areflag states correct for instructions affected by flags?

 For branch instructions, do flag states for branch sources and branch destinations differ inappro-
priately?

RASG6K provides the USING DATA directive and USING OPRT directive to note flag state
changes in the program flow and to perform the above two checks. The USING DATA directive
gives an assumption about the state of DD, and the USING OPRT directive gives an assumption
about the state of SF. RAS66K issues a warning when it encounters an instruction with incorrect
flag attributes.

The two flag attribute checks performed by RAS66K are explained below.

(1) Flag Attribute Checks of Instructions Affected By Flags

RASGE6K checks if flag states are correct for instructions affected by flags. Refer to the instruction
manual of your target microcontroller to see which instructions are affected by which flags.

m Examplem

TYPE (M66507)

USING DATA WORD :Assume DD state is word.

SDD ;Instruction sets DD.

AND A #OF800H ;Word instruction is okay.

ANDB A #0F8H ;Byte instruction causes warning.

USING DATA BYTE ;Assume DD state is byte.

RDD ;Instruction resets DD.

AND A #OF800H ;Word instruction causes warning.
ANDB A #0F8H ;Byteinstruction is okay.

USING DATA ANY ;Cancel assumption of DD state.

AND A #OF800H ;Check is not performed.

ANDB A #0F8H ;Check is not performed.

4-116

Chapter 4, RAS66K

In the above example, the first USING DATA directive assumes that the state of DD isword. In
this state, only word-type instructions can be used from among instructions affected by DD. Thus,
the ANDB instruction causes awarning.

The next USING DATA directive assumes that the state of DD is byte. In this state, only byte-type
instructions can be used from among instructions affected by DD. Thus, the AND instruction caus-
esawarning.

Finally a USING DATA ANY directive is specified. This declares that RAS66K should make no
assumption about DD. In this state, instructions affected by DD are not checked. Thus, the AND
and ANDB instructions will not cause warning.

(2) Flag Attribute Checks of Branch Instructions

RASGE6K checks whether the flag attributes of branch sources and branch destinations of branch
instructions match.

Branch instruction flag attribute checks are performed only when the /CF option or the CHK direc-
tiveis specified.

m Examplem
USING DATA WORD ;Assume DD state is word.
CAL PROC1 ;DD state matches, so instruction is okay.
CAL PROC2 ;DD state differs, so instruction causes warning.
CAL PROC3 ;Check not performed.
USING DATA WORD ;Assume DD state is word.
PROC1:
USING DATA BYTE ;Assume DD state is byte.
PROC2:
USING DATA ANY ;Cancel assumption of DD state.
PROC3:

In this example, three subroutines are called when DD is assumed to be word. The first CAL
instruction’s branch destination PROC1 has a DD state of word. This matches the branch source,
so no warning will occur. The second CAL instruction’s branch destination PROC2 has a DD state
of byte. This does not match the branch source, awarning will occur. The third CAL instruction’s
branch destination PROC3 has no assumed DD state, so no warning will occur.

4-117

Chapter 4, RAS66K

4.11 Addressing Modes

This section explains the syntax, use, and coding restrictions of OLMS-66K Series addressing
modes.

The explanations of this chapter are based on the addressing modes of the top-end CPU core nX-
8/500. With a few exceptions, all addressing modes usable with lower-end devices can be used
with the nX-8/500 core. Names of addressing modes come from the “nX-8/500 Core Instruction
Manual.”

m Attention m

* Not explained in this manual

This manual does not explain which instructions can use which addressing modes. Refer to the
instruction manual of your target microcontroller for thisinformation.

» Addressing modes not usable with lower-end devices

Some addressing modes usable with only the nX-8/500 core cannot be used with lower-end
devices, but this manual will not point these out. When programming, please confirm the address-
ing modes usable with your target device by referring to the instruction manual .

» Names of addressing modes

This manual uses names of addressing modes consistent with the “nX-8/500 Core Instruction

Manual.” Note that instruction manuals of lower-end devices and other documentation may use
different names to refer to the same addressing modes.

4-118

Chapter 4, RAS66K

The terms below are used in the explanations of this section.

Term Meaning

ERn Extended local register (ERO, ER1, ER2, ER3).

Rn Local register (RO, R1, R2, R3, R4, R5, R6, R7).

byte_ immediate General numeric expression -80H to +0FFH representing an immediate byte

word_immediate

byte displacement
bit_displacement
bit_offset
shift_range
data_address

data_base

data_bit_address

data bit_base

code_address

code_base

value.

General numeric expression -8000H to +0OFFFFH representing an immediate
word value.

General numeric expression -40H to +3FH representing a byte displacement.
General numeric expression -200H to +1FFH representing a bit displacement.
Constant numeric expression 0 to 7 representing a bit position.

Constant numeric expression 1 to 4 representing a rotate/shift width.

General expression representing an address in data memory space.

Genera expression representing a number -8000H to +OFFFFH or an address
in data memory space.

General expression representing a bit address in data memory space.

Genera expression representing a number -40000H to +07FFFFH or a bit
address in data memory space.

General expression representing an address in program memory space.

Genera expression representing a number -8000H to +OFFFFH or an address
in program memory space.

Expressions coded as instruction operands must conform to the following rules.

Forward references to symbols are permitted in all addressing modes. However, RAM address-

ing optimizations are not applied to expressions that include forward references.

General expressions can be used, with the following exceptions.

 rotate width, shift width (shift_range)
* hit offset (bit_offset)
e Addressing that calls for a numeric expression can also be coded as an address expression. In

such cases, the physical segment address of the expression will be ignored, and only the offset
address will be valid.

4-119

Chapter 4, RAS66K

e Addressing that calls for an address expression can also be coded as a numeric expression. In
such cases, the numeric expression will be handled as an address in the address space of the tar-
get addressing.

e Addressing that calls for an address expression has restrictions on the usage type of the expres-
sion. When an address expression with an unallowed usage type is coded, an error will occur.

The following sections explain the syntax and meaning of each addressing mode and provide exam-
ples of usage. The underlined portions of the examples illustrate the addressing under discussion.

4-120

Chapter 4, RAS66K

4.11.1 Addressing Modes That Specify Numbers
4.11.1.1 Immediate Addressing
m Syntax m

Word: #word_immediate

Byte: #byte_immediate
m Description m

In this addressing mode, the number coded in the operand is itself the object accessed. The
word_immediate and byte_immediate are general expressions that represent numbers.

m Additional Information m

RAS66K allows both unsigned and signed expressions for immediate addressing. The range of val-
ues for word_immediate is -8000H to OFFFFH. The range of values for byte immediate is-80H to
OFFH.

m Examplem

MOV ERO, #9000H
LA #-7FFFH

MOVB RO, #0FFH
IBA #-7FH

4.11.1.2 Rotate/Shift Addressing
m Syntax m

shift_range
m Description m

This addressing mode specifies a rotate width or shift width. The shift_range is a constant expres-
sion that represents the rotate/shift width.

m Additional Information m

This addressing mode can be used with rotate instructions and shift instructions. The range of val-
ues for shift_rangeis1to 4.

m Examplem

SLA 3

ROB A 2

4-121

Chapter 4, RAS66K

4.11.2 RAM Addressing

RAM addressing is the addressing modes for specifying program variables in data memory space.
4.11.2.1 Register Addressing

Register addressing refers the contents of the registers themselves.

(1) Accumulator Addressing

m Syntax m
Word: A
Byte: A
Bit: A bit offset

m Description m

This addressing mode accesses the accumulator contents for word instructions. It accesses the con-
tents of the accumulator’'s lower byte for byte instructions and bit instructions. RAS66K deter-
mines whether the accumulator or the accumulator’s lower byte is being accessed by instruction
mnemonics.

m Examplem

L A#1234H
1B A#12H
B A4

(2) Control Register Addressing

m Syntax m

Word: SSP System stack pointer
LRB Local register base
PSW Program status word

Bytee PSWH Program status word high byte
PSWL Program status word low byte

Bit: PSWHbit _offset Bit in program status word high byte
PSWL bit offset Bit in program status word low byte
C Carry flag

m Description m

This addressing mode accesses the contents of the various control registers.

4-122

Chapter 4, RAS66K

m Examplem

SP#STACK_TOP
B,ERO

SW

353

CLRB PSWH
INCB PSWL

B PSWH.2

RB PSWL.4
MB CBITVAR

(3) Pointing Register Addressing

m Syntax m

Word: X1 Index register 1
X2 Index register 2
USP User stack pointer
DP Data pointer

Byte: X1L Index register 1 low byte
X2L Index register 2 low byte
USPL User stack pointer low byte
DPL Data pointer low byte

m Description m
This addressing mode accesses the contents of the pointing registers.
m Additional Information m

The byte addressing X1L, X2L, USPL, and DPL can only be used with the DINZ instruction. A
byte instruction that can use DP is “JRNZ DP,address.” This instruction is provided for source
compatibility between nX-8/100~nX-8/400 and nX-8/500. It isidentical to the instruction “DJINZ
DPL ,address.”

m Examplem

LA X1
STA X2
MOV DP#2000H
CR USP

DJINZ X1L,LOOP
DJINZ X2L,LOOP
DINZ DPLLOOP
DINZ USPLLOOP
JRNZ D PLOOP

4-123

Chapter 4, RAS66K

(4) Local Register Addressing

m Syntax m
Word: ERn Extended local register
Byte. Rn Local register
Bit: Rnbit_offset Bit in local register

m Description m
This addressing mode access the contents of local registers.

m Examplem

(5) Register Sets

m Syntax m
ER Local register set (ERO, ER1, ER2, ER3)
PR Pointing register set (X1, X2, DP, USP)
CR Control register set (A, LRB, PSW)

m Description m

This addressing mode indicates register sets. Instead of coded each register name to push or pop all
registers in a set with a stack instruction (PUSHS, PUSHU, POPS, POPU), a register set name can
be specified.

m Examplem

PUSHS ER
PUSHU PR
POPS CR

4-124

Chapter 4, RAS66K

4.11.2.2 Page Addressing
(1) SFR Page Addressing
m Syntax m

Word: & data address

data_address
Byte: & data address

data_address
Bit: & data bit address

data_bit address

m Description m

This addressing mode accesses addresses in the SFR area as word, byte, or bit data The
data_address is a general expression that represents a byte address in the SFR area. The
data bit_addressisageneral expression that represents a bit address in the SFR area.

RAS66K recognizes SFR page addressing by the “sfr” addressing specifier. If the “sfr” addressing
specifier is omitted, then RAS66K will use SFR page addressing only when it recognizes the speci-
fied address value as being in the SFR area.

m Additional Information m

The range of values of data addressis 0 to OFFH. Its usage type can be DATA, NONE, or NUM-
BER.

The range of values of data bit addressis 0.0 to OFFH.7. Its usage type can be BIT, NONE, or
NUMBER.

m Examplem

LA sirPO
LA PO

IBA sirPO
IBA PO

B sirP03
B PO

w 3

4-125

Chapter 4, RAS66K

(2) Fixed Page Addressing
m Syntax m

Word: k data _address

data_address
Byte: Kk data address

data_address
Bit: k data_bit address

data_bit address

m Description m

This addressing mode accesses addresses in the fixed page area as word, byte, or bit data. The
data_address is a general expression that represents a byte address in the fixed page area. The
data_bit addressisagenera expression that represents a bit address in the fixed page area.

RASGE6K recognizes fixed page addressing by the “fix” addressing specifier. If the “fix” addressing
specifier is omitted, then RAS66K will use fixed page addressing only when it recognizes the speci-
fied address value as being in the fixed page area. In addition, if a bit address is a value 2COH.0-
2FFH.7, then RAS66K will interpret it as shafix addressing.

m Additional Information m

The range of values of data_address is 200H to 2FFH. Its usage type can be DATA, NONE, or
NUMBER.

The range of values of data_bit_addressis 200H.0 to 2FFH.7. Its usage type can be BIT, NONE,
or NUMBER.

m Examplem

LA fix FIXVAR
LA FIXVAR

IBA IXFXVAR

IBA FIXVAR
B ixFXVAR4
B FIXVAR4

4-126

Chapter 4, RAS66K

(3) Current Page Addressing
m Syntax m

Word: df data address
\ data_address
Byte: df data address
\ data_address
Bit: df data_bit address
\ data bit address

m Description m
This addressing mode accesses addresses in the current page area as word, byte, or bit data.

Specify the desired address itself as the operand. In other words, the data address is a general
expression that represents a byte address in the current page area. The data_bit_addressis a gener-
al expression that represents a bit address in the current page area.

RAS6E6K recognizes current page addressing by the “off” or “\” addressing specifier. The “off” and
“\" addressing specifiers have the same meaning for word and byte instructions. For bit instruc-
tions, if the addressing specifier is “\” and the data_hit address value is an address in the SBA
area, then RAS66K will interpret it as shaoff addressing.

m Additional Information m

The data_address is an address in DATA address space. Its usage type can be DATA, EDATA,
NONE, or NUMBER.

The data_bit addressis an addressin BIT address space. Its usage type can be BIT, EBIT, NONE,
or NUMBER.

The programmer is responsible for managing the current page such that current page addresses
specified in operands are actually in the currently selected current page. To assist in this task,
RAS6E6K provides the USING PAGE directive for checking page numbers of current page address-

ing.

This addressing mode can also be thought of as specifying an offset (0-OFFH) within the current
page. Machine code will be generated normally for this use as well, but RAS66K will perform SFR
access attribute checks on addresses that it thinks in the SFR area, and may generate warnings.

m Examplem
LA off VAR
LA \WAR
IBA ofVAR
BA VAR
B dfVAR4A
B WAR4S

4-127

Chapter 4, RAS66K

(4) Fixed Page SBA Area Addressing
m Syntax m

Bit: sheix data_bit address
data_bit address

m Description m
This addressing mode accesses addresses in the SBA area of the fixed page area (2COH-2FFH) as
bit data. The data bit addressis a general expression that represents a bit addressin the SBA area
of the fixed page area.
RASB6K recognizes fixed page SBA addressing by the “shafix” addressing specifier. If the
“shafix” addressing specifier is omitted, then RAS66K will use fixed page SBA addressing only
when it recognizes the specified address value as being in the fixed page SBA area.

m Additional Information m

The range of values of data_hit addressis 2COH.0 to 2FFH.7. Its usage type can be BIT, NONE,
or NUMBER.

m Examplem

B shafix2COH.0
B 2C0H.0

(5) Current Page SBA Area Addressing
m Syntax m

Bitt <eof data bit address
\ data bit address

This addressing mode accesses addresses in the SBA area of the current page area (xxCOH-xxFFH)
as bit data. The data bit_addressis a general expression that represents a bit address in the SBA
area of the current page area.

RASG6K recognizes current page SBA addressing by the “shaoff” or “\" addressing specifier. The
“shaoff” addressing specifier always means current page SBA area addressing. However, the “\”
addressing specifier means current page SBA area addressing (shaoff) only if the address value is
within the range of the SBA area, and means current page addressing (off) if the address value is
outside the range of the SBA area.

4-128

Chapter 4, RAS66K

m Additional Information m

The range of values of data_bit addressis xxCOH.0 to xxFFH.7. Its usage type can be BIT, EBIT,
NONE, or NUMBER.

The programmer is responsible for managing the current page such that current page addresses
specified in operands are actually in the currently selected current page. To assist in this task,
RASGE6K provides the USING PAGE directive for checking page numbers of current page address-

ing.

This addressing mode can also be thought of as specifying an offset (0-OFFH) within the current
page. Machine code will be generated normally for this use as well, but RAS66K will perform SFR
access attribute checks on addresses that it thinks in the SFR area, and may generate warnings.

m Examplem

B sbaoff 122C0OH.0
B \12CO0H.0

4-129

Chapter 4, RAS66K

4.11.2.3 Direct Addressing
(1) Direct Data Addressing
m Syntax m

Word: o data address

data_address
Byte: d data address

data_address
Bit: d data bt address

data_bit_address

m Description m

This addressing mode directly specifies any address of a physical segment (64K bytes) in data
memory space. Specified addresses can be accessed as word, byte, or bit data. The data_addressis
agenera expression that represents a byte address in data memory space. The data_bit_addressis
ageneral expression that represents a bit address in data memory space.

RAS66K recognizes direct data addressing by the “dir” addressing specifier. If the “dir” addressing
specifier is omitted, then RASE6K will use direct data addressing when it recognizes the specified
address value as not being in the SFR area or fixed page area.

m Additional Information m

The value of data_address is an address in DATA address space. Its usage type can be DATA,
EDATA, NONE, or NUMBER.

The value of data bit_address is an address in BIT address space. Its usage type can be BIT,
EBIT, NONE, or NUMBER.

m Examplem

LA dir GLDATA
LA GLDATA

IBA dir GLDATA
IBA GLDATA

B dirGLDATAA
B GLDATAA4

4-130

Chapter 4, RAS66K

4.11.2.4 Pointing Register Indirect Addressing

(1) DP/X1 Indirect Addressing

m Syntax m
Word: [X1]
[DP]
Byte: [X1]
[DP]
Bit: X4 bt offset
[DP]. bt offset

m Description m

This addressing mode specifies an address of data memory space with the contents of a pointing
register. Data at specified addresses can be accessed as word, byte, or bit data.

m Examplem

LA [DP
MOV ERO, [X1]

IBA [DP]
MOVB RO,[X1]

S [DPl4
MB C, [X1]4

(2) Indirect Addressing With Post-I ncrement

m Syntax m
Word: [DP+]
[X1+]
[X2+]
Byte: [DP+]
[X1+]
[X2+]

Bit: [DP+]. bt offset
m Description m

This addressing mode specifies an address of data memory space with the contents of a pointing
register. Data at specified addresses can be accessed as word, byte, or bit data.

After the address is accessed, the register contents are incremented by 2 for word data and by 1 for
byte and bit data.

4-131

Chapter 4, RAS66K

m Additional Information m
[X1+] and [X2+] can only be used with string instructions.

m Examplem

L A [DP+]
SMOV [X2+] ,[X1+] ,RO

LB A DP+
SMOVB [X2+] ,[X1+] ,RO

B [DP+].2

(3) Indirect Addressing With Post-Decrement

m Syntax m
Word: [DP-]
[X1]
[X2-]
Byte: [DP-]
[X1]
[X2-]

Bit: [DP-]. bt ofiset
m Description m

This addressing mode specifies an address of data memory space with the contents of a pointing
register. Data at specified addresses can be accessed as word, byte, or bit data.

After the address is accessed, the register contents are decremented by 2 for word data and by 1 for
byte and bit data.

m Additional Information m
[X1-] and [X2-] can only be used with string instructions.

m Examplem

L A [DP-]
SMoOV [X2-] ,[X1-] ,RO

LB A DP+
SMOVB [X2-] ,[X1-] ,RO

B [DP-].2

4-132

Chapter 4, RAS66K

(4) DP/USP Indirect Addressing With 7-Bit Displacement
m Syntax m

Word: byte displacement [DP]
byte displacement [USP]
Byte: byte displacement [DP]
byte_displacement [USP]
Bit: byte_displacement [DP]. bit offset
byte displacement [USP]. bt offset
bit_displacement [DP]
bit_displacement [USP]
m Description m
This addressing mode specifies an address of data memory space with the contents of a pointing
register as a base, and a 7-bit unsigned displacement (-64 to +63). Data at specified addresses can
be accessed as word, byte, or bit data.

The byte displacement is a general expression that represents a displacement in byte units. The
bit_displacement is a general expression that represents a displacement in bit units.

Two methods are provided for expressing bits. One is to express the displacement as a byte dis-
placement (byte displacement) with a bit offset (bit_offset), and the other is to express it as a bit
displacement (bit_displacement).

m Additional Information m

The range of values of byte displacement is-64 to +63. The range of values of bit_displacement is
-512 to +511.

nX-8/100~400 can only use DP. There is one more displacement bit, allowing a range -128 to
+127.

m Examplem
LA 12[DP
MOV ERO, -8[USP]
IBA 12[DP]
MOVB RO, -8[USP
B 12[DP].0
RB 80H[DP]
MB C, -8[USP].2
MB -32H[USP] C

4-133

Chapter 4, RAS66K

(5) X1/X2Indirect Addressing With 16-Bit Base
m Syntax m

Word: data base [X1]
data base [X2]

Byte: data base [X1]
data_base [X2]

Bit: data base [X1]. bt ofiset
data base [X2]. bt ofiset
data_bit base [X1]
data_bit base [X2]

m Description m

This addressing mode specifies an address of data memory space with the contents of an index reg-
ister (X1 or X2) added to the address specified as a base. Data at specified addresses can be
accessed as word, byte, or bit data.

The data_base is a genera expression that represents a byte address in data memory space. The
data_bit_baseisageneral expression that represents a bit address in data memory space.

Two methods are provided for expressing bits. One is to express the base address as a byte base
address (data_base) with a bit offset (bit_offset), and the other isto express it as a bit base address
(data_bit_base).

This addressing mode can a so be thought of asif the index register contents are a base address with
a 16-bit displacement. Thisiswhy data_base is also permitted to be specified as a numeric expres-
sion -8000H to -1, and data bit base is also permitted to specified as a numeric expression -
40000H to -1.

m Additional Information m

The range of values of data_base is -8000H to +OFFFFH. Its usage type can be DATA, EDATA,
NONE, or NUMBER, but it can be NUMBER only when the value is negative.

The range of values of data bit _base is -40000H to +7FFFFH. Its usage type can be BIT, EBIT,
NONE, or NUMBER, but it can be NUMBER only when the value is negative.

4-134

Chapter 4, RAS66K

m Examplem

LA 1234H[X1]
MOV ERO, -200H[X2

IBA 1234H[X1
MOVB RO0,-200H[X2]

S 1000H[X1].2
B 8002H[X1]
MB C, -10H[X2].1
MB C, -7EH[X2]

(6) X1 Indirect Addressing With 8-Bit Register Displacement
m Syntax m

Word: [X1+RO]

[X1+A]

Byte: [X1+RO0]
[X1+A]

Bit: [X1+RO]. bt offset
[X1+A]. bi offset

m Description m

This addressing mode specifies an address of data memory space generated by adding the contents
of index register X1 as a base to the contents of the accumulator’s low byte or of local register RO.
Data at specified addresses can be accessed as word, byte, or bit data.

m Examplem

MOV ERO, [X1+A]
MOV ER1, [X1+RO0]

MOVB RO, [X1+A]
MOVB R1, [X1+RO

B [X1+A].3
RB [X1+RO0].4

4-135

Chapter 4, RAS66K

4.11.3 Table Data Addressing

Table data addressing is used to access data in program memory space.
4.11.3.1 Direct Addressing

(1) Direct Table Addressing

m Syntax m

Word: code_address
Byte: code_address

m Description m

This addressing mode accesses word or byte data at a specified address in program memory space.
The code_addressis ageneral expression that represents an address in program memory space.

m Additional Information m

The value of code_address is an address in CODE address space. Its usage type can be CODE,
NONE, or NUMBER.

m Examplem

CSEG
CodeTable:
DB 10H,20H,30H,40H,50H,60H

LCA CodeTable
CMPC A, CodeTable

LCB A CodeTable
CMPCB A,CodeTable

4.11.3.2 Indirect Addressing
(1) RAM Addressing Indirect Table Addressing
m Syntax m

Word: [word RAM addressing]
Byte: [word RAM addressing]

4-136

Chapter 4, RAS66K

m Description m

This addressing mode accesses addresses in program memory space pointed to by the contents of
data memory specified by word RAM addressing (described in Section 4.11.2, “RAM
Addressing.”). These addresses can be accessed as word or byte data.

m Examplem

ICA [ERO
ICA [X1]

ICA [XVAR]

LCA [2000H[X1]]
ICA [[X1+RO]]

LCB A [ERZ2]
LCB A [X2]
LCB A [of VAR

LCB A [2000H[X2]

LCB A [[X1+A
(2) RAM Addressing Indirect Addressing With 16-Bit Base
m Syntax m

Word: code_base [word RAM addressing]
Byte: code base [word RAM addressing]

m Description m

This addressing mode accesses addresses in program memory space generated by adding code base
as a base to the contents of data memory specified by word RAM addressing (described in Section
4.11.2, “RAM Addressing.”). These addresses can be accessed as word or byte data. The
code baseisagenera expression that represents an address in program memory space.

This addressing mode can also be thought of as if the word RAM addressing contents are a base
address with the 16-bit displacement of code base. Thisiswhy code base is also permitted to be
specified as a numeric expression -8000H to -1.

m Additional Information m

The range of values of code base is-8000H to +OFFFFH. Its usage type can be CODE, NONE, or
NUMBER, but it can be NUMBER only when the value is negative.

4-137

Chapter 4, RAS66K

m Examplem

CSEG
RomTable:
DB 10H,20H,30H,40H,50H,60H

LCA 2000H[ERO]

LCA RomTable[X1
LCA -10H[2000H[X1]]

LCB A 1000H[ERZ?]

LCB A RomTable[X2]
LCB A -20H[2000H[X2]]

4-138

Chapter 4, RAS66K

4.11.4 Program Code Addressing
Program code addressing represents branch destinations of jump and call instructions.
4.11.4.1 Direct Addressing
(1) Near Code Addressing
m Syntax m
code_address
m Description m
This addressing mode directly specifies the branch destination address of a J instruction or CAL
instruction. It specifies a branch destination address within the physical segment selected by the
current CSR. The code address is a general expression that represents an address in program
memory space.

m Additional Information m

The value of code address must be within the range of addresses of program memory space. Its
usage type can be CODE, NONE, or NUMBER.

m Examplem

NEXT

J
CAL EUNC
NEXT:

FUNC:

RT

4-139

Chapter 4, RAS66K

(2) Far Code Addressing
m Syntax m

code_address
m Description m
This addressing mode directly specifies the branch destination address of a FJ instruction or FCAL
instruction. The code addressis a general expression that represents an address in program memo-
ry space. The code address can specify an address of any physical segment of program memory
space.

m Additional Information m

The value of code_address must be within the range of addresses of program memory space. Its
usage type can be CODE, NONE, or NUMBER.

If the usage type of code address is NUMBER, then RAS66K will assume a branch to the same
physical segment that the instructionisin.

m Examplem

CSEG #1
B NEXT
FCAL FUNC

CSEG #2
NEXT:

CSEG #3
FUNC:

FRT

4-140

Chapter 4, RAS66K

4.11.4.2 Relative Addressing
(1) Relative Code Addressing
m Syntax m
code address
m Description m
This addressing mode specifies the branch destination address of an SJinstruction or a conditional
branch instruction. The code addressis a general expression that represents an address in program
memory space.

m Additional Information m

The displacement between code_address and the address of the next instruction must be -128 to
+127. The usage type of code_address can be CODE, NONE, or NUMBER.

m Examplem

4-141

Chapter 4, RAS66K

4.11.4.3 Special Code Addressing For Particular Instructions
(1) ACAL CodeAddressing
m Syntax m
code_address
m Description m

This addressing mode specifies the branch destination of an ACAL instruction. The code _address
isageneral expression that represents an address in the ACAL area of program memory space.

m Additional Information m

The value of code address is the address range of the ACAL area, 1000H to 1AFFH. Its usage
type can be CODE, NONE, or NUMBER.

m Examplem

ACAL AcalFunc

CSEG AT 1000H :ACAL area
AcalFunc;

RT
(2) VCAL Code Addressing
m Syntax m
code_address

m Description m

This addressing mode specifies an address in the VCAL table area. The code addressis a genera
expression that represents an address in the VCAL table of program memory space.

m Additional Information =

The value of code address is an even address in the VCAL table area. Its usage type can be
CODE, NONE, or NUMBER. The physical segment address of code address must be 0.

4-142

Chapter 4, RAS66K

m Examplem

TYPE (M66507)

CSEG AT4AH ;VCAL table area
VealVctoo:

DW VcalFuncO0
VecalVctol:

DW VcalFuncO1

VCAL Vcalvcto0
VCAL Vcalvct0ol

VcalFuncO0:

RT
VcalFuncO01:

RT

4.11.4.4 Indirect Addressing
(1) RAM Addressing Indirect Code Addressing
m Syntax m

[word RAM addressing]
m Description m
This addressing mode indicates branches to addresses in program memory space which are pointed
to by the contents of data memory specified by word RAM addressing (described in Section 4.11.2,
“RAM Addressing.”).

This addressing can be used with Jinstructions and CAL instructions.

m Examplem
J [X1]

J [1234H[X2]]
CAL [Al

4-143

Chapter 4, RAS66K

4.11.5 ROM Window Addressing

m Syntax m

Same as Section 4.11.2, “RAM Addressing”

m Description m

This addressing mode accesses the ROM window area of program memory space using RAM
addressing (except for register direct). Thusits syntax is exactly the same as for RAM addressing.
However, instead of specifying an address in data memory space, this addressing mode specifies an
address in program memory space.

m Additional Information m

ROM window addressing is a fixed function of the nX-8/500.

Datain the ROM window area can be read but not written.

m Examplem

TYPE (M66507)
WINDOW 4000H,4FFFH

CSEG AT 4000H :ROM Window Area
RomWinTable:

DW 1234H

DW OFFOOH

CSEG
ADD A, RomWinTable
XOR A, RomWinTable[X1]

4.11.6 Addressing For nX-8/100 to nX-8/400
4.11.6.1 Zero Page Addressing
m Syntax m

Word: data_address
Byte: data address
Bit: data_bit address

4-144

Chapter 4, RAS66K

m Description m

This addressing mode accesses word, byte, or bit data at an address in the zero page area (00H-
OFFH). The data_address is a genera expression that represents a byte address in the zero page
area. The data bit_address is a general expression that represents a bit address in the zero page
area.

m Additional Information m

The range of values of data_addressis 0 to OFFH. Its usage type can be DATA, NONE, or NUM-
BER.

The range of values of data bit addressis 0.0 to OFFH.7. Its usage type can be BIT, NONE, or
NUMBER.

m Examplem

MOV ERO, 80H
LA 90H

4.11.6.2 USP Indirect Addressing With Pre-Increment

m Syntax m
Word: [+USP]

m Description m

This addressing mode specifies an address in data memory space with the contents of USP incre-
mented by 2. The specified address accesses word data.

m Additional Information m

This is a fixed addressing mode of the nX-8/300 CPU core. It can only be used with word-based
calculation instructions (ADD, ADC, SUB, SBC, AND, OR, XOR).

4-145

Chapter 4, RAS66K

m Examplem

ADD A [+USP
ADC A [+USP
SB A [+tUSP
SBC A [+USP
AND A [+USP
ORA [+USP]
XOR A [+USP

4-146

Chapter 4, RAS66K

4.11.7 Optimization Of Addressing

The OLMS-66K Series provides many addressing modes for directly referring RAM addresses.
Usualy a programmer will code addressing specifiers to specify particular addressing modes.
However, it is bothersome to the programmer to always stay aware of addressing types during pro-
gramming. Therefore RAS66K also has a function for determining the optimal addressing for spec-
ified address values.

4.11.7.1 Optimization Of RAM Address Specifications
Without Addressing Specifiers

m Syntax m

Word: data_address
Byte: data address
Bit: data_bit address

m Description m

RAS6E6K determines the addressing of a RAM address specification without an address specifier in
the following order.

(1) For abyte or bit instruction, RAS66K will use control register addressing (PSWL, PSWH) if
the address value matches the address of PSWL or PSWH (4H, 5H).

(2) If the address value is an address in the SFR area, then RAS66K will use SFR page addressing
(sfr address).

(3) If the address value is an address in the fixed page area, then RAS66K will use fixed page
addressing (fix address). However, for a bit instruction, RAS66K will use fixed page SBA
area addressing (sbafix address) if the address value is an address in the SBA area.

(4) If the address does not fit one of the above conditions, then RAS66K will use direct data
addressing (dir address).

However, if the specified expression includes a forward reference, then RAS66K will not perform
optimization processing, but will instead use the addressing mode that requires the longest code.
For nX-8/100~400 CPU cores, optimization for control register addressing is performed, but every-
thing else will be zero page addressing.

Examples of optimizations of RAM address specifications without addressing specifiers are shown
below.

4-147

Chapter 4, RAS66K

m Examplem

IBA 4H ;PSWL

IBA 5H ;PSWH

IBA 20H ;sfr 20H

IBA 200H fix 200H

IBA 1200H ;dir 1200H

B 4H.0 ;PSWL.O

B 5H.0 ;PSWH.0

B 20H.0 ;sfr 20H

B 200H.0 fix 200H

B 2C0H.0 ;sbafix 2COH
B 1200H.0 ;dir 1200H

In this example, the comments show how RAS66K actually determines the addressing.

This example shows constant expressions, but RAS66K can also determine fixed page addressing
(fix address) and fixed page SBA area addressing (sbafix address) for relocatable expressions. For
this to happen, the relocatable symbols included in expressions need to be declared in advance to be
addresses in the fixed page area or SBA area when the symbols are defined. Examples of optimiza-
tions of relocatable expressions are shown below.

m Examplem

SEGSYM SEGMENT DATA WORD SBAFIX
RSEG SEGMENT

RELSYMDS 2

COMSYM SEGMENT DATA 2H SBAFIX

EXTRN DATA SBAFIX: EXTSYM

CSEG

LBA SEGSYM;fix SEGSYM
LBA RELSY M;fix RELSYM
LBA COMSY Mfix COMSYM
LB A EXTSYM;fix EXTSYM

B SEGSYM.O0 ;shafix SEGSYM
B RELSYM.O0 ;sbafix RELSYM
B COMSYM.O0;sbafix COMSYM
B EXTSYM.0 ;sbafix EXTSYM

In the above example, each relocatable symbol is specified with the SBAFIX keyword when

defined. The SBAFIX specification declares that the address is in the SBA area of the fixed page
area.

4-148

Chapter 4, RAS66K

4.11.7.2 Optimization Of RAM Address Specifications
With The Addressing Specifier \

m Syntax m
Bit: \ data bit address
m Description m

RAM address specifications with the addressing specifier \ are optimized only when used with bit
instructions. For word and byte instructions, they will be the same as “off” addressing.

RAS6E6K determines the addressing in the following order.

(1) For ahit instruction, RAS66K will use current page SBA area addressing (sbaoff address) if
the address value is an address in the SBA area.

(2) If the address does not fit the above condition, then RAS66K will use current page addressing
(off address).

However, if the specified expression includes a forward reference, then RAS66K will always use
current page addressing (off address).

For RAS66K to determine current page SBA area addressing (sbaoff address) for a relocatable
expression, the relocatable symbols included in expressions need to be declared in advance to be
addressesin the SBA area when the symbols are defined.

Examples of optimizations of RAM address specifications with the addressing specifier \ are shown
below.

m Examplem

SEGSYM SEGMENT BIT SBA
RSEG SEGSYM

RELSYM: DBIT 4

COMSYM COMM BIT 2 SBA

EXTRN BIT SBAEXTSYM

CSEG

B \1000H ;off 1000H

B \10COH ;shaocff 10COH

B \SEGSYM ;sbaoff SEGSYM
B \RELSYM ;sbaoff RELSYM
B \ COMSYM ;sbaoff COMSYM
B \EXTSYM ;shaoff EXTSYM

4-149

Chapter 4, RAS66K

4.12 Directives

Directives are instructions provided uniquely by RAS66K. While microcontroller instructions
determine program operation, directives manage program structure, control RAS66K operation, and
specify output files.

This section describes the syntax and functions of all directives provided by RAS66K. Comment

fields are omitted from descriptions of directive syntax. The syntax of directives that can specify
labels is shown starting with [label:]. Directivesthat do not show this syntax cannot specify labels.

4.12.1 DCL File Specification (TYPE)
m Syntax m

TYPE (dcl_name)
m Description m
The TYPE directive specifies the DCL file name corresponding to the target microcontroller.
RAS66K will read information from the DCL file that has dcl_name as a base name and “.DCL" as
an extension. The microcontroller name and DCL file base name are similar, but they differ in that
microcontroller names start with “MSM” and DCL file base names start with “M.” For example, if
the microcontroller nameis“MSM66507,” then specify “M66507” in the TY PE directive.
The DCL file search will proceed as follows.
(1) Current directory
(2) Directory inwhich RAS66K.EXE exists
(3) Directory specified in environment variable DCL
RAS66K reads DCL file contents before assembly processing. It will read to the end of the DCL
file even if the file contents contain errors. RASE6K will then display all generated DCL errors and
terminate. If the DCL fileread is okay, then RAS66K will continue and assemble the sourcefile.
m Additional Information m
A TYPE directive must be specified in the program. If no TYPE directive is specified or if the
specified DCL file cannot be found, then RAS66K will terminate without assembling the source

file.

Specify the TYPE directive at the start of the program. For details on coding, refer to Section
4.4.1.5, “Code Position Restrictions.”

Refer to the DCL66K.DOC file for details on the contents of DCL files.

4-150

Chapter 4, RAS66K

m Examplem

/*

TEST PROGRAM
x|

TYPE(M66507)

CSEG AT OH
DW START

START:

In this example, the target microcontroller is MSM66507. RAS66K will read the DCL file
M66507.DCL.

4.12.2 Memory Model Specification (MODEL)
m Syntax m
MODELmemory_model
m Description m
The MODEL directive specifies the memory model used.
When the microcontrollers with the nX-8/500 CPU core and multiple physical segments, the

MODEL directive is specified to inform RAS66K of the memory model. The memory _model is
one of the following.

memory_model Memory Model

SMALL (default) SMALL memory model
COMPACT COMPACT memory model
MEDIUM MEDIUM memory model
LARGE LARGE memory model

The number of physical segments usable by a program is determined by the microcontroller memo-
ry configuration defined in the DCL file and by the memory model set with the MODEL directive.

The MODEL directive may be omitted. |If the MODEL directive is not specified, the SMALL
memory model will be set.

4-151

Chapter 4, RAS66K

m Additional Information m

The FJ instruction and FCAL instruction cannot be used unless the memory model is MEDIUM or
LARGE.

The MODEL directive informs RAS66K of the memory model, so it does not generate object code
that sets the memory model. To actually set the memory model, use a microcontroller instruction.

Specify the MODEL directive at the start of the program. For details on coding, refer to Section
4.4.1.5, “Code Position Restrictions.”

Refer to Section 3.2.4.3, “Memory Models,” for details on memory models.

m Examplem

MODEL LARGE

DSEG #3 AT 1000H

CSEG #5 AT 2000H
FUNC:

CSEG #6 AT 1000H
FCAL FUNC

This exampl e sets the LARGE memory model.

4-152

Chapter 4, RAS66K

4.12.3 COMMON Area Specification (COMMON)
m Syntax m

COMMONbch_value
m Description m
In microcontrollers that have multiple physical segments in data memory space, an area exists that
is common to all physical segments, called the COMMON area. There are four possible end
addresses for the COMMON area. The programmer selects one of these by setting the BCB of the
PSW to avalue 0-3.
The COMMON directive informs RAS66K of the number in BCB of the PSW for the COMMON
area’s end address. The bcb_value must be a constant expression that does not include forward ref-

erences. Set the bch value to the value 0-3 set in the BCB.

The COMMON directive may be omitted. If the COMMON directive is not specified, then
RAS66K will assume the BCB valueisO.

m Additional Information m

The COMMON directive informs RAS66K of the end address of the COMMON area, so it does
not generate object code that sets BCB. To actually set BCB, use amicrocontroller instruction.

RASE66K memory management assumes that the size of the COMMON area (the value of BCB)
will not be changed during the program. If creating a program that changes the value of BCB, then
the programmer needs to manage memory himself.

Specify the COMMON directive at the start of the program. For details on coding, refer to Section
4.4.1.5, “Code Position Restrictions.”

m Examplem

TYPE (M66507)

COMMON 2

4-153

Chapter 4, RAS66K

4.12.4 ROM Window Area Specification (WINDOW)
m Syntax m
WINDOWSstart_address , end_address
m Description m
The WINDOW directive specifies the start address and end address of the ROM window area.

The ROM window function is available when using a microcontroller with the nX-8/500 CPU core.
The ROM window function allocates a certain areain data memory space to the same address range
in program memory space. In order to use the ROM window function, values representing the
address range of the ROM window area must be written in the SFR's ROMWIN register. In order
to inform RAS66K how the ROM window function is being used, specify the start address and end
address of the ROM window area as operands of the WINDOW directive.

The start_address represents the start address of the ROM window area. It must be a constant
expression that does not include forward references. The value of start_address must be 1000H or
higher, and its lower 12 bits must be 000H.

The end_address represents the end address of the ROM window area. It must be a constant
expression that does not include forward references. The value of end _address must be 1000H or
higher, and must be greater than start_address. Itslower 12 bits must be FFFH.

If the WINDOW directive is omitted, then RAS66K will assume that no ROM window area exists.
m Additional Information m

The WINDOW directive informs RAS66K of the ROM window area range, so it does not generate
object code that sets ROMWIN register. To actually set the ROMWIN register, use a microcon-
troller instruction.

RASG66K memory management assumes that the range of the ROM window area (the value of the
ROMWIN register) will not be changed during the program. If creating a program that changes the
value of the ROMWIN register, then the programmer needs to manage memory himself.

Specify the WINDOW directive at the start of the program. For details on coding, refer to Section
4.4.1.5, “Code Position Restrictions.”

4-154

Chapter 4, RAS66K

m Examplem

TYPE (M66507)

WIN_START EQU 5000H

WIN_END EQU 6FFFH

WIN_REG EQU ((WIN_END&OFO00H)>>8)|(WIN_START>>12)
WINDOW WIN_START,WIN_END

MOVB ROMWIN#WIN_REG

CSEG AT WIN_START
DW 10H,20H,30H,40H

This example uses 5000H to 6FFFH as the ROM window area.

4.12.5 Local Symbol Definition (EQU, SET)
m Syntax m

symbol EQU simple_expression
symbol SET simple_expression

m Description m

The EQU directive and SET directive define alocal symbol. The symbol specifies the symbol to be
defined. The simple_expression specifies a simple expression that does not include forward refer-
ences.

Symbols defined with the EQU and SET directives will be given the attribute and the value of sim+
ple_expression. In other words, if simple_expression is a constant expression, then the defined
symbol will become an absolute symbol. If simple_expression is a simple relocatable expression,
then the defined symbol will become a simple relocatable symbol. If simple_expression is a numer-
ic expression, then the symbol’ s usage type will be NUMBER. If simple_expression is an address
expression, then the symbol will be given the address characteristics of simple_expression.

A symbol defined with the EQU directive cannot be defined again within the same program. A

symbol defined with the SET directive can be defined again any number of times using the SET
directive.

4-155

Chapter 4, RAS66K

m Additional Information m

The simple_expression cannot be specified as an address constant (more precisely, as an expression
of type NONE). This is because RAS66K does not allow a symbol to be defined without a clear
address space for it.

If asymbol defined with the SET directive is used before its first definition, then the symbol value
will be that of the last definition. RAS66K will issue awarning in this case and output the informa-
tion from the last definition to the symboal list. If the symbol is also declared public with the PUB-
LIC directive, RAS66K will also output the information from the last definition to the object file.

m Examplelm

SEGSYM SEGMENT DATA 2
RSEG SEGSYM
BUFL DS 4

BASE EQU 10H
BUFSIZEEQU 4H

VALUE EQU BASE+BUFSIZE
BUFX EQU BUF1+BUFSIZE

In this example, four local symbols are defined using the EQU directive. BASE, BUFSIZE, and
VALUE will become absolute symbols with usage type NUMBER. BUFX will become a simple
relocatable symbol with usage type DATA.

m Example2m

MOV ERO,#SETSYM

SETSYM SET 100H
MOV ERO#SETSYM

SETSYM SET 200H
MOV ERO,#SETSYM

In this example, the absolute symbol SETSY M with usage type NUMBER is defined using the SET
directive. In the MOV instruction immediately after the first SET directive, SETSYM’s value is
100H, but in the MOV instruction immediately after the second SET directive, SETSYM’svalueis
200H. Inthefirst MOV instruction, SETSY M’ s value will be the 200H specified with the last SET
directive. Thisinstruction statement’s reference to SETSYM is before the first SET directive, so it
will cause awarning.

4-156

Chapter 4, RAS66K

4.12.6 Definition of Local Symbols That Represent Addresses
(CODE, CBIT, DATA, BIT, EDATA, EBIT)

The directives explained in this section define local symbols that represent addresses in the various
address spaces. The defined symbols will have the usage type corresponding to their directive.

m Syntax m

symbol CODEsimple_expression
m Description m
The CODE directive defines alocal symbol that represents a byte address in CODE address space.
The symbol specifies the local symbol to be defined. The simple_expression represents an address
in CODE address space. It is specified as a simple expression that does not include forward refer-
ences.
If simple_expression is a constant expression, then symbol will be an absolute symbol. If
simple_expression is a simple relocatable expression, then symbol will be a simple relocatable sym-
bol. The symbol will be given the address value of simple_expression and usage type CODE.
m Additional Information m
The usage type of simple_expression must be CODE, NONE, or NUMBER. Other usage types will
cause an error. If the usage type of simple_expression is NUMBER, then the physical segment

address of symbol will be 0.

m Examplem

CODE_SYM1 CODE 1000H
CODE_SYM2 CODE 2:2000H

CSEG #3 AT 3000H
LABEL:
CODE_SYM3 CODE LABEL+100H

In this example, three absolute symbols with usage type CODE are defined using the CODE direc-
tive (CODE_SYM1, CODE_SYM2, CODE_SYM3). CODE_SYM1 will be asymbol representing
offset address 1000H in physical segment 0. CODE_SYM?2 will be a symbol representing offset
address 2000H in physical segment 2. CODE_SYM3 will be a symbol representing offset address
3100H in physical segment 3.

4-157

Chapter 4, RAS66K

m Syntax m
symbol CBIT simple_expression
m Description m

The CBIT directive defines a local symbol that represents a bit address in CODE address space.
The symbol specifies the local symbol to be defined. The simple_expression represents a bit
addressin CODE address space. It is specified as a simple expression that does not include forward
references.

If simple expression is a constant expression, then symbol will be an absolute symbol. If
simple_expression is a simple relocatable expression, then symbol will be a simple relocatable sym-
bol. The symbol will be given the address value of simple_expression and usage type CBIT.

m Additional Information m

The usage type of simple_expression must be CBIT, NONE, or NUMBER. Other usage types will
cause an error. If the usage type of simple_expression is NUMBER, then the physical segment
address of symbol will beO.

m Examplem

CBIT_SYM1 CBIT 1000H.1

CBIT_SYM2 CBIT 2:2000H.4

CSEG #3 AT 3000H
LABH: DS 2
CBIT_SYM3 CBIT LABEL.4

In this example, three absolute symbols with usage type CBIT are defined using the CBIT directive
(CBIT_SYM1, CBIT_SYM2, CBIT_SYM3). CBIT_SYM1 will be a symbol representing bit 1 of
offset address 1000H in physical segment 0. CBIT_SYM?2 will be a symbol representing bit 4 of
offset address 2000H in physical segment 2. CBIT_SYM3 will be a symbol representing bit 4 of
offset address 3000H in physical segment 3.

4-158

Chapter 4, RAS66K

m Syntax m
symbol DATA simple_expression
m Description m

The DATA directive defines a local symbol that represents an address in DATA address space.
The symbol specifies the local symbol to be defined. The simple_expression represents an address
in DATA address space. It is specified as a simple expression that does not include forward refer-
ences.

If simple_expression is a constant expression, then symbol will be an absolute symbol. If
simple_expression is a simple rel ocatable expression, then symbol will be a simple relocatable sym-
bol. The symbol will be given the address value of simple_expression and usage type DATA.

m Additional Information m

The usage type of simple_expression must be DATA, NONE, or NUMBER. Other usage types will
cause an error. If the usage type of simple expression is NUMBER, then the physical segment
address of symbol will be 0.

m Examplem

DATA_SYM1 DATA 1000H

DATA_SYM2 DATA 2:2000H

DSEG #3 AT 3000H
LABEL: DS 200H
DATA_SYM3 DATA LABEL+100H

In this example, three absolute symbols with usage type DATA are defined using the DATA direc-
tive (DATA_SYM1, DATA_SYM2, DATA_SYM3). DATA_SYM1 will be asymbol representing
offset address 1000H in physical segment 0. DATA_SYM2 will be a symbol representing offset
address 2000H in physical segment 2. DATA_SYM3 will be a symbol representing offset address
3100H in physical segment 3.

4-159

Chapter 4, RAS66K

m Syntax m

symbol BIT simple_expression
m Description m
The BIT directive defines alocal symbol that represents an addressin BIT address space. The sym+
bol specifies the local symbol to be defined. The simple_expression represents an address in BIT
address space. It is specified as a simple expression that does not include forward references.
If simple expression is a constant expression, then symbol will be an absolute symbol. |If
simple_expression is asimple rel ocatable expression, then symbol will be a simple relocatable sym-
bol. The symbol will be given the address value of simple_expression and usage type BIT.
m Additional Information m
The usage type of simple_expression must be BIT, NONE, or NUMBER. Other usage types will
cause an error. If the usage type of simple_expression is NUMBER, then the physical segment
address of symbol will beO.

m Examplem

BIT_SYM1 BIT 1000H.1

BIT_SYM2 BIT 2:2000H.3

DSEG #3 AT 3000H
LABH: DS 2
BIT_SYM3 BIT LABELA4

In this example, three absolute symbols with usage type BIT are defined using the BIT directive
(BIT_SYM1, BIT_SYM2, BIT_SYM3). BIT_SYM1 will be a symbol representing bit 1 of offset
address 1000H in physical segment 0. BIT_SYM2 will be a symbol representing bit 3 of offset
address 2000H in physical segment 2. BIT_SYM3 will be a symbol representing bit 4 of offset
address 3000H in physical segment 3.

4-160

Chapter 4, RAS66K

m Syntax m
symbol EDATA simple_expression
m Description m

The EDATA directive defines alocal symbol that represents an address in EDATA address space.
The symbol specifies the local symbol to be defined. The simple_expression represents an address
in EDATA address space. It is specified as a simple expression that does not include forward refer-
ences.

If simple_expression is a constant expression, then symbol will be an absolute symbol. If
simple_expression is a simple rel ocatable expression, then symbol will be a simple relocatable sym-
bol. The symbol will be given the address value of simple_expression and usage type EDATA.

m Additional Information m

RASE6K aways assumes that the EEPROM area is alocated to physical segment 0. Therefore
symbols and expressions of type EDATA cannot have physical segment addresses other than 0.

The usage type of simple_expression must be EDATA, NONE, or NUMBER. Other usage types
will cause an error. If the usage type of simple_expression is NUMBER and the EEPROM areais
included in the COMMON area, then the physical segment attribute will be COMMON. If the
usage type of simple_expression is NUMBER and the EEPROM areais not included in the COM-
MON area, then the physical segment address of symbol will be 0.

m Examplem

EDATA_SYM1 EDATA 5000H

EDATA_SYM2 EDATA 0:5010H

ESEG AT 5000H
LABE: DS 40H
EDATA_SYM3 EDATA LABEL+20

In this example, three absolute symbols with usage type EDATA are defined using the EDATA
directive (EDATA_SYM1, EDATA_SYM2, EDATA_SYM3). EDATA_SYM1 will be a symbol
representing offset address 5000H in physical segment 0. EDATA_SYM2 will be a symbol repre-
senting offset address 5010H in physical segment 0. EDATA_SY M3 will be a symbol representing
offset address 5020H in physical segment 0.

4-161

Chapter 4, RAS66K

m Syntax m
symbol EBIT simple_expression
m Description m

The EBIT directive defines alocal symbol that represents an address in EBIT address space. The
symbol specifies the local symbol to be defined. The simple_expression represents an address in
EBIT address space. It is specified as a simple expression that does not include forward references.

If simple _expression is a constant expression, then symbol will be an absolute symbol. |If
simple_expression is asimple rel ocatable expression, then symbol will be a simple relocatable sym-
bol. The symbol will be given the address value of simple_expression and usage type EBIT.

m Additional Information m

RASG6K always assumes that the EEPROM area is allocated to physical segment 0. Therefore
symbols and expressions of type EBIT cannot have physical segment addresses other than 0.

The usage type of simple_expression must be EBIT, NONE, or NUMBER. Other usage types will
cause an error. If the usage type of simple expression is NUMBER and the EEPROM area is
included in the COMMON area, then the physical segment attribute will be COMMON. If the
usage type of simple_expression is NUMBER and the EEPROM area is not included in the COM-
MON area, then the physical segment address of symbol will be 0.

m Examplem

EBIT_SYM1 EBIT 5000H.0

EBIT_SYM2 EBIT 0:5010H.4

ESEG AT 5000H
LABEL: DS 40H
EBIT_SYM3 EBIT (LABEL+20).5

In this example, three absolute symbols with usage type EBIT are defined using the EBIT directive
(EBIT_SYM1, EBIT_SYM2, EBIT_SYM3). EBIT_SYM1 will be a symbol representing bit O of
offset address 5000H in physical segment 0. EBIT_SYM2 will be a symbol representing bit 4 of
offset address 5010H in physical segment 0. EBIT_SYM3 will be a symbol representing bit 5 of
offset address 5020H in physical segment O.

4-162

Chapter 4, RAS66K

4.12.7 Absolute Segment Definition

(CSEG, DSEG, BSEG, ESEG, EBSEG)

m Syntax m

CSEG| #physical_segment_address][AT start address]
CSEG[AT start address [#physical segment address]

DSEG[{#physical segment address |[COMMON}][AT start address]
DSEG|[AT start address I {#physical_segment address |[COMMON]

BSEG|[{#physical segment address [COMMON}][AT start address]
BSEG|[AT start address 1l {#physical segment address [COMMON}]

ESEG[AT start address]

EBSEG[AT stat address]

m Description m

These directives declare the start of an absolute segment definition.

Programs created in RAS66K assembly language are defined as a collection of multiple (at least 1)
logical segments. RASG66K needs to be informed when the logical segment type is switched within

aprogram.

The directives described in this section are specified to place code in their corresponding absolute

segments.

To start a relocatable segment, specify the RSEG directive. Use of the RSEG directive

isdescribed in Section 4.12.8.3, “ Relocatable Segment Definition (RSEG).”

The relationship between the directives and the segment types of the defined logical segments is

shown below.
Directive Corresponding Segment
CSEG Absolute CODE segment
DSEG Absolute DATA segment
BSEG Absolute BIT segment
ESEG Absolute EDATA segment
EBSEG Absolute EBIT segment

Each directive can have parameters that indicate the start address and physical segment address of
the defined logical segment. The meanings of these parameters are explained next.

4-163

Chapter 4, RAS66K

(1) #physical_segment_address

The #iphysical_segment_address specifies the physical segment address of the logical segment to be
defined. The physical_segment_address represents a physical segment address. It must be a con-
stant expression that does not include forward references. The #physical _segment_address can be
specified with the CSEG, DSEG, and BSEG directives.

m Examplem

CSEG #3

DSEG #4

BSEG #2

This example defines an absolute CODE segment in physical segment 3, an absolute DATA seg-
ment in physical segment 4, and an absolute BIT segment in physical segment 2.

(2) COMMON

COMMON declares that the logical segment is defined to reside in the COMMON area. It can be
specified with the DSEG and BSEG directives.

As explained in Section 4.5.3, “COMMON Area,” RAS66K handles the COMMON area and each
physical segment of data memory space as separate spaces. By specifying COMMON, the logical

segment will reside in the COMMON area. RAS66K manages the addresses of logical segments
with the COMMON specification and addresses of each physical segment independently.

m Examplem

DSEG COMMON

BSEG COMMON

This example defines an absolute DATA segment and absolute BIT segment that reside in the
COMMON area.

4-164

Chapter 4, RAS66K

(3) AT start_address

AT start_address specifies the start address of the logical segment to be defined. The start_address
must be a constant expression that does not include forward references. By specifying AT
start_address, the value of the location counter will be changed to that of the specified address.

The meaning of AT start_address differs when start_address is a numeric expression and when it
is an address expression. When start_address is a numeric expression, it only specifies an offset
address. On the other hand, when start_address is a numeric expression, it specifies both a physi-
cal segment address and an offset address. In such cases, #physical_segment_address and COM-
MON cannot be specified at the same time.

m Examplem

CSEG #4 AT 2000H
CSEG AT 4:2000H
CSEG #5 AT 2:3000H ;ERROR

In this example, the first CSEG directive specifies #4 as the physical segment address and 2000H as
the offset address. The second CSEG directive expresses the identical specification of the first, but
expresses the address as 4:2000H. The third CSEG directive specifies an address constant 2:3000H
with AT even though it also specifies a physical segment address with #5. In this case, RAS66K
cannot determine if the physical segment should be 5 or 2, so an error will occur.

4-165

Chapter 4, RAS66K

Parameters can be divided into two types.

e Parameters for specifying physical segments (#physical_segment_address and COMMON)
e Parametersfor specifying start addresses (AT start_address)

Either of these parameters can be specified first. Also, these parameters may be omitted if not nec-
essary. If the parameters are omitted, then the segment will inherit its settings from the previous
logical segment of the same segment type.

(1) Omitting parameter for specifying physical segment

If both #physical_segment_address and COMMON are omitted, then the segment will inherit its
setting from the previous physical segment of the same segment type. This is true, however, only
when start_addressis a numeric expression.

m Examplem

CSEG #2 AT 1000H

CSEG AT3000H #2

DSEG COMMON AT 200H

DSEG AT 300H ;COMMON

The first CSEG directive specifies physical segment 2. The next CSEG directive has no physica
segment specification, but specifies only a start address of 3000H. In this case, the physical seg-
ment address will be set to 2.

Similarly, the first DSEG directive specifies the physical segment COMMON. The next DSEG
directive has no physical segment specification, but specifies only a start address of 300H. In this
case, the physical segment will be set to COMMON.

(2) Omitting parameter for specifying start address

If AT start_address is omitted, then the segment will inherit its offset address from the previous
logical segment of the same segment type.

4-166

Chapter 4, RAS66K

m Examplem

DSEG #2 AT 2000H
DS 10H ;2000H+10H

DSEG #2 ;startaddress 2010H
The first DSEG directive specifies a start address of 2000H in the physical segment #2. Since the
DSdirective reserves 10 bytes, the location counter of the #2 is changed to 2010H. The next DSEG
directive specifies a physical segment address but not a start address. In this case, the start address
is set to 2010H, which isthe value of the previous location counter.
(3) Specifying no parameter

If no parameter is specified, then the segment will inherit its settings and offset address from the
previous physical segment of the same segment type.

m Examplem

DSEG #2 AT 2000H
DS 10H ;2000H+10H

DSEG #3 AT 3000H
DS 20H ;3000H+20H

DSEG ;startaddress 3:3020H
The last DSEG directive does not specify a physical segment or a start address. In this case, it will

inherit its settings from the previous DSEG directive. The physical segment address will be set to
3, and the offset address will be set to 3020H.

4-167

Chapter 4, RAS66K

4.12.8 Using Relocatable Segments

Relocatable segments are logical segments for which absolute addresses are not determined during
assembly, but during linking instead. The basic concepts of relocatable segments are explained in
Section 4.5.2.2, “Relocatable Segments,” so this section explains only the use of directives for
them.

Relocatable segments are distinguished by names called segment symbols. The procedure for using
relocatable segmentsis as follows.

(1) Define asegment symbol using the SEGMENT directive.
(2) Define the relocatable segment by specifying this segment symbol in the operand of an RSEG
directive.

4.12.8.1 Segment Symbol Definition (SEGMENT)

m Syntax m

segment symbol SEGMENTsegment type [boundary atr 1[relocation atr]

m Description m

The SEGMENT directive defines a segment symbol. Up to 65,535 segment symbols can be
defined within a single sourcefile.

The segment_symbol specifies the segment symbol to be defined. It is used to distinguish between
relocatable segments by specifying it in the operand of RSEG directives. It can also be used in the
operand of instructions. In such cases, the segment_symbol will represent the base address of a
relocatable segment, with avalue of 0 during assembly.

There are three parameters in a SEGMENT directive. The segment_type must be specified, but if

boundary_attr and relocation_attr are not needed, then they may be omitted. The meanings of
these parameters are explained below.

4-168

Chapter 4, RAS66K

Segment Type (segment_type)

The segment_type specification represents the type of address space to which the relocatable seg-
ment will be allocated. One of the following segment types can be specified.

segment_type Description

CODE Allocate to CODE address space.
DATA Allocate to DATA address space.
BIT Allocate to BIT address space.
EDATA Allocate to EDATA address space.
EBIT Allocate to EBIT address space.

Boundary Value Attribute (boundary_attr)

The boundary_attr specifies the boundary value of the first address when the relocatable segment is
alocated. Thisis called the boundary value attribute. A symbol or integer constant expression rep-
resenting the boundary value is specified for boundary _attr. The meanings of each type of bound-
ary_attr and the segment types for which they can be specified are shown below.

boundary_attr Meaning Segment Types
UNIT Byte boundary for CODE, DATA, EDATA. No restriction

Bit boundary for BIT, EBIT.No restriction
WORD 2-byte boundary. CODE, DATA, EDATA
OCT 8-byte boundary. CODE, DATA, EDATA
PAGE 1-page (256-byte) boundary. CODE, DATA, EDATA
integer constant Specified value will be boundary. No restriction

Value can be one of following:
1248163264 128 256 512 1024 2048

If boundary_attr is omitted, then UNIT will be assigned automatically.

4-169

Chapter 4, RAS66K

Special Area Attribute (relocation_attr)

The relocation_attr specifies the area where the relocatable segment is to be alocated. This is
called the specia area attribute of alogical segment. The meanings of each type of relocation_attr
and the segment types for which they can be specified are shown below.

relocation_attr Meaning Segment Types

#iphy_seg_addr Allocate to physical segment address phy_seg_addr. CODE, DATA, BIT
The#phy_seg_addr is a constant expression.

COMMON Allocate to the COMMON area. DATA, BIT

WINDOWALL Allocate to the ROM window area. CODE

WINDOW Allocate to the ROM window area, except for the CODE
address ranges of the EEPROM area, the dua port
RAM area, and the internal RAM area.

ACAL Place at least the start of the logical segment in the CODE
ACAL area

INACAL Place the entire logical segment in the ACAL area. CODE

INPAGE Allocate within apage. RL66K will determine the No restriction
page number.

INPAGE(page) Allocate within the specified page. Thepagemustbea Norestriction
constant expression.

SBA Allocate within an SBA area. RL66K will determinethe No restriction
page number.

SBA (page) Allocate within the SBA area of the specified page. No restriction
The page must be a constant expression.

ZERO Allocate within the zero page area. This has the same DATA,BIT
meaning as INPAGE(0).

FIX Allocate within the fixed page area. This has the same DATA,BIT
meaning as INPAGE(2).

SBAFIX Allocate to the SBA areain the fixed page area. DATA, BIT
This has the same meaning as SBA(2).

DUAL Allocate within the dual port RAM area. DATA,BIT

LREG Allocate within the local register area. DATA

DYNAMIC Reserve the maximum possible size. DATA

4-170

Chapter 4, RAS66K

The following special area attributes can be specified only with nX-8/500.
WINDOW WINDOWALL ACAL INACAL SBA FIX SBAFIX DUAL LREG
The ZERO attribute can be specified with nX-8/100~400.

Both the WINDOW and WINDOWALL attributes indicate allocation to the ROM window area.
However, when the WINDOW attribute is specified, RL66K will perform allocation avoiding the
address ranges of the EEPROM area, the dual port RAM area, and the internal RAM area.

There are two types of special area attributes for the ACAL area: the ACAL attribute and the
INACAL attribute. The ACAL attribute guarantees that the start address of the logical segment
will be placed in the ACAL area. The INACAL attribute guarantees that the entire logical segment
will be placed within the ACAL area. If the logical segment is a single subroutine called with the
ACAL instruction, then specify the ACAL attribute. If the logical segment includes multiple sub-
routines called with the ACAL instruction, then the INACAL attribute is safer.

The INPAGE attribute guarantees that the logical segment will be placed within a single page.
Specify the INPAGE attribute to use current page addressing for a particular data area.

The FIX, SBA, and SBAFIX attributes are specified to use efficient addressing with a data area
defined as a relocatable segment. These specifications guarantee allocation to the fixed page area
or SBA area. Page addressing (fix address, shaoff address, shafix address) can be used for address-
esin logica segments that have these specifications. In addition, RAS66K addressing optimization
(Section 4.11.7, “Addressing Optimization”) is provided for addresses of relocatable segments that
have these special area attributes.

The DYNAMIC attribute is provided for implementation of automatic memory allocation for stan-
dard high-level languages. After RL66K allocates all other logical segments to address spaces, it
will allocate alogical segment with the DY NAMIC attribute to the remaining area with the largest
size.

Special area attributes can be combined as needed. There is no restriction on the order of combina-
tion, but special area attributes that indicate completely different areas cannot be combined.

Depending on the type of specia area attribute, the size of the relocatable segment might have
restrictions. For example, relocatable segments with the INPAGE attribute specified must fit with-
in the range of a page, so they cannot have a size greater than 100H bytes.

If no special area attribute is necessary, none needs to be specified. If special area attributes are
omitted, then RL66K will determine the physical segment and address where the relocatable seg-
ment will be allocated.

Examples of SEGMENT directive use are shown next.

4-171

Chapter 4, RAS66K

m Examplelm
Thisis an example of the simplest definitions.

SEG C SEGMENT CODE

SEG_D SEGMENT DATA

SEG B SEGMENTBIT

SEG_C will be alocated to CODE address space. SEG D will be allocated to DATA address
space. SEG_B will be allocated to BIT address space.

m Example2m
Thisis an example of boundary value attribute specifications.

DATA_TBL1 SEGMENT DATA WORD

DATA_TBL2 SEGMENT DATA PAGE

ROM_TBL SEGMENT CODE 400H

DATA_TBL1 will be alocated on a word boundary. DATA_TBL2 will be alocated on a page
boundary. ROM_TBL will be alocated on a 400H-byte boundary.

m Example3m
Thisis an example of specia area attribute specifications.

COM_SEG SEGMENT DATA COMMON

PHY2SEG SEGMENT BIT #2

WIN_DAT SEGMENT CODEWINDOW

ACAL_GR SEGMENT CODE INACAL

FIX_SEG SEGMENT DATA FIX

COM_SEG will be alocated to the COMMON area. PHY 2SEG will be allocated to physical seg-
ment 2. WIN_DAT will be allocated to the ROM window area. ACAL_GR will be allocated to the
ACAL area. FIX_SEG will be allocated to the fixed page area.

4-172

Chapter 4, RAS66K

m Example4 m

Thisis an example of specifications combining boundary value attributes and multiple special area
attributes.

PG10SEG SEGMENT DATA PAGE INPAGE(10H) #0

COM_FIX SEGMENT DATA WORD COMMON FIX

ROM_TBL SEGMENT CODE WINDOWALL #5 INPAGE
PG10SEG will be alocated in physical segment 0 on a 10H-page boundary. COM_FIX will be
allocated to the fixed page areain the COMMON area on a word boundary. ROM_TBL will be
allocated within a page in the ROM window area of physical segment 5.
4,12.8.2 Stack Segment Definition (STACKSEG)
m Syntax m
STACKSEG stack size
m Description m

The STACKSEG directive defines the stack segment.

The stack_size specifies the size of the stack segment. It must be a constant expression that does
not include forward references.

When the STACKSEG directive is specified, RAS66K automatically generates a stack segment
with the name $STACK. $STACK is a relocatable segment, but it cannot be specified as an
operand of the RSEG directive.

m Additional Information m

Theinitial value of SSP (the address that is 1 less than the end address of the stack segment) can be
referred with _$$SSP. To refer this symbol, it must be declared an externa reference with the
EXTRN directive.

For an overview of the stack segment, refer to Section 4.5.4, “ Stack Segment.”

m Examplem

STACKSEG 200H ;Defines stack segment $STACK
EXTRN DATA:_$$SSP

In this example, 200H bytes are reserved as a stack area and the EXTRN directive defines $$SSP
to refer the end address of the stack segment.

4-173

Chapter 4, RAS66K

4.12.8.3 Relocatable Segment Definition (RSEG)
m Syntax m

RSEG segment_symbol
m Description m
The RSEG directive defines a rel ocatable segment.
The segment_symbol specifies segment symbol that represents the relocatable segment to be
defined. The segment_symbol must have been defined using a SEGMENT directive before the
position of the RSEG directive.
The start address of the relocatable segment during assembly will always be set to 0. Thus, when
the code of a relocatable segment starts with an RSEG directive, the location counter will be set to
0.
A single relocatable segment can also be defined divided in multiple blocks. In such cases, use of
the RSEG directive declares that a relocatable segment is to be defined. If it is defining again a
relocatable segment that was previously defined one or more times, then it will inherit the last
address of the immediately previous definition as its location counter value.

m Examplem

WORKDAT SEGMENT DATA WORD COMM@¢fine segment symbol

RSEG WORKDAT ;Define relocatable DATA segment
DS 10H
CHARBUF SEGMENT DATA WORD ;Define segment symbol
RSEG CHARBUF ;Define relocatable DATA segment
DS 2H
SUB1 SEGMENT CODE ;Define segment symbol
SUB2 SEGMENT CODE #0 ;Define segment symbol
SUB3 SEGMENT CODE #1 ;Define segment symbol
RSEG SuUBl1 ;Define rel ocatable CODE segment

MOVB WORKDAT,#1
MOVB DSR#SEG CHARBUF
MOVB CHARBUF #1

RSEG SuUB2 ;Define rel ocatable CODE segment
MOVB WORKDAT,#2
MOVB DSR#SEG CHARBUF

RSEG SUB3 ;Define rel ocatable CODE segment
MOVB WORKDAT #3

4-174

Chapter 4, RAS66K

MOVB DSR#SEG CHARBUF
MOVB CHARBUF#3

RSEG SuUB2 ;Inherit previously defined

;relocatable segment SUB2
MOVB CHARBUF,#2

This example defines two relocatable DATA segments and three relocatable CODE segments.

The relocatable DATA segment WORKDAT will be alocated within the COMMON area of
DATA address space on a 2-byte boundary. The relocatable DATA segment CHARBUF will be
alocate in DATA address space on a 2-byte boundary. The relocatable CODE segment SUB1 will
be allocated somewhere in CODE address space. The relocatable CODE segment SUB2 will be
alocated somewhere in physical segment 0 of CODE address space. The relocatable segment
SUB3 will be allocated somewhere in physical segment 1 of CODE address space. The relocatable
CODE segment SUB2 is defined twice using the RSEG directive, so the second definition of SUB2
inherits the end address of the first definition.

4-175

Chapter 4, RAS66K

4.12.9 Segment Group Definition (GROUP)

When the target microcontroller has multiple physical segments, segment register contents must be
written each time data of a different physical segment isreferred. By using the GROUP directive
when coding a program that handles multiple relocatable segments simultaneously, the rel ocatable
segments all can be allocated to the same physical segment, making segment register management
much easier.

m Syntax m

GROURegment_symbol [segment symbol... 1 #physical_segment address]

m Description m

The GROUP directive tells RL66K to allocate multiple relocatable segments in a single physical
segment. A group of relocatable segments to be located in a single physical segment is called a
segment group.

Each segment_symbol specifies a segment symbol that represents a rel ocatable segment to reside in
the segment group. Each must have been defined with a SEGMENT directive before the GROUP
directive is specified. At least one segment_symbol must be specified. When multiple
segment_symbols are specified, they are delimited with spaces.

The #physical_segment_address represents the physical segment address where the relocatable seg-
ments will be allocated. It must be a constant expression that does not include forward references.

The segments of a segment group are located in the same memory space. This means that the seg-
ment types of the segment symbols must meet one of the following two conditions.

» All segment symbols must have segment type CODE.
» All segment symbols must be a combination of segment types DATA and BIT.

The EEPROM area exists in physical segment 0, so EDATA segments and EBIT segments will
always be allocated to physical segment 0. Therefore, EDATA and EBIT segments cannot be reg-
istered in segment groups.

(1) If #physical_segment_addressis not specified

If a segment is defined for which a physical segment address is specified, then the segment group
will be allocated to that physical segment. If multiple segment symbols are defined for which phys-
ical segment addresses are specified, then they must all be the same. If any of the segment sym-
bols has a different physical segment address, then an error will occur with RAS66K.

If no segment is defined for which physical segment address is specified , then RL66K will deter-
mine the physical segment to which the segment group will be allocated.

4-176

Chapter 4, RAS66K

(2) If #physical_segment_addressis specified

The segment group will be located in the physical segment specified in the GROUP directive
operand.

If a segment symbol is defined for which a physical segment address is specified, then the physical
segment address of the GROUP directive operand must be the same as that of the segment symbol.

m Additional Information m
The same rel ocatable segment cannot be registered to multiple segment groups.
m Examplem

DATSEG1 SEGMENT DATA
RSEG DATSEG1 ;Define relocatable DATA segment
DS 10H

BITSEG1 SEGMENT BIT
RSEG BITSEG1 ;Define relocatable BIT segment
DBIT 8

DATSEG2 SEGMENT DATA

RSEG DATSEG2 ;Define relocatable DATA segment
BUFO:

DS 10H

BITSEG2 SEGMENT BIT

RSEG BITSEG2 ;Define relocatable BIT segment
FLAGO:

DBIT 8

GROUP DATSEGI1 BITSEG1 #1 ; Define segment group
GROUP DATSEG2 BITSEG2 ; Define segment group

SUB1 SEGMENT CODE

RSEG SUB1 ;Define rel ocatable CODE segment
MOVB DSR#SEG DATSEG2

MOVB RO0,BUFO

SB AARD ;No need to write to DSR

This example defines four relocatable segments allocated to DATA address space and BIT address
space.

The GROUP directive is used to define DATSEGL and BITSEG1 to a group, and DATSEG2 and
BITSEG2 to another group. For DATSEGL and BITSEG1, the GROUP directive operand is speci-
fied as #1, so they will be allocated to physical segment 1. DATSEG2 and BITSEG2 will be alo-
cated to the same physical segment, but RL66K will determine the physical segment address.

4-177

Chapter 4, RAS66K

4.12.10 Location Counter Setting (ORG)
m Syntax m

ORG address
m Description m
The ORG directive sets the value of the location counter of the logical segment that contains it to
the value of address. The function of the ORG directive will differ depending on whether its logi-
cal segment is an absolute segment or arelocatable segment. Both cases are discussed below.
(1) ORG DirectivesIn Absolute Segments
The address sets the value of the location counter with a constant expression that does not include
forward references. The constant expression must have a value greater than or equal to the starting
address of the logical segment in which the directive is placed. It also must have a value within the
target address space. |If the constant expression is an address expression, then its physical segment
address must be the same as the physical segment address of the absolute segment.

m Examplem

CSEG #1 AT 1000H

ORG 1030H

ORG 1100H

ORG 200H ;error

In this example, ORG directives are used in the absolute CODE segment in physical segment
address 1. Its starting address is 1000H. Accordingly, ORG directive operands must have values
of 1000H or higher. The value of the last ORG directive operand is 200H, so an error will occur.

(2) ORG DirectivesIn Relocatable Segments
The address sets the value of the location counter with a simple expression that does not include
forward references. If the simple expression includes simple relocatable symbols, then the rel ocat-

able segment in which they reside must be the same as the current rel ocatable segment.

If the operand is a constant expression, then its value represents the offset from the starting address
of the relocatable segment in which the directive resides.

4-178

Chapter 4, RAS66K

m Examplem

DATSEG3 SEGMENT DATA
RSEG DATSEG3
LABEL1:DS 10H
ORG LABEL1+30H
LABEL2:DS 10H
ORG 100H
LABELS:

In this example, two ORG directives are used in the relocatable segment. The operand of the first
ORG directive uses a label of its relocatable segment. The operand of the second ORG directive is
a constant expression. Its 100H represents the offset from the starting address of its relocatable

segment.

4-179

Chapter 4, RAS66K

4.12.11 Memory Allocation (DS, DBIT)

The DS and DBIT directives allocate areas of specified sizes to address space. These directives are
normally used to allocate areas in DATA address space. These areas are used to store process data
of the program.

m Syntax m

[B¢] DS g»

[B¢] DBIT s=
m Description m
The DS directive allocates an area of the number of bytes specified by sizeto the logical segment in
which the directive resides. The DBIT directive allocates an area of the number of bits specified by
size to the logical segment in which the directive resides. The specified size is added to the loca

tion counter of the logical segment in which the directive resides.

The size specifies the number of bytes or bits to be alocated to address space with a constant
expression. The constant expression must not include forward references.

The DS directiveis used to reserve areasin CODE, DATA, or EDATA segments. The DBIT direc-
tive isused to reserve areasin BIT or EBIT segments.

m Examplelm
This example uses the DS directive.

BUFFER SEGMENT DATA WORD COMMON
RSEG BUFFER
BUA: DS 10H ;Memory allocation

FUNC2 SEGMENT CODE
RSEG FUNC2
MOV BUFL,ERO

In this example, a 10H-byte areawill be allocated in the relocatable DATA segment BUFFER.

4-180

Chapter 4, RAS66K

m Example2m
This example uses the DBIT directive.

FLAG_FIELD SEGMENT BIT
RSEG FLAG_FIELD
FLAGL:
DBIT 8

FUNC3 SEGMENT CODE
RSEG FUNC3
SB HAGL

In this example, an 8-hit areawill be allocated in the relocatable BIT segment FLAG_FIELD.

4.12.12 Program Memory Initialization (DB, DW)

The DB and DW directives initialize program memory or EEPROM areas to specified values.
They are used to define datain program memory.

m Syntax m
[B¢] DB{expression | sting constant ~ }[{ expression | sting constant }]-
m Description m

The DB directive initializes program memory or the EEPROM area in bytes. The operands can be
specified as expressions (expression) or string constants (string_constant).

Each expression can be specified as a general expression and may include forward references.
Each expresses one byte of data, so the values must be within the following range.

-80H — -1H (OFFFFFF80H—OFFFFFFFFH)
OH — OFFH

The data of a string constant (string_constant) will be initialized in the order of the characters.
m Additional Information m

The DB directive can be used in CODE and EDATA segments.

4-181

Chapter 4, RAS66K

m Syntax m
[B2] DW expression [,expression |
m Description m

The DW directive initializes program memory or the EEPROM area in words. The operands can
be specified as expressions (expression).

Each expression can be specified as a general expression and may include forward references.
Each expresses one word (two bytes) of data, so the values must be within the following range.

-8000H — -1H (OFFFF8000H—OFFFFFFFFH)
OH — OFFFFH

m Additional Information m

The DW directive can be used in CODE and EDATA segments.

m Examplem

This example uses DB and DW directives to initialize program memory and the EEPROM area.

TABLE =~ SEGMENT CODE
RSEG TABLE
DW -1,4,-9,-16
DW 14916

CHAR_TABLE SEGMENT CODE
RSEG CHAR_TABLE
0B ABCPH-

STRING_TABLE SEGMENT EDATA

RSEG STRING_TABLE
m Il@,E MII
[B ll&ll,ll%ﬂ

4-182

Chapter 4, RAS66K

4.12.13 Creating Programs From Multiple Source Files

A single program can be developed dividing it into multiple source files. To refer a symbol shared
in all sourcefiles, the following declarations are necessary.

 In the source file that defines a symbol, a declaration is needed to refer the symbol in other
source files (public declaration).

« Inasourcefilethat refers a symbol, a declaration is needed if the symbol was defined in another
source file (external declaration).

A publicly declared symbol is called a public symbol. An externally declared symbol is called an
external symbol. Usethe PUBLIC directive to declare public symbols, and the EXTRN directive to
declare external symbols. If an external symbol is declared an a source file, then a public symbol
with the same name must exist in another sourcefile.

There are also communa symbols, which are symbols with features of both public symbols and
external symbols. Use the COMM directive to define communal symbols. When communal sym-
bols with the same name are defined in multiple source files, they will all represent a common
memory area.

As described above, public symbols and communal symbols can be referred from multiple source
files. Based on this meaning, the two types of symbols are together called global symboals.

Segment symbols defined with the SEGMENT directive cannot be declared external symbols with
the EXTRN directive. To use a segment symbol in multiple source files, the symbol must be
defined separately in each sourcefile.

Public symbols, external symbols, communal symbols, and segment symbols are described below.

4-183

Chapter 4, RAS66K

4.12.13.1 Public Symbol Declaration (PUBLIC)
m Syntax m

PUBLIC symbol [symbol] ..
m Description m

The PUBLIC directive declares local symbols as public symbols. By declaring alocal symbol as a
public symbol, that symbol can be used in other sourcefiles.

The symbol specifiesalocal symbol. It does not matter whether the local symbol’ s definition or its
public declaration isfirst.

Multiple symbols can be specified as operands of the PUBLIC directive.
m Additional Information m

To refer a public symbol from another source file, the source file that contains the reference must
declare an external symbol with the same name using the EXTRN directive.

Public symbols with the same name cannot be declared in multiple sourcefiles.

If a user symbol that has been redefined with the SET directive is declared public, then the public
symbol will have the value of the last definition.

m Examplem

PUBLIC GLOBAL_NUMBER GLOBAL_LABEL

GLOBAL_NUMBER EQU 1

DATSEG SEGMENT DATA 2
RSEG DATSEG
GLOBAL_LABEL: DS 10H

In this example, the absolute symbol GLOBAL_NUMBER1 and the simple relocatable symbol
GLOBAL_LABEL1 are declared public.

4-184

Chapter 4, RAS66K

4.12.13.2 External Symbol Declaration (EXTRN)
m Syntax m

EXTRN usage type [attibue] :symbol [symbol] ..
[usage type [attioute] :symbol [symbol] ..] ..

m Description m
The EXTRN directive declares external symbols. The usage type specifies the usage type of the

external symbol. A usage type specification isvalid until a different one is specified in an operand.
One of the following usage types can be specified.

usage type Description

CODE Indicates an addressin CODE address space.
CBIT Indicates an bit address in CODE address space.
DATA Indicates an addressin DATA address space.
BIT Indicates an addressin BIT address space.
EDATA Indicates an addressin EDATE address space.
EBIT Indicates an addressin EBIT address space.
NUMBER Indicates a number.

The symbol specifies an external symbol. An external symbol will refer a public symbol or com-
munal symbol that has been declared in another source file.

The attribute declares if the symbol’s address is in the fixed page area or SBA area. Specify an
attribute for a declared symbol when performing RAM addressing optimization. The attribute types
and their meanings are as follows.

usage type Meaning

FIX Addressin fixed page area.

SBA Addressin SBA area.

SBAFIX Addressin SBA area of fixed page area.

The usage_type can be specified as FIX or SBAFIX for DATA or BIT symbols. It can be specified
as SBA for symbols other than NUMBER symbols.

4-185

Chapter 4, RAS66K

m Additional Information m
The usage type of external symbols and their corresponding public symbol must match.

The total number of external symbols within one source file must be 65,535 or less. If the same
external symbol is defined two or more times within one source file, then an error will occur.

By using the /X option, RAS66K will automatically create a file containing the external declara
tions corresponding to publicly defined symbols. Refer to Section 4.14, “EXTRN Declaration
Files.”

m Examplem

Assume the following public symbol definitions are in some sourcefile.

PUBLIC BUFSIZE DATA TBL SUB_FUNC

BUFSIZE EQU 100H

DSEG AT 200H
DATA TBL:DS 10H

CSEG AT 1000H
SUB_FUNC:

A sourcefile that refers these symbols will perform external declarations.

EXTRN NUMBER:BUFSIZE
EXTRN DATA FIX:DATA_TBL
EXTRN CODE:SUB_FUNC

4-186

Chapter 4, RAS66K

4.12.13.3 Communal Symbol Declaration (COMM)
Communal symbols define common data areas of multiple source files.

A communal symbol defined in multiple source files will represent the first address of the common
dataarea. RL66K will determine the address of the data area defined by the communal symbol.

This means that communa symbols are similar to relocatable segments. However, the areas
reserved for communal symbols cannot have labels defined or data initialized. Also, relocatable
segments defined in multiple source files represent independent areas in each of the source files
(refer to Section 4.12.13.5, “Using Partial Segments’), while communal symbols defined in multi-
ple source files represent a common area in each source file.

Use the COMM directive to declare communal symbols. The syntax of the COMM directive is as
follows.

m Syntax m
communal_symbol COMMsegment type size [relocation attr |
m Description m

The syntax of the COMM directive is very similar to that of the SEGMENT directive. However,
immediately after the segment_type is a size specification, representing the size of the area to
reserve. Also, there is no boundary value attribute specification. The meanings and specifications
of the segment type (segment_type) and special area attribute (relocation_attr) are the same as for
the SEGMENT directive. Refer to Section 4.12.8.1, “ Segment Symbol Definition,” for their speci-
fication method.

The sizeisan integer constant expression that represents the size of the area to reserve for the com-
munal symbol. The units of this size will differ depending on the segment_type. It is bytes when
segment_typeis CODE, DATA, or EDATA, and bits when segment_type isBIT or EBIT.

Unlike the SEGMENT directive, the COMM directive does not have a boundary value attribute
specification. If the segment type is CODE, DATA, or EDATA, then the area reserved for the
communal symbol will be alocated on a 1-byte boundary if sizeis 1, or a 2- byte boundary if size
is2 or greater. If the segment typeisBIT or EBIT, then the areawill be allocated on a 1-bit bound-
ary.

When communal symbols with the same name are defined in multiple source files, a common area
will be reserved with each sourcefile. Take the following example.

COMM_AREA COMM DATA 2
When this source statement is specified in multiple source files, the symbol COM_AREA will rep-
resent an address of a 2-byte areain DATA address space that is common to each source file. The

key point here is that even though COM_AREA is defined in multiple source files, the reserved
areawill only be 2-bytes.

4-187

Chapter 4, RAS66K

m Additional Information m

The total number of communal symbols within one source file must be 65,535 or less. If the same
communal symbol is defined two or more times within one source file, then an error will occur.

If the size of the communal symbol differs in each source file, then the area of the maximum size
specified will be allocated.

Communal symbols declared in other source files may be externally referred using the EXTRN
directive.

Symbols declared public in other source files can be defined using the COMM directive, but instead
of reserving an area of the size specified in its operand, it will simply declare, “refer another source
file's symbol.” In other words, it will behave exactly the same as if an EXTRN directive were
coded. Cases like these may exist in source files generated by the C compiler CC66K. However,
thisis not recommended practice for programming in assembly language.

m Examplem
The example below shows the use of the COMM directive.

TYPE(M66507)
GL_BUF1 COMM DATA 100H
GL_BITF COMM BIT 4

MOV ERO,GL_BUF1
SB GL _BITFH2

This example declares communa symbols GL_BUF1 and GL_BITF. These communa symbols

are specified in operands of microcontroller instructions. GL_BUF1 reserves a 100H-byte area in
DATA address space. GL_BITF reservesa4-hit areain BIT address space.

4.12.13.4 Using Public, External, And Communal Symbols

To refer the same symbol from multiple source files, declare a public symbol, external symbol, or
communal symbol in each source file. The following conditions must be satisfied. Programs that
do not satisfy these conditions will cause errors during linking.

e Symbols are declared with the same name.
e Symbols are declared with the same usage type.

Only one symbol with the same name can be declared in each source file. For example, if a public
symbol has been declared, then an external symbol or communal symbol with the same name can-
not be declared in the same source file.

Below are representative examples of the use of symbols across multiple sourcefiles.

4-188

Chapter 4, RAS66K

(1) Referring Public Symbols With External Symbols

The following example shows the use of PUBLIC directives and EXTRN directive for symbols that
are defined in one source file and that are used in a different sourcefile.

m Examplem

/*
Source Fle 1
*/
TYPE(M66507)

PUBLIC BUF_SIZE
PUBLIC DAT_BUFF

BUF_SIZE EQU 100H
DSEG AT 200H
DAT_BUFF:
DS 10H

/*
Source Fle 2
*/
TYPE(M66507)

EXTRN NUMBER:BUF_SIZE
EXTRN DATA FIX:DAT_BUFF

CSEG
MOV X1#BUF_SIZE
ADDB RO,DAT_BUFF

In this example, BUF_SIZE and DAT_BUFF are defined in source file 1 but are also used in source
file 2. Todo this, both symbols are declared public in source file 1 with the PUBLIC directive, and
both are declared external in source file 2 with the EXTRN directive.

4-189

Chapter 4, RAS66K

(2) Using Communal SymbolsIn Multiple Source Files

The following example shows the use of COMM directives for communal symbols that are defined
in multiple source file but that utilize acommon data area.

m Examplem

/*
Source Fle 1
*/
TYPE(M66507)

GL_BUF1 COMM DATA 2 FIX
GL_BUF2 COMM DATA 2 FIX
GL_BUF3 COMM DATA 4 FIX

CSEG

MOVB RO,GL_BUF1
ADDB R1,GL_BUF2
XORB R2,GL_BUF3

/*
Source Fle 2
*/
TYPE(M66507)

GL_BUF1 COMM DATA 2 FIX
GL_BUF2 COMM DATA 2 FIX
GL_BUF3 COMM DATA 6 FIX

CSEG

MOV ERO,GL_BUF1
L AGL BUR

OR AGL BUF3

;Size of GL_BUF3 differsin sourcefile 1.

In this example, three communal symbols (GL_BUF1, GL_BUF2, GL_BUF3) are defined in both
source files. Common data areas for these symbols will be reserved in both source files.
GL_BUF1 and GL_BUF2 will each be alocated 2 bytes. The size specified for GL_BUF3 differs
in sourcefile 1 and sourcefile 2, so it will be allocated the larger size of 6 bytes.

4-190

Chapter 4, RAS66K

(3) Referring Communal Symbols With External Symbols

The following example shows the use of EXTRN directive for communa symbols that are defined
in one source file and that are used in a different sourcefile.

m Examplem

/*
Source Fle 1
*/
TYPE(M66507)

GL_BUF1 COMM DATA 2 FIX
GL_BUF1 COMM DATA 2 FIX
GL_BUF1 COMM DATA 4 FIX

CSEG

MOVB RO,GL_BUF1
ADDB R1,GL_BUF2
XORB R2,GL_BUF3

/*
Source Fle 2
*/
TYPE(M66507)

EXTRN DATA FIX:GL_BUF1 GL_BUF2 GL_BUF3

CSEG

MOV ERO,GL_BUF1
L AGL BUR

OR AGL BUF3

In this example, three communa symbols (GL_BUF1, GL_BUF2, GL_BUF3) are defined in
source file 1. To use these symbols in source file 2, they are declared external using the EXTRN
directive.

4-191

Chapter 4, RAS66K

4.12.13.5 Using Partial Segments

To use the same segment symbol from multiple source files, a segment symbol with the same name
must be defined in each source file with the SEGMENT directive. Relocatable segments used in
multiple source files thisway are called partial segments.
Below are examples showing the use of partial segments.

m Examplel m

In the following example, partial segments are defined in source file 1 and sourcefile 2.

/*
Source Fle 1
*/

PDATSEG SEGMENT DATA
RSEG PDATSEG
LABE:DS 2

/*
Source Fle 2
*/

PDATSEG SEGMENT DATA
RSEG PDATSEG
LABE:DS 2

When RL66K links these two source files are linked using RL66K, it will handle the logical seg-
ment PDATSEG in both as the same segment, allocating them contiguously in DATA address

space. The positiona relationship of the two segments will be the order of the object files specified
in the RL66K command line.

Thelabels LABEL in each sourcefile are local symbols, so they will have different address values.

4-192

Chapter 4, RAS66K

m Example2 m

/*
Source Fle 1
*/

PDATSEG SEGMENT DATA
RSEG PDATSEG
PDATIL: DS 2

/*
Source Fle 2
*/

PDATSEG SEGMENT DATA
RSEG PDATSEG
PDATZ: DS 2

/*
Source Fle 3
*/

PDATSEG SEGMENT DATA

RSEG SUBCODE
MOV ERO#0

SUBCODE SEGMENT CODE

MOV PDATSEG,ERO
MOV PDATSEG+2,ER1

;Only definition is performed in thisfile

In this example, the partial segments PDATSEG defined in source file 1 and source file 2 will be
allocated contiguously in DATA address space. In order to refer the segment symbol PDATSEG in
source file 3, PDATSEG must be defined with the SEGMENT directive. PDATSEG will represent
the first address of the singled linked segment.

4-193

Chapter 4, RAS66K

4.12.14 Assumptions And Checks Of Program State (USING)

The USING directive is used to manage the states of hardware registers and flags affecting program
operation. RAS66K looks at register and flag states specified with the USING directive and checks
whether or not the use of instructions and addressing is appropriate for those states. The basic syn-
tax of the USING directiveis asfollows.

m Syntax m

USING register_name status

Therole of the USING directive isto inform RAS66K that the state of register_name is status. The
register_name can be one of the following.

register name Meaning

DSREG Specifies value of physical segment address of data memory space. It isthe state of DSR
for nX-8/500 and bits 13-15 of LRB for nX-8/300.

TSREG Specifies value of physical segment address of program memory space for table refer
ences. Itisthe state of TSR for nX-8/500.

PAGE Specifies page number of current page. It is the state of LRBH for nX-8/500 and hits 5-

12 of LRB for nX-8/100~400.

DATA Specifies state of data descriptor (DD).

OPRT Specifies state of stack flag (SF). Used only with nX-8/300.

PREG Specifies bank number of pointing register set. It isthe state of SCB3 bit of PSW.

LREG Specifies bank number of local register set. It isthe state of LRBL for nX-8/500.

Of these, DSREG, TSREG, and PAGE information will be passed to RL66K through the object
file, so RL66K will check addressing that RAS66K could not check. PREG and LREG information
is also passed to RL66K, which usesit to control relocatable segment all ocation.

m Attention m
The effective range of an assumption of a USING directive is from the next source statement until a
new specification with the same register_name. Note that this has no relation with actual program

flow.

USING directives cause RAS66K and RL66K to assume register states, but do not generate object
code that setsregisters. Use microcontroller instructions to set the actual hardware.

4-194

Chapter 4, RAS66K

4.12.14.1 Assumption Of Physical Segment Address In Data Memory Space
(USING DSREG)

m Syntax m

USING DSREG s
m Description m
The USING DSREG directive informs RAS66K and RL66K of the value of the physical segment
address in data memory space. The value of the physical segment address of data memory space is
stored in DSR for nX-8/500 and bits 13-15 or LRB for nX-3/100.
RAS6E6K and RL66K check whether or not the physical segment address assumption of the USING
DSREG directive matches the physica segment address in data memory specified with RAM

addressing. If they do not match, then awarning will occur.

Specify one of the following for status.

status Description

address A general expression that represents an address in data memory space.
#phy_seg_address A general expression that represents a physical segment address.

ANY Do not make an assumption of the physical segment address. (Default)

An address is a general expression that represents an address in data memory space. RAS66K cal-
culates the physical segment address from address. A phy_seg_addressis a genera expression that
represents a physical segment address in data memory space. Both address and phy_seg_address
can contain forward references.

RAS66K and RL66K will perform DSR checks if address or phy_seg address is specified. They
will not perform DSR checks if ANY is specified. ANY will be set until the first USING DSREG
directive is encountered in the program.

m Additional Information m

The address must be an expression that represents an address in data memory space. It must not be
an expression that represents an address in the COMMON area.

RAS6E6K will perform a DSR check when it can determine the physical segment address value set

by the USING DSREG directive and the physical segment address of the instruction operand.
Otherwise, RL66K will perform the DSR check.

4-195

Chapter 4, RAS66K

m Examplelm

DSEG #3
PHY3TBL: DS 100H

DSEG #4
PHY4TBL: DS 100H

CSEG
USING DSREG PHY3TBL ;Assume DSR is 3.

MOVB DSR#SEG PHY3TBL

MOV ERO,PHY3TBL ;OK

MOV ER1,PHY4TBL ;\Warning

CSEG

USING DSREG PHY4TBL ;Assume DSR is 4.

MOVB DSR#SEG PHY4TBL

MOV ERO,PHY3TBL ;\Warning
MOV ER1,PHY4TBL ;OK

The first USING DSREG directive specifies PHY 3TBL asits operand. PHY 3TBL resides in phys-
ical segment 3, so RAS66K will assume a physical segment address of 3. Of the operands of the
MOV instructionsimmediately following, PHY4TBL residesin physical segment 4, which does not
match the USING DSREG assumption. Accordingly, RAS66K will issue a warning for this MOV
instruction.

The second USING DSREG directive specifies PHY4TBL as its operand, so nhow RAS66K will

assume a physical segment address of 4. Accordingly, of the MOV instructions immediately fol-
lowing, the one that accesses PHY 3TBL will cause awarning.

4-196

Chapter 4, RAS66K

m Example2m
The following example does not check during assembly.

EXTRN DATA:GL_TBL1 GL_TBL2
DAT_SEG SEGMENT DATA

CSEG
USING DSREG #SEG GL_TBL1
MOVB DSR#SEG GL_TBL1

MOV ERO,GL_TBL2 ;RL66K will check
MOV ER1DAT_SEG ;RL66K will check

In this example, RAS66K cannot determine the physical address of GL_TBL1 specified in the
USING DSREG directive. Accordingly, RL66K will perform the DSR checks of the two MOV
instructions. If the physical segment addresses do not match, then awarning will occur during link-
ing.

4-197

Chapter 4, RAS66K

4.12.14.2 Assumption Of Physical Segment Address In Program Memory Space
(USING TSREG)

m Syntax m

USING TSREG sts
m Description m
The USING TSREG directive informs RAS66K and RL66K of the value of the physical segment
address in program memory space for referring tables. The value of the physical segment address
of program memory spaceis stored in TSR.
RAS66K and RL66K check whether or not the physical segment address assumption of the USING
TSREG directive matches the physical segment address in program memory specified with table

data addressing or ROM window addressing. |f they do not match, then awarning will occur.

Specify one of the following for status.

status Description

address A general expression that represents an address in program memory space.
#iphy_seg_address A general expression that represents a physical segment address.

ANY Do not make an assumption of the physical segment address. (Default)

An address is a general expression that represents an address in program memory space. RAS66K
calculates the physical segment address from address. A phy_seg address is a general expression
that represents a physica segment address in program memory space. Both address and
phy_seg_address can contain forward references.

RAS66K and RL66K will perform TSR checks if address or phy_seg address is specified. They
will not perform TSR checks if ANY is specified. ANY will be set until the first USING TSREG
directive is encountered in the program.

m Additional Information m

The address must be an expression that represents an address in program memory space.

RAS66K will perform a TSR check when it can determine the physical segment address value set

by the USING TSREG directive and the physical segment address of the instruction operand.
Otherwise, RL66K will perform the TSR check.

4-198

Chapter 4, RAS66K

m Examplelm

CSEG #3

PHY3TBL: DW 10H,20H,30H
CSEG #4

PHY4TBL: DW 40H,50H,60H

CSEG
USING TSREG PHY3TBL ;Assume TSR is 3.
MOVB TSR #SEG PHY3TBL

LC APHY3TBL ;0K

LC APHYATBL ;Warning

CSEG

USING TSREG PHY4TBL ;Assume TSRis4.

MOVB TSR#SEG PHY4TBL

LC APHY3TBL ;Warning
LC APHYATBL ;OK

Thefirst USING TSREG directive specifies PHY 3TBL asits operand. PHY 3TBL residesin physi-
cal segment 3, so RAS66K will assume a physical segment address of 3. Of the operands of the LC
instructions immediately following, PHY4TBL resides in physical segment 4, which does not
match the USING TSREG assumption. Accordingly, RAS66K will issue a warning for this LC
instruction.

The second USING TSREG directive specifies PHYATBL as its operand, so now RAS66K will

assume a physical segment address of 4. Accordingly, of the LC instructions immediately follow-
ing, the one that accesses PHY 3TBL will cause awarning.

4-199

Chapter 4, RAS66K

m Example2m
The following example does not check during assembly.

EXTRN CODE:GL_TBL1 GL_TBL2
ROM_SEG SEGMENT CODE

CSEG
USING TSREG#REG GL_TBL1
MOVB TSR#SEG GL_TBL1

LC AGL TBL2 ;RL66K will check
LC AROM_SEG ;RL66K will check

In this example, RAS66K cannot determine the physical address of GL_TBL1 specified in the
USING TSREG directive. Accordingly, RL66K will perform the TSR checks of the two LC
instructions. If the physical segment addresses do not match, then awarning will occur during link-
ing.

4-200

Chapter 4, RAS66K

4.12.14.3 Assumption Of Current Page (USING PAGE)
m Syntax m

USING PAGE sais
m Description m
The USING PAGE directive informs RAS66K and RL66K of the page number of the current page.
The page number of the current page is stored in LRBH for nX-8/500 and in bits 5-12 of LRB for
nX-8/100~400.
RASE6K and RL66K check whether or not the page number assumption of the USING PAGE
directive matches the page number specified current page addressing or current page SBA address-

ing. If they do not match, then awarning will occur.

Specify one of the following for status.

status Description
address A general expression that represents an address in data memory space.
ANY Do not set the current page. (Default)

An address is a general expression that represents an address in data memory space. It can aso be
an address in program memory space when using the ROM window function. RAS66K calculates
the page number from address. The address can contain forward references.

RAS66K and RL66K will perform current page checks if address is specified. They will not per-
form TSR checks if ANY is specified. ANY will be set until the first USING PAGE directive is
encountered in the program.
m Additional Information m
RAS66K will perform a current page check when it can determine the page number set by the
USING PAGE directive and the page number of the instruction operand. Otherwise, RL66K will
perform the current page check.
m Examplelm

DSEG AT 2000H
P20DATA:DS 100H ;Data areain page 20H

DSEG AT 3000H
P30DATA:DS 100H ;Data areain page 30H

4-201

Chapter 4, RAS66K

CSEG
USING PAGE P20DATA ; Assume current page is page 20H
MOVB ALRBH,#PAGE P20DATA

MOV ERO,OFF P20DATA ;OK

MOV ER1,0OFF P30DATA ;Warning

CSEG

USING PAGE P30DATA ; Assume current page is page 30H

MOVB ALRBH,#PAGE P30DATA

MOV ER1,0OFF P20DATA ;Warning
MOV ERO,OFF P30DATA ;OK

The first USING PAGE directive specifies P20DATA as its operand. P20DATA resides in page
20H, so RAS66K will assume a current page of 20H. Of the operands of the MOV instructions
immediately following, P3ODATA resides in page 30H, which does not match the USING PAGE
assumption. Accordingly, RAS66K will issue awarning for thisMQV instruction.

The second USING PAGE directive specifies P3ODATA as its operand, so now RAS66K will
assume a current page of 30H. Accordingly, of the MOV instructions immediately following, the
one that accesses P20DATA will cause awarning.

m Example2m
The following example does not check during assembly.

EXTRN DATA:GL_TBL1 GL_TBL2
DAT_SEG SEGMENT DATA

CSEG
USING PAGE GL_TBL1
MOVB ALRBH#PAGE GL_TBL1

MOV ERO,OFF GL_TBL2 ;RL66K will check
MOV ER1,0OFF DAT_SEG ;RL66K will check

In this example, RAS66K cannot determine the physical address of GL_TBL1 specified in the
USING PAGE directive. Accordingly, RL66K will perform the current page checks of the two
MOQV instructions. If the physical segment addresses do not match, then a warning will occur dur-
ing linking.

4-202

Chapter 4, RAS66K

4.12.14.4 Assumption Of Data Descriptor (USING DATA)
m Syntax m

USING DATA sais
m Description m
Many word instructions of the OLMS-66K Series will not operate correctly if the state of the data
descriptor (DD) is not word (1). Many byte instructions will not operate correctly if the state of
DD is not byte (0).
The USING DATA directive informs RAS66K of the state of DD. RAS66K checks if instructions
in the program are affected by DD, and for those that are, checks if they are being used with the
appropriate state of DD. If they are not, then RAS66K will issue awarning. These are called flag
attribute checks of instructions affected by DD.

Specify one of the following for status.

status Description

WORD DD state isword (1).

BYTE DD stateis byte (0).

ANY Do not perform DD flag attribute checks. (Default)

RAS6E6K will perform DD flag attribute checks if WORD or BY TE is specified. It will not per-
form DD flag attribute checks if ANY is specified. ANY will be set until the first USING DATA
directive is encountered in the program.

m Additional Information m

Refer to the instruction manual of the target microcontroller for instructions affected by DD and
instructions that change DD.

The DD assumption of USING DATA directives will affect flag attribute checks of branch instruc-

tions. For details refer to Section 4.10.9.2, “Flag Attribute Checks of Branch Instructions,” and
Section 4.12.14.6, “Flag Attribute Checks Of Branch Instructions (CHK).”

4-203

Chapter 4, RAS66K

m Examplem

TYPE (M66507)

USING DATA WORD ;Assume DD state isword
SDD ;Actually set DD

AND A #OF800H ;Word instruction is OK
ANDB A #0F8H ;Byte instruction causes warning
USING DATA BYTE ;Assume DD dtate is byte
RDD ;Actually reset DD

AND A #OF800H ;Word instruction causes warning
ANDB A #0F8H ;Byteinstruction is OK

USING DATA ANY ;Clear assumption of DD state
AND A #OF800H ;Check not performed
ANDB A #0F8H ;Check not performed

In this example, the first USING DATA directive assumes the state of DD isword. In this state,
only word instructions can be used from instructions affected by DD. Accordingly, RAS66K will
issue awarning for the ANDB instruction.

The second USING DATA directive assumes the state of DD is byte. In this state, only byte
instructions can be used from instructions affected by DD. Accordingly, RAS66K will issue a
warning for the AND instruction.

Finally, USING DATA ANY is specified. This declares that no DD assumption should be made.

In this state, checks of instructions affected by DD are not performed. Accordingly, RAS66K will
not issue warnings for the AND and ANDB instructions.

4-204

Chapter 4, RAS66K

4.12.14.5 Assumption Of Stack Flag (USING OPRT)
m Syntax m

USING OPRT sais
m Description m
Many instructions for manipulating the user stack of nX-8/300-based microcontrollers will not
operate correctly if the state of the stack flag (SF) isnot 1. Many instructions for manipulating the
accumulator will not operate correctly if the state of SFisnot 0.
The USING OPRT directive informs RAS66K of the state of SF. RAS66K checksiif instructionsin
the program are affected by SF, and for those that are, checks if they are being used with the appro-
priate state of SF. If they are not, then RAS66K will issue a warning. These are called flag
attribute checks of instructions affected by SF.

Specify one of the following for status.

status Description
STACK SF stateis 1.
A SF stateis 0.
ANY Do not perform SF flag attribute checks. (Default)

RAS6E6K will perform SF flag attribute checks if WORD or BY TE is specified. It will not perform
SF flag attribute checks if ANY is specified. ANY will be set until the first USING OPRT direc-
tive is encountered in the program.

m Additional Information m

The USING OPRT directive can be used only with nX-8/300.

Refer to the instruction manual of the target microcontroller for instructions affected by SF and
instructions that change SF.

The SF assumption of USING OPRT directives will affect flag attribute checks of branch instruc-

tions. For details refer to Section 4.10.9.2, “Flag Attribute Checks of Branch Instructions,” and
Section 4.12.14.6, “Flag Attribute Checks Of Branch Instructions (CHK).”

4-205

Chapter 4, RAS66K

m Examplem

TYPE (M66301)

USING OPRT STACK ;Assume SF stateis 1

B F ;Actually set SF

PUSHU X1 ;OK

L AXL ;Warning

USING OPRT A ;Assume SF stateisO

RB SF ;Actually reset SF

PUSHU X1 ;Warning

L AXL ;OK

USING OPRT ANY ;Clear assumption of SF state
PUSHU X1 ;Check is not performed
L AXL ;Check is not performed

In this example, the first USING OPRT directive assumes the state of SF is STACK. In this state,
only user stack manipulation instructions can be used from instructions affected by SF.
Accordingly, RAS66K will issue awarning for the L A, X1 instruction.

The second USING OPRT directive assumes the state of SFis A. In this state, only accumulator
mani pulation instructions can be used from instructions affected by SF. Accordingly, RAS66K will
issue awarning for the PUSHU X1 instruction.

Finally, USING OPRT ANY is specified. This declares that no SF assumption should be made. In

this state, checks of instructions affected by SF are not performed. Accordingly, RAS66K will not
issue warnings for the PUSHU and L instructions.

4.12.14.6 Flag Attribute Checks Of Branch Instruction (CHK)
m Syntax m
CHK
m Description m
The CHK directive instructs RAS66K to perform flag attribute checks of branch instructions.
When the CHK directive is specified, RAS66K will check if the flag attributes (DD and SF states)
of branch destinations match those of branch sources when it encounters branch instructions. If
they do not match, RAS66K will issue awarning.

The flag attributes of the branch source will be the flag value assumptions from the USING DATA
directive and USING OPRT directive at the point where the branch instruction is coded.

4-206

Chapter 4, RAS66K

The flag attributes of the branch destination will be the flag attributes held by the symbol specified
as the operand of the branch instruction (the label or subroutine name representing the branch desti-
nation).

m Examplem

CHK ;Check flag attributes of branch instructions.
USING DTA WORD ;Assume state of DD isword.
CAL PROC1 ;DD states match, so OK.
CAL PROC2 ;DD state differs, so warning occurs.
CAL PROC3 ;Check not performed.
USING DATA WORD ;Assume state of DD isword.
PROCL1:
USING DATA BYTE ;Assume state of DD is byte.
PROC2:
USING DATA ANY ;Clear assumption of DD state.
PROCS:

In this example, three subroutines are called while the state of DD is assumed to be word. In the
first CAL instruction, the DD state of branch destination PROC1 is word, which that of the branch
source, so no warning will occur. In the second CAL instruction, the DD state of branch destina-
tion PROC2 is byte, which does not match that of the branch source, so a warning will occur. In
the third CAL instruction, there is no assumption of the DD state of branch destination PROC3, so
no warning will occur.

4-207

Chapter 4, RAS66K

4.12.14.7 Assumption Of Pointing Register Set Bank Number (USING PREG)
m Syntax m

USING PREG bank_no
m Description m

The USING PREG directive informs RAS66K of the bank number of the pointing register set being
used. The bank number of the pointing register set is stored in the SCB bit of PSW.

The bank_no is a constant expression that represents the bank number of the pointing register set.
It must not include forward references. Itsvalue must be Oto 7.

When the USING PREG directive is specified, RAS66K resets the address value of each symbol
representing a pointing register address to a value that corresponds to the specified bank number.
More specifically, symbol values are determined as follows.

Symbol Assumed Value

AX1 preg_base + 8*bank_no +0
AX2 preg_base + 8*bank_no +2
ADP preg_base + 8*bank_no +4
AUSP preg_base + 8*bank_no +6

The preg_base is the base address of the pointing register area. It is 80H for nX-8/100~400, and
200H for nX-8/500.

USING PREG 0 will be assumed until the first USING PREG directive is encountered.

The assumed value of the USING PREG directive will aso affect RL66K link processing.
Information about bank numbers of the pointing register set specified by USING PREG directives
is passed to RL66K through the object file. RL66K will not allocate segments over the areas corre-
sponding to those bank numbers.

m Additional Information m

The PRBANK and NOPRBANK directives are pointing register directives. They inform RL66K

about the pointing register bank used in the program. RAS66K passes a combination of informa
tion from these directives and the USING PREG directive to RL66K.

4-208

Chapter 4, RAS66K

m Examplem
The example below is for nX-8/500.

TYPE (M66507)

USING PREG 0 ;Select bank 0.

ANDB PSWL,#1111 1000B ;Set SCB 1o 0.
L AAXL ;200H

L AAX2 ;202H

L AADP ;204H

L AAUSP ;206H

USING PREG 3 ;Select bank 3.

ANDB PSWL,#1111 1000B

ORB POWL,#0000_0011B ;Set SCB to 3.
L AAXL ;218H

L AAR ;21AH

L AADP ;21CH

L AAUSP ;21EH

The first USING PREG directive selects bank 0, so the addresses of AX1, AX2, ADP, and AUSP
will be assumed to be 200H, 202H, 204H, and 206H, respectively. The second USING PREG
directive selects bank 3, so the addresses of AX1, AX2, ADP, and AUSP will be assumed to be
218H, 21AH, 21CH, and 21EH, respectively.

4-209

Chapter 4, RAS66K

4.12.14.8 Assumption of Local Register Set Bank Number (USING LREG)
m Syntax m

USING LREG bank_no
m Description m

The USING LREG directive manages the bank number of the nX-8/500 local register set being
used. Thisdirective cannot be used with nX-8/100~400.

The USING PREG directive informs RAS66K of the bank number of the pointing register set being
used. The bank number of the local register set is stored in LRBL.

The bank_no is a constant expression that represents the bank number of the local register set. It
must not include forward references. Its value must be O to 255.

When the USING LREG directive is specified, RAS66K resets the address value of each symbol
representing a local register address to a value that corresponds to the specified bank number.
More specifically, symbol values are determined as follows.

Symbol Assumed Value

AERO Ireg_base + 8*bank_no +0
AER1 Ireg_base + 8*bank_no +2
AER2 Ireg_base + 8*bank_no +4
AER3 Ireg_base + 8*bank_no +6
ARO Ireg_base + 8*bank_no +0
AR1 Ireg_base + 8*bank_no +1
AR2 Ireg_base + 8*bank_no +2
AR3 Ireg_base + 8*bank_no +3
AR4 Ireg_base + 8*bank_no +4
AR5 Ireg_base + 8*bank_no +5
AR6 Ireg_base + 8*bank_no +6
AR7 Ireg_base + 8*bank_no +7

Thelreg_base is the base address of the local register area. It is200H.

RAS66K will not make a local register bank assumption until the first USING LREG directive is
encountered. Accordingly, the above symbols representing local register addresses cannot be used
unless aUSING LREG directive is specified.

The assumed value of the USING LREG directive will also affect RL66K link processing.
Information about bank numbers of the local register set specified by USING LREG directives is
passed to RL66K through the object file. RLE66K will not allocate segments over the areas corre-
sponding to those bank numbers.

4-210

Chapter 4, RAS66K

m Additional Information m

The LRBANK and NOLRBANK directives are local register directives. They inform RL66K
about the local register bank used in the program. RAS66K passes a combination of information
from these directives and the USING LREG directive to RL66K.

m Examplem

TYPE (M66507)

USING LREG 10H ;Select bank 10H.

MOVB ALRBL,#10H ;Set LRBL to 10H.
L AAERO ;280H

L AAERL ;282H

L AAER2 ;284H

L AAER3 ;286H

USING LREG 20H ;Select bank 20H.

MOVB ALRBL,#20H ;Set LRBL to 20H.
L AAERO ;300H

L AAERL ;302H

L AAER2 ;304H

L AAER3 ;306H

The first USING LREG directive selects bank 10H, so the addresses of AERO, AER1, AER2, and
AERS will be assumed to be 280H, 282H, 284H, and 286H, respectively. The second USING
LREG directive selects bank 20H, so the addresses of AERO, AER1, AER2, and AER3 will be
assumed to be 300H, 302H, 304H, and 306H, respectively.

4-211

Chapter 4, RAS66K

4.12.15 Include File (INCLUDE)
m Syntax m

INCLUDE (indude e)
m Description m

The contents of an include file will be inserted at the position of the INCLUDE directive. The
include file specifiesthe include file to be inserted.

The inserted file is placed from its start at the directive’ s location. Additional files can be inserted
by using further INCLUDE directives within an include file. INCLUDE directives can be nested
up to 8 levels.

If an END directive is specified in an include file, then all further contents in that include file will
be ignored.

m Additional Information m
The directory storing include files can be specified using the /I option.

m Examplem

/*
Source Fie
*/
INCLUDE(DEFINE.H)

CSEG
ORG RESET
DW START

/*
Include File(DEFINE.H)
*/

TYPE(M66507)

PAGE 60,100
SYM
REF
ERR(ERR.MES)

In this example, print file control and error message output control are coded within the include file.

4-212

Chapter 4, RAS66K

4.12.16 Program Termination (END)
m Syntax m

END
m Description m

The END directive indicates the end of the program. RAS66K assembles until it encounters an
END directive. RAS66K will ignore any source statements after an END directive.

However, if there is an END directive within an include file, then al further contents of that file
will beignored. Contents coded after an END directive will not be output to the print file.

m Examplem

TYPE(M66507)

END
Thspatisritread.

In this example, code with incorrect syntax for assembly language follows the END directive.
RAS6E6K ignores this portion, so no error will occur.

4.12.17 Module Name Setting (NAME)
m Syntax m
NAME (module_name)
m Description m
A module name is the name of one object file.
In older versions of RAS66K, module names could be changed using the NAME directive.
However, in the current RAS66K module names are the base names of source files, so they cannot
be changed.
The NAME directive exists only for compatibility with previously created source program. The

NAME directive itself has no function. Therefore, if you are creating a new OLMS-66K program,
there is no need to code aNAME directive.

4-213

Chapter 4, RAS66K

4.12.18 Register Bank Declarations

This section explains the directives that declare the bank numbers of pointing register sets and local
register sets used in programs.

The information from these directives is passed to RL66K through object files. RL66K will not
allocate relocatable segments over pointing register set and local register set areas used by pro-
grams. This prevents incorrect operation where register contents are corrupted from overlapping
relocatable segments and register areas. Refer to Section 5.5.4.2, “Quasi-Segments,” to see how
RL66K handles pointing register areas and local register areas.

4.12.18.1 Pointing Register Bank Declaration (PRBANK, NOPRBANK)
m Syntax m

PRBANKbank_no [,bank_no ..]
NOPRBANK

m Description m
These directives declare the bank numbers of pointing register sets used in the program.

The PRBANK directive declares that pointing register sets of the bank indicated by bank_no are
used in the program. Each bank_no must be a constant expression that represents a bank number O
to 7, and that does not include forward references. Multiple bank_no parameters may be specified
in asingle PRBANK directive, and multiple PRBANK directives may be specified within one pro-
gram.

The NOPRBANK directive declares that there is no available information about bank numbers of
pointing register sets used in the program. In other words, RL66K will not control allocation of
logical segments with regard to pointing register areas.

m Additional Information m

Both the PRBANK and NOPRBANK directives cannot be specified within one program. If the
PRBANK, NOPRBANK, and USING PREG directives are not specified, then RL66K will be
passed information that only bank 0 was used.

Information about the settings of the PRBANK, NOPRBANK, and USING PREG directives is

passed to RLE66K. If a USING PREG directive is specified in the program, then the NOPRBANK
directive will be ignored even when specified.

4-214

Chapter 4, RAS66K

4.12.18.2 Local Register Bank Declaration (LRBANK, NOLRBANK)
m Syntax m

LRBANK bank_no [,bank_no ..]
NOLRBANK

m Description m

These directives are used to control allocation of logical segmentsin the presence of nX-8/500 local
registers. These directives cannot be used with nX-8/100~400.

The LRBANK directive declares that local register sets of the bank indicated by bank_no are used
in the program. Each bank_no must be a constant expression that represents a bank number O to
255, and that does not include forward references. Multiple bank_no parameters may be specified
inasingle LRBANK directive, and multiple LRBANK directives may be specified within one pro-
gram.

The NOLRBANK directive declares that there is no available information about bank numbers of
local register sets used in the program. 1n other words, RL66K will not control allocation of logical
segments with regard to local register areas.

m Additional Information m

Both the LRBANK and NOLRBANK directives cannot be specified within one program. If the
LRBANK, NOLRBANK, and USING PREG directives are not specified, then RL66K will not con-
trol allocation of logical segments with regard to local register areas.

Information about the settings of the LRBANK, NOLRBANK, and USING PREG directives is
passed to RL66K. If a USING PREG directive is specified in the program, then the NOLRBANK
directive will be ignored even when specified.

m Examplem

TYPE (M66507)

PRBANK 0,1,2
LRBANK 10H,11H,12H

This example declares the use of pointing register banks 0-2 and local register banks 10H-12H. As
aresult, RL66K will not allocate segmentsin 200H-217H and 280H-297H of data memory space.

4-215

Chapter 4, RAS66K

4.12.19 Conditional Assembly (IF, IFDEF, IFNDEF, ELSE, ENDIF)

By using conditional assembly functions, the programmer can control assembly such that particular
program blocks are assembled only when certain conditions are met. This alows a single source
program to be used for multiple purposes.

Conditional assembly is implemented by coding conditional assembly directives. The syntax of
conditional assembly directivesis asfollows.

IFxxx conditional_operand
true_conditional _body
ENDIF

It can also be as below.

IFxxx conditional _operand
true_conditional _body
ELSE
false_conditional _body
ENDIF

Here “1Fxxx” indicates one of the following conditional assembly directives.
IF IFDEF IFNDEF

The conditional_operand is a symbol or expression giving a true/false condition for conditional
assembly. The contents specified for conditional_operand differ depending on the conditional
assembly directive.

The true_conditional_body and false _conditional _body represent blocks of source statements. |If
the condition is true, then the source statement block of the true_conditional_body will be assem-
bled. If the condition is false, then the source statement block of the true_conditional _body will be

skipped. When thereis an EL SE directive, the false_conditional _body will be assembled.

Further conditional assembly directives may be coded within the true conditional _body and
false_conditional_body. Conditional assembly directives can be nested up to 15 levels deep.

4-216

Chapter 4, RAS66K

4.12.19.1 Conditional Assembly On Expression Value (IF)
m Syntax m
F expression
m Description m
The expression is a constant expression that does not include forward references.
If the value of expression is non-zero, then it will be considered true. If the value of expression is
zero, then it will be considered false. The expression will also be considered false if it includes for-

ward references or contains syntax errors.

m Examplem

‘PROG_SW EQU 0
‘PROG_SW EQU 1
PROG_SW EQU 2

IF PROG_SW==2

BUF_SIZE1 EQU 100H
BUF_SIZE2 EQU 200H

ELSE

BUF_SIZE1 EQU 200H
BUF_SIZE2 EQU 400H

ENDIF

DSEG AT 1000H
BUFL: DS BUF _SIZE1
BUF2. DS BUF_SIZE2

In this example, “PROG_SW==2" is specified as the conditional expression. PROG_SW is

assigned the value 2 at the start of the program, so the conditional will be true. Accordingly,
BUF_SIZE1 will be set to 100H and BUF_SIZE2 will be set to 200H.

4-217

Chapter 4, RAS66K

4.12.19.2 Conditional Assembly On Symbol Definition Or Non-Definition
(IFDEF, IFNDEF)

m Syntax m

IFDEF symbol
IFNDEF symbol

m Description m

The symbol is any symbol other than reserved words.

For the IFDEF directive, the condition will be true if symbol has been defined in a previous source
statement. The condition will be false if symbol is not defined in the program, or if it isdefined in a
later source statement.

The IFNDEF directive is the exact opposite of the IFDEF directive. The condition will be false if
symbol has been defined in a previous source statement. The condition will be true if symbol is not

defined in the program, or if it is defined in alater source statement.

m Examplem

PROG_SW2 EQU 0

IFDEF PROG_SW1

INCLUDE (INIT1.INC)
ELSE

IFNDEF PROG_SW2

INCLUDE (INIT2.INC)
ELSE

INCLUDE (INIT3.INC)
ENDIF

ENDIF

In this example, an IFNDEF directive is nested within the false conditional block of the IFDEF
directive. The PROG_SW1 operand of the IFDEF directive is not defined, so this condition will be
false. The PROG_SW2 operand of the next IFNDEF directive is defined, so this condition will be
false. Therefore, INIT3.INC will be included.

4-218

Chapter 4, RAS66K

4.12.20 Macro Definition (DEFINE)
m Syntax m
DEFINE symbol "macro_body"
m Description m
The DEFINE directive defines a macro symbol.

The DEFINE directive assigns macro_body to symbol. After this definition, RAS66K will replace
symbol with macro_body whenever it appears in a source statement before assembling it.

Other macro symbols may be coded within macro_body. In this case, in the process of replacing
the first macro, RAS66K will replace the nested macro. Macros are permitted to be nested 8 levels

deep.

m Additional Information m

Macro symbols can be referred only after they are defined with the DEFINE symbol.
m Examplem

DEFNELA 'L A"
DEFINE LX1 "MOVXL"
DEFINE ROMSEG "SEGMENT CODE WINDOW"
LA ERO L AERO
LA #100H ;L A100H
LX1 [DP] ;MOVXL[DP|
LX1 LRB ;MOVXLLRB

ROMSEG1 ROMSEG ;ROMSEG1 SEGMENT CODE WINDOW
ROMSEG2 ROMSEG ;ROMSEG2 SEGMENT CODE WINDOW

In this example, LA isreplaced by “L A,” LX1 by “MOV X1,” and ROMSEG by “SEGMENT
CODE WINDOW.” RASG6K interprets the code using macros as shown in the comments.

m Attention m

Careisrequired when using macro symbols and conditional assembly directives together. Examine
the exampl e program below.

DEFINESW "SYMI"

IFDEF SW

INCLUDE (FILE1)
ELSE

INCLUDE (FILE2)
ENDIF

4-219

Chapter 4, RAS66K

In this program, “IFDEF SW” is written to mean, “if symbol SW is defined.” However, SW is
actually a macro symbol, so RAS66K will judge whether SYM1, which is the macro body of SW,
is defined or not as the condition. SYM1 is not defined, so the condition will be false and FILE2
will be included.

Thus, even if a macro symbol is specified as the operand of an IFDEF or IFNDEF directive,
RASG6K will interpret the operand as the string assigned to the macro symbol.

4.12.21 C Source Level Debug Information
(CFILE, CFUNCTION, CLINE)

m Syntax m

CFILE expression
CFUNCTION expression
CLINE expression

m Description m

These directives are automatically generated by the C compiler CC66K. They are not used by the
programmer. The information given by these directives is used for C source level debugging by
CDB66K.

The CFILE directive gives information about C source program files.

The CFUNCTION directive gives information about C source program functions.

The CLINE directive givesinformation about C source program line numbers.

If these directives are written in normal assembly source, or if they are included in a source pro-

gram generated by CC66K and replaced, then there is no guarantee that correct assembly results
will be obtained or that following debugging operations will be correct.

4-220

Chapter 4, RAS66K

4.12.22 Optimization Of Branch Instructions
OLMS-66K provides severa jump instructions and subroutine call instructions. 1f GIMP or GCAL
directives are used instead of directly coding the microcontroller instructions, then RAS66K will
convert them to the optimal instructions corresponding to the address value of the branch destina-
tion or distance to the branch destination.
4.12.22.1 Optimization Of Jump Instructions (GIJMP)
m Syntax m

GJIMP symbol
m Description m
The GIMP directive converts to an optimal jump instruction.
The symbol is a symbol representing the jump destination. RAS66K converts the GIMP directive
to the optimal jump instruction corresponding to the jump destination represented by symbol.
However, if symbol is a forward reference, then it will not be optimized, but instead will be con-

verted to the jJump instruction with the longest machine code.

For nX-8/100~400, each GIMP directive will be converted to either an SJ instruction or J instruc-
tion.

For nX-8/500, each GIMP directive will be converted to either an SJinstruction, Jinstruction, or FJ
instruction. However, if there is only one physical segment in program memory space, or if the
SMALL or COMPACT memory model is being used, then there will be no conversions to the FJ
instruction.

m Examplem

CSEG AT 1000H
LABEL1:

CSEG AT 1040H
GJMP LABEL1 ;Convertsto SJinstruction.

CSEG AT 2000H
GJMP LABEL1 :Convertsto Jinstruction.

In this example, the distance from the first GIMP instruction to LABEL1 is in the range -
128~+127, o it will be converted to an SJ instruction. The distance from the second GIMP
instruction to LABEL1 isnot in the range -128~+127, so it will be converted to a Jinstruction.

4-221

Chapter 4, RAS66K

4.12.22.2 Optimization Of Call Instructions (GCAL)
m Syntax m
GCAL symbol
m Description m
The GCAL directive convertsto an optimal subroutine call instruction.
The symbol is a symbol representing the subroutine. RAS66K converts the GCAL directive to the
optimal call instruction corresponding to the call destination represented by symbol. However, if
symbol is aforward reference, then it will not be optimized, but instead will be converted to the call

instruction with the longest machine code.

For nX-8/100~400, each GCAL directive will be converted to either an SCAL instruction or CAL
instruction.

For nX-8/500, each GCAL directive will be converted to either an ACAL instruction, CAL instruc-
tion, or FCAL instruction. However, if there is only one physical segment in program memory
space, or if the SMALL or COMPACT memory model is being used, then there will be no conver-
sionsto the FCAL instruction.
m Examplem

TYPE (M66507)

CSEG AT 1000H ;ACAL area
SUB1:

CSEG AT 2000H
SUB2:

CSEG AT 3000H

GCAL SuUB1 :Convertsto ACAL instruction.
GCAL SuB2 :Convertsto CAL instruction.

In this example, the call destination SUB1 of the first GCAL instruction isin the ACAL area, so it
will be converted to an ACAL instruction. The call destination SUB2 of the second GCAL instruc-
tionisnot inthe ACAL area, soit will be converted to an CAL instruction.

4-222

Chapter 4, RAS66K

4.12.23 Print File Control
The print file consists of three lists.
e Assembly list

e Symbol list

* Cross-reference list

Refer to Section 4.13, “Print Files,” for details about print files. The following directives can be
used to control the creation and format of print files.

4.12.23.1 Print File Output Control (PRN, NOPRN)
m Syntax m

PRN [(print_fle)]
NOPRN

m Description m

The PRN directive generates a print file. The print_file specifies the print file name. If the operand
is omitted or part of the file specification is omitted, then refer to Section 4.2, “File Specification
Defaults,” for defaults.

The NOPRN directive suppresses generation of aprint file.

If both the PRN and NOPRN directives are omitted, then RAS66K will generate a print file. Inthis
case the print file name will be the same as the source file name with extension changed to “.PRN.”

Multiple PRN and NOPRN directives can be used, but only the first will be valid.

m Examplem

PRN(OUTPUT.LST)

This example specifies the generation of aprint file OUTPUT.LST.

4-223

Chapter 4, RAS66K

4.12.23.2 Force Page Break (PAGE without operand)
m Syntax m

PAGE
m Description m
A PAGE directive without an operand forces a page break in the print file. It will move output
from the line containing the PAGE directive to the next page. However, PAGE directives will be
ignored in ranges where NOLIST directives suppress output of the assembly list.
m Additional Information m
The PAGE directive has two functions. A page break is performed when the PAGE directive is
specified without an operand. If an operand is specified with the PAGE directive, then the directive
has the function of specifying the characters per line and lines per page in the print file.

m Examplem

CSEG
RT

PAGE ;Page break here.
CSEG AT 2000H

4-224

Chapter 4, RAS66K

4.12.23.3 Lines Per Page and Characters Per Line Specification
(PAGE with operands)

m Syntax m
PAGE[page length] [,page width]
m Description m
A PAGE directive with operands specifies the characters per line and lines per page in the print file.
The page_length specifies the lines per page, and the page width specifies the characters per line.

Both page_|length and page_width are constant expressions that do not include forward references.

Just one of page length or page width may be specified, but if both are omitted and only PAGE is
specified, then it will force a page break.

The range of values of page_length is 10 to 65535. Values specified as less than 10 will be recog-
nized as 10, while values specified as greater than 65535 will be recognized as 65535. The initia
value of page length is 60.

The range of values of page widthis 79to 132. Values specified as less than 79 will be recognized
as 79, while values specified as greater than 132 will be recognized as 132. The initial value of
page widthis79.

If multiple PAGE directives with operands are used in a program, then only the settings of the first
directive will be valid.

m Examplem
PAGE 70,130

This example sets the print file lines per page to 70, and the characters per line to 130.

4-225

Chapter 4, RAS66K

4.12.23.4 Title Specification (TITLE)
m Syntax m

TITLE" character_string "
m Description m

The TITLE directive specifies the print file title. The title is output in the header of each page of
the print file.

The character_string specifies the string for the title. The title can be up to 70 characters. If more
than 70 characters are specified in the character_string, then the excess characters will be ignored.

Multiple TITLE directives can be used in a program, but only the last one used will be valid. If the
TITLE directive is omitted, then nothing will be output as the title in the print file header.

m Examplem

TITLE "Communication Program”

This exampl e specifies “ Communication Program” as the title.

4.12.23.5 Date Specification (DATE)
m Syntax m
DATE " character_string "
m Description m
The DATE directive specifies the string to be output in the date field of the print file.

The character_string can be up to 25 characters. If more than 25 characters are specified in the
character_string, then the excess characters will be ignored.

Multiple DATE directives can be used in a program, but only the last one used will be valid. If the
DATE directive is omitted, then the date when RAS66K was invoked will be output in the print
file'sdatefield.

m Examplem

DATE "Jun1, 1993"

This example outputs “Jun 1, 1993” in the print file's date field.

4-226

Chapter 4, RAS66K

4.12.23.6 Assembly List Output Control (LIST, NOLIST)
m Syntax m

LIST
NOLIST

m Description m

The assembly list isalist of the program and its corresponding object code. Which ranges of a pro-
gram to be output to the assembly list is specified using LIST and NOLIST directives.

Lines following a LIST directive in the program will be output to the assembly list. Lines will be
output to the assembly list until RAS66K encounters a NOLIST directive.

Linesfollowing a NOLIST directive in the program until the next LIST directive will not be output
to the assembly list. However, if a source statement generates an error or warning even in a range
which is not being output to the assembly list, then it will be output to the assembly list. If thereis
a PAGE directive for a page break in a range which is not being output to the assembly list, then
that PAGE directive will be ignored.

RAS6E6K assembles as if a LIST directive is specified at the start of the program. Therefore, if no
LIST or NOLIST directiveis used, then the entire program will be output to the assembly list.

m Examplem

TYPE(M66507)

NOLIST ;Do not output following lines to assembly list.
MOV RO,R1 ;Error, so thiswill be output to assembly list.
LIST ;Output following lines to assembly list.

iEN D

4-227

Chapter 4, RAS66K

4.12.23.7 Symbol List Output Control (SYM, NOSYM)
m Syntax m

SYM
NOSYM

m Description m

The symbol list is alist of user symbols used in the program and their contents. The SYM and
NOSY M directives specify whether or not to output to the symbol list.

When the SYM directive is specified, information about all user symbols will be output to the sym-
bol list. When the NOSY M directive is specified, a symbol list will not be generated.

If neither the SYM nor NOSYM directive specified, then the symbol list will not be output.
Multiple SYM and NOSYM directives may be used in a program, but only the first specification
will be valid.

m Examplem

TYPE(M66507)

SYM

This example will output a symbol list.

4-228

Chapter 4, RAS66K

4.12.23.8 Cross-Reference List Output Control (REF, NOREF)
m Syntax m

REF
NOREF

m Description m

The cross-reference list isalist of the lines where each user symbol is defined and used in the pro-
gram. Which user symbols are to be output to the cross-reference list is specified using REF and
NOREF directives.

User symbols defined or referred following a REF directive in the program until the next NOREF
directive will generate a cross-reference list. User symbols defined or referred following a NOREF

directive until the next REF directive will not generate a cross-reference list.

RAS6E6K assembles as if a NOREF directive is specified at the start of the program. Therefore, if
no REF directive is used, then no cross-reference list will be generated.

m Examplem

TYPE(M66507)

REF ;Output following symbol line numbersto cross-reference list.

SYM3 EQU 1
CSEG
LABEL3:DW SYM4

NOREF ;Do not output following symbol line numbers to cross-reference list.

SYM4 EQU 2
LABEL4: NOP

In this example, a cross-reference list will be generated for SYM3, SYM4, and LABEL 3.

4-229

Chapter 4, RAS66K

4.12.23.9 Tab Code Replacement (TAB)
m Syntax m
TAB [tab width]
m Description m
The TAB directive will replace tab codes used in the program with the appropriate number of space
characters and output them to the assembly list. Specify the TAB directive when using a printer

that does not recognize tab codes.

The tab_width is the number of spaces corresponding to a single tab code. It can be in the range 1
to 16. If thetab width is omitted, then RAS66K will assume 8.

Multiple TAB directives can be used in a program, but only the first will be valid. If the TAB
directive is omitted, then tab codes will be output asisto the print file.

m Examplem
TAB 4

In this example, tab codes used in the program will be replaced by up to 4 bytes of spaces and out-
put to the assembly list.

4-230

Chapter 4, RAS66K

4.12.24 Object File Control

RASGE6K stores program code in binary format into the object file that it generates. When debug-
ging information is also stored in the object file, symbolic debugging of the programis possible.

The following directives can be used to control object file generation and output of debugging
information to the object file.

4.12.24.1 Object File Output Control (OBJ, NOOBJ)

m Syntax m

OBJ [(oectfie)]
NOOBJ

m Description m

The OBJ directive generates an object file. The object_file specifies the object file name. If the
operand is omitted or if part of the file specification is omitted, then refer to Section 4.2, “File
Specification Defaults,” for the defaults.

The NOOBJ directive suppresses generation of an object file.

If both OBJ and NOOBJ directives are omitted, then an object file will be generated. In this case
the object file name will be the same as the source file name with the extension changed to “.OBJ.”

Multiple OBJ and NOOBJ directives can be used in a program, but only the first will be valid.

m Examplem

OBJ(OUTPUT.OBJ)

This examples specifies generation of an object file (OUTPUT.OBJ).

4-231

Chapter 4, RAS66K

4.12.24.2 Assembly Level Debugging Information Output Control
(DEBUG, NODEBUG)

m Syntax m

DEBUG
NODEBUG

m Description m

The DEBUG directive outputs assembly level debugging information to the object file. Symbolic
debugging of the program is possible when the object file includes debugging information.

The NODEBUG directive suppresses output of assembly level debugging information to the object
file.

If no DEBUG directive is specified, then debugging information will not be output to the object
file. Multiple DEBUG and NODEBUG directives can be used, but only the first will be valid.

m Examplem

TYPE (M66507)

DEBUG

This example outputs debugging information.

4-232

Chapter 4, RAS66K

4.12.25 Error Message Output Control (ERR, NOERR)

Error messages are output to the screen or to an error file. The error message output destination is
controlled with the following directives.

m Syntax m

ERR [(ermor_file)]
NOERR

m Description m

The ERR directive tells RAS66K the output destination for error messages. The error_file speci-
fies the error file to which error messages will be output. If the operand is omitted or if part of the
file specification is omitted, then refer to Section 4.2, “File Specification Defaults,” for the defaults.
The NOERR directive tells RAS66K to not display error messages on the screen (standard output).

If both ERR and NOERR directives are omitted, then error messages will be output to the screen.
Multiple ERR and NOERR directives can be used in a program, but only the first will be valid.

m Additional Information m

By using the ERR and NOERR directives, output destination can be controlled only for assembler
error messages and warnings. To output fatal error messages and internal processing error mes-
sagesto afile, use the DOS redirection function.

m Examplem

ERR(ERROR.LST)

This example specifies the generation of an error file ERROR.LST.

4-233

Chapter 4, RAS66K

4.13 Print Files

This section explains the format of print files generated by RAS66K and how to read them. A print
file consists of the following lists.

e Assembly list
The assembly list isalist of the program and its corresponding object code.
* Cross-reference list
The cross-reference list shows the lines where each user symbol was defined and referred.
» Symbol list
The symbol isalist of information about the user symbols used in the program.
» Termination message

The termination message shows the total number of errors and warnings detected during assem-
bly and information about address space.

Print file output can be controlled by using the options and directives below.

Table 4-37. Directives And Options For Print File Output

Directives Options
Print file PRN, NOPRN /PR, INPR
Assembly list LIST, NOLIST /L, /INL
Cross-reference list REF, NOREF /R, INR
Symbol list SYM, NOSYM IS, INS

4-234

Chapter 4, RAS66K

4.13.1 How To Read Assembly Lists

An example of an assembly list is shown below. To simplify explanations, numbers are shown to
the left of the assembly list.

1) RAS66K (MSM66507) Relocatable Assembler, Ver.4.21 assemble list. page: 1
2) Source File: SAMPLE.asm

3) Object Fle: SAMPLE.obj

4) Data :'93 05/13 Thu[16;53]

5) &

6) #H#LocObed Line SouceSaemens

3
4
5 TYPE(M66507)
6
7

7) —INCLUDE— 8 INCLUDEQEANEH)
9;dce
10 TAB8
11 PAGE 6080
2 sw
13 RF
1“4 BR
15 EXTRN NUMBER: EXT_NUM
16 ; enddfindude
17
8 —BD OF INCLUDE —
9) — 18 CSEG AT20H
10) —USING— 19 USING PAGE ANY
—USING— 20 USING DATA ANY
A—-
002000 21ABH:
’> 2 085G
[000700] 24 DS 10H
11) — 5 BIG

I_ (00I000C200) 26 DBIT 200H
00I000C200) 27 ORG 200HO
B—

2 CIG

|_ (O200FBFRFF 0 L AHOFFFFH

12) OOABFOFE 31 LB AMFH

|_ (D2BFB000 2 L AHEXT NUM
O200BFI00 3B LB AMEXT NUM

34,—
— =0000FFFFH 3B NUMSYM EQU OFFFFH
13) =00FFFFH 36 DATA SYM DATA OFFFFH
_ =QO7FFFFH(FFFH?) 37 BIT.SYM BT OFFFFH7
B——

P CEG
(00200A010203040606 40 DB 123456,
00201007 0809 0A >>> 78910
14) 00201401:0002000300 41 DW 123
|_ 00:201A04-0005000600 >>> 456,
00:202007-000800 >>> 78
L——
B LAA
* Eror 00: bad operand
I_ 248 4 L ABT.SYM
15) *Waming 12: usage type mismatch
— *Enor29.outofrange
%5

4-235

Chapter 4, RAS66K

Each of the numbers to the l€eft of the assembly list explained next.

1) The target microcontroller type, assembler version, and page number are shown at the top of
each page.

2) Thisisthe sourcefile name.
3) Thisisthe object file name.
4) Thisisthe date of assembly.

5) Thisisthetitle specified by the TITLE directive. If the TITLE directive is omitted, then noth-
ing will be output on thetitle line.

6) This line shows the names of the fields in the assembly list. The description of each field is
given below.

Table4-38. Assembly List Fields

Field Description

#H Displays the physical segment address. The physical segment address is shown
in hexadecimal when it can be determined. It isshown as“##’ when the physi
cal segment attribute is COMMON. It is shown as*“??’" when it cannot be
determined.

Loc. Displays the location counter as a hexadecimal number. Absolute addresses
are shown for absolute segments, while relative positions from the first address
of the segment are shown for relocatable segments. For BIT segments, the
location counter will be shown as a bit address and as an expression that uses
the dot operator.

01000 (0200.0)

Object Displays object code as hexadecimal numbers. Object codeisdisplayedin
byte units. If the object code could not be fixed at assembly time, then the
undetermined datawill be shown with a single quotation mark (*) appended.

Line Displays line numbers in decimal assuming include file contents are inserted in
the source file.

Source statements Displays the contents of the source file or include file.

e Error messages or special messages other than those given above may be displayed in the ##
field, Loc field, and Object field.

7) Thisis displayed when an INCLUDE directive inserts an include file. From the next line on,
the include file contents will be shown in the Source Statements field.

8) Thisisdisplayed after the entire include file has been displayed.
9) Thisisdisplayed when the segment is changed with a CSEG, DSEG, or RSEG directive.

10) Thisisoutput on lineswhere a USING directive is specified.

4-236

Chapter 4, RAS66K

11) This displays the location of each statement where a label, DS directive, DBIT directive, or
ORG directiveis coded.

12) This shows the object code. Two bytes of object code are connected by a hyphen (-). If the
object code could not be determined by RAS66K, then a single quotation mark (') will be
appended to the right of the undetermined object code.

13) This shows the value (or address) assigned to the symbol when alocal symbol definition direc-
tive (EQU, SET, CODE, DATA, EDATA, CBIT, BIT, EBIT) is coded.

14) This displays 6 bytes of code per line where DB directives or DW directives are coded. A
statement that contains 7 bytes or more of code will be displayed in multiple lines with >>>
shown on the Line field for the second line and after.

15) When a source statement has an error or warning, this shows the error contents immediately
after that statement. When one line generates many errors, up to the first 5 errors generated
will be displayed.

4.13.2 How To Read Cross-Reference Lists
The cross-reference list shows the line numbers of symbols that appear in the program.

An example of across-reference list is shown below.

RAS66K (MSM66507) Relocatable Assembler, Ver4.21 C-Reflist. page: 2
smd ines(#dehnionine)

CODESYM ... 25#
COMSYM 27#
EXTSYM.... 22#
MACROSYM ... 29#
NUMSYM 23#
PUBSYM 24# 30
SEG000.... 11#18
SEGO01 ... 12#18
SEGO010.... 13#19
SEGO11....14#1932
SEG020..... 15#2035
SEGO021 ... 16#20 38

As shown above, the cross-reference list consists of two fields. Each field is explained below.

The symbol field displays the names of user symbols.

The lines field shows the line numbers where the symbols appeared. Line numbers with # append-
ed indicate the symbol’s definition line. 1f the symbol was defined with SET directives, then the

last definition line will be appended with #. (SFR) will be prefixed before the line numbers for
SFR address symbols defined in the DCL file.

4-237

Chapter 4, RAS66K

4.13.3 How To Read Symbol Lists

The symbol list gives detailed information about symbols that appear in the program. It is config-
ured from symbol information, segment information, and segment group information.

4.13.3.1 Symbol Information

The symbol information display shows detailed information about all symbols defined in the pro-
gram and SFR symbols that are referred at least once in the program.

Below is an example of symbol information.

—symbadinformaiion—
symbol - ypeusgypphyseg vake D

APSW...sFDATA#O 4H 0
ASSP..DATA#D OH O
BTSYM....cBIT #00 200HO 0
CODESYM...loc CODE #00 1000H O
COMSYM...comnDATA ANY OH 1

MACROSYM ... mcr Macro body
NUMSYM....loc NUMBER— 10000000H O

Each of these fields are explained next.

The symboal field shows the names of user symbols.

4-238

Chapter 4, RAS66K

The type field displays the symbol types as follows.

Display Description

*xk Undefined symbol
Sfr SFR symbol

loc Local symbol

pub Public symbol

seg Segment symbol
com Communal symbol
ext External symbol
mcr Macro symbol

(the macro body string will be shown after “mcr”)

The usgtyp field shows the usage types as follows.

Display Description
NUMBER Usage type NUMBER
CODE Usage type CODE
DATA Usage type DATA
EDATA Usage type EDATA
CBIT Usagetype CBIT
BIT Usage type BIT
EBIT Usagetype EBIT

The physeg field shows the physical segment attributes as follows.

Display Description

— Numeric value

#XX Physical segment address XX (hexadecimal)
COMMON Physical segment attribute COMMON
ANY Undetermined physical segment address

The value field shows the symbol’ s value in hexadecimal.

For segment symbols, communal symbols, and external symbols, the ID field shows the order of
definition . For simple relocatable symboals, it shows the ID of the segment in which each symbol
resides. Otherwise it shows nothing.

4-239

Chapter 4, RAS66K

4.13.3.2 Segment Information

The segment information display shows detailed information about segment symbols defined in the
program.

Below is an example of segment information.

— segmentinformation—

SiDsymba segypphyseg size bound GID relype
1SEGO00...CODE ANY OHPAGE 1
2SEGQ01L...CODE ANY OHOCT 1
3SEG010....CODE #00 OHWORD 2
4SEGO11...CODE #00 10HUNIT 2

5SEG020.... DATA COMMON 100HUNIT 3
6SEG021...BIT ANY 200HUNIT 3SBA

Each of these fields are explained next.
The S1D field shows the definition order of the segment symbols.
The symboal field the name of each segment symbol.

The segtyp field shows the segment type as follows.

Display Description

CODE Segment type CODE
DATA Segment type DATA
EDATA Segment type EDATA
BIT Segment type BIT
EBIT Segment type EBIT

The physeg field show the physical segment attribute.

The size field shows the segment size in hexadecimal. If the units of size is bits, then the display
will be bits. Otherwise, the display will be bytes.

The bound field shows the boundary value attribute. Boundary value attributes are as follows.

4-240

Chapter 4, RAS66K

Display Description

UNIT 1-bit boundary for BIT and EBIT segments.
1-byte boundary for all other segments.

WORD 2-byte boundary.

OCT 8-byte boundary.

PAGE 256-byte boundary.

integer constant If the integer constant value is n: n-bit boundary for BIT and EBIT segments.
(hexadecimal) n-byte boundary for all other segments.

The G-1D field shows the group ID of the segment group containing the segment. If no GROUP
directive was defined, then nothing will be displayed in thisfield.

The reltyp field shows the specified special area attribute. If no special area attribute was speci-
fied, then nothing will be displayed in thisfield.
4.13.3.3 Segment Group Information

The segment group information display shows the relocatable segments residing in each segment
group.

Below is an example of segment group information.
— segmentgroup information —
G-ID memory physeg group-members-list

1CODE ANY SEG000 SEG001

2CODE #00 SEGO010SEGO011
3 DATABIT ANY SEG020 SEG021

Each of these fields are explained next.
The G-1D field shows the definition order of the groupsin decimal.

The memory field shows the memory space that the group is allocated to. One of the following will
be displayed.

Display Description
CODE Group is allocated to program memory space.
DATA/BIT Group is allocated to data memory space.

The physeg field shows the physical segment attribute.

The group-members-list field lists the names of the rel ocatable segments that reside in each group.

4-241

Chapter 4, RAS66K

4.13.4 How To Read Termination Messages

Display of termination messages differs depending on the CPU core type. Below are some exam-
ples.

m Examplel m

Target : MSM66201 (nX-8/200)

Emos :0

Warnings : 0 (/Wrpeaus)

Lines :&2
Thisis the termination message for CPU cores nX-8/100, 200, and 400.
The microcontroller device type is shown after “Target.” The total number of errors is shown after
“Errors.” Thetotal number of warnings is shown after “Warnings.” The number of lines processis
shown after “Lines.”

m Example? m

Target :MSM66301 (nX-8/300)
CommonTop : FFH

Emos :0
Warnings : O (/Wrpeaus)
Lines :62

Thisis the termination message for CPU core nX-8/300.

In addition to the contents of the termination message of Example 1, the ending address of the
COMMON areaisdisplayed after the microcontroller device type.

m Example3 m

Target : MSM66507 (nX-8/500)

Memory Model : LARGE ... 1)
CommonTop : 3FFH 2)
ROM WINDOW :3000Hto 7FFFH 3)
Intemal RAM: 200Hto 7FFH ... 4)
EEPROM :4000HtoS5FFFH ... 5)
DUAL-PORT :6000Hto 7FFFH ... 6)

Enos :0
Warnings : O (/Wrpeaus)
Lines :&2
This s the termination message for CPU core nX-8/500.

1) Thisshowsthe memory model.

4-242

Chapter 4, RAS66K

2)

3

4)

5)

6)

This shows the ending address of the COMMON area.

This shows the range of the ROM window area specified with the WINDOW directive. It will
display “None” if on ROM window area was specified.

This shows the range of the internal RAM area.

If an EEPROM areais defined in the DCL file, then this shows its range. If not defined, then
thisline will not be displayed.

If adual port RAM areais defined in the DCL file, then this shows its range. If not defined,
then this line will not be displayed.

4-243

Chapter 4, RAS66K

4.14 EXTRN Declaration Files

This section explains the use of EXTRN declaration files generated by RAS66K
4.14.1 Purpose Of EXTRN Declaration Files

An EXTRN declaration file's contents are external declarations corresponding to the public decla-
rationsin the program. An EXTRN declaration fileis generated when the /X option is specified.

When a program is divided into modules, the module that defines a symbol needs to declare it pub-
lic, and modules that refer that symbol need to declare it external. Usually the programmer makes
these declarations, but when the number of symbols or modules is large, it becomes easy to make
mistakes in the management of symbol declarations.

The EXTRN declaration file generation function is provided as away to solve this problem.

4.14.2 Use Of EXTRN Declaration Files

As a simple example, suppose subroutines SUB00 and SUBO01 and RAM addresses FIX_TBL and

SBA_BIT TBL are defined in module FOOL.ASM and referred in modules FOO2.ASM and
FOO03.ASM.

FOOLASM

TYPE (M66507)

PUBLIC SUBO0O0 SUBO1 FIX_TBL SBA BIT _TBL
CSEG AT 1000H
SUBO0O:
;sub routine SUB0O
RT
SUBO1:
:sub routine SUBO1
RT

DSEG AT 280H
FIX_TBL:
DS 10H

BSEG AT4COH.0
SBA_BIT_TBL:
DBIT 88

Assemble thisfile as follows.

RAS66K F001 /X

Thiswill automatically generate the EXTRN declaration file FOO1.EXT.

4-244

Chapter 4, RAS66K

FOO1.EXT

» Extemal symbol dedaraionfie.

EXTRN BIT SBA:SBA BIT_TBL
EXTRN DATARX :HX TBL
EXTRN CODE :SUBOO

EXTRN CODE :SUBO1

;Eddisig

Then specify the following at the start of the programs in FOO2. ASM and FO03.ASM that refer
these subroutines and symbols.

INCLUDE (FOO1.EXT)

By coding this one line in the program, al public symbols defined in FOO1.ASM can be referred.

Thus, use of EXTRN declaration files releases the programmer from having to manage external
symbols and makes programs easier to read and maintain. Also, as can be seen with FIX_TBL and
SBA _BIT_TBL of FOO1.EXT in the example, the FIX, SBA, and SBAFIX attributes are automati-
cally added, so RAS66K can perform correct address optimization.

4-245

Chapter 4, RAS66K

4.15 Error Messages

RASGB6K reports errors in assembly processing. The errors are reported in the following ways.

» Error messages are output to the screen or an error file.
» Error numbers are output to the print file.

RAS6E6K has the following types of errors.

» Fata errors

» Assembler errors

» Warnings

* Internal processing errors

Fatal errors are errors so severe that RAS66K cannot continue processing. When a fatal error
occurs, RAS66K suspends assembler processing.

Assembler errors are errors that occur during interpretation of the source file. RAS66K will contin-
ue assembler processing and generate a print file and object file even if assembler errors occur.

Warnings indicate that there may be problems in the program. RAS66K will continue assembler
processing and generate a print file and object file even if warnings occur.

Internal processing errors occur when RASE6K detects an error in itsinternal processing. When an
internal processing error occurs, RASG6K stops assembler processing.

These error messages are normally displayed to the screen. Use the DOS redirection function to

output error messages to afile. To output only assembler errors and warnings to a file, use the /E
option or ERR directive.

4-246

Chapter 4, RAS66K

4.15.1 Format Of Error Messages
The format of error messages output to the screen or error file is as shown below.
m Syntax m
flename(linel) :line2 : type number : message
The filename will be the name of the file that occurred the error. The linel will be the line number
in the source file where the error was occurred. The line2 will be the value of the Line field in the

print file where the error is shown to have occurred.

Thetypeisthetype of error. It will be one of the following.

type Error type
Error Indicates an assembler error.
Warning Indicates awarning.

The number is the error number, and the message is the error message that is displayed. Section
4.15.2, “List Of Error Messages,” gives alist of error numbers and error messages.

4-247

Chapter 4, RAS66K

4.15.2 List Of Error Messages

Below isalist of the error messages displayed by RAS66K. The error message numbers are shown
to the left of the error messages. A description is given below each error message.

4.15.2.1 Fatal Error Messages

FOO

FO1

FO2

FO3

FO4

FO5

FO6

FO7

FO8

F09

F10

4-248

insufficient memory

There is not enough memory to continue processing. This error can occur when too many
symbols are defined in the source program. |f some TSR programs are resident in memo-
ry, then remove them. Also, if the /V or /R option (or REF directive) are specified, try
assembling without them. If this error still occurs, then you need to split up the program
or reduce the number of symbols.

file not found: file_name
The sourcefile, include file, or DCL file indicated by file_name could not be found.

cannot open file: file_name

The file indicated by file_ name cannot be generated. The file_name will be the object
file, print file, or error file. Check that the specified name does not any invalid characters
and that it exists in the specified directory.

cannot closefile: file_name
The file cannot be closed. The most likely reason for this error is that disk capacity is
insufficient.

error(s) found in DCL file

At least one syntax error exists in the DCL file. Because assembler results cannot be
guaranteed with this error, processing will terminate after the error message is displayed.
As long as you use the original DCL file provided by Oki Electric, this error will not
occur.

fileseek error
A file seek cannot be performed.

too many INCL UDE nesting levels
Include file nesting levels exceeds 8.

line number exceeds 65535
One source file has more than 65,535 lines (total lines including include files).

I/O error writing file
The object file could not be written to.

TYPE directive missing
Thereis no TY PE (device name) specification in the source file, or a different instruction
is coded before the TY PE directive.

unclosed block comment
A block comment /* . . . */isnot closed.

Chapter 4, RAS66K

F11 illegal reading binary file
The contents of a C source level debugging information file or ABL file are not correct.
If there is a problem with ABL file contents, then after the above error message, the dis-
play will continue with the following message.

ABL file: message

The message shows the contents of the error. When this error occurs, first check the fol-
lowing.

» Areno errors (except for warnings) generated with the first assembly?

» Do the memory model specification, case sensitivity specification, and include path
specification completely match between the first assembly and re-assembly?

» Areno fatal errorsrelated to addressing generated during linking?

* Isthe/A option specified when linking?

If the error still occurs after all of these are confirmed, then please contact Oki Electric.
The message types and their descriptions are shown next.

The messages below starting with “ABL file” are displayed following the fatal error message “F11
illegal reading binary file” when thereisa problemin the ABL file.

ABL file: module information isnot found
Information about the program currently being assembled is not included in the ABL file.

ABL filee CORE ID mismatch
The module information defined in the ABL file and target CPU core type of the program
currently being assembled do not match.

ABL file: Target machine mismatch
The module information defined in the ABL file and target microcontroller name of the
program currently being assembled do not match.

ABL file: Memory Model mismatch
The module information defined in the ABL file and memory model of the program cur-
rently being assembled do not match.

ABL file: symbol isnot entry
A symbol included in the ABL file is not defined in the program currently being assem-
bled.

ABL file: symbol type mismatch
The symbol type (segment symbol, communal symbol, etc.) of the ABL file and of the
program currently being assembled do not match.

ABL file: symbol usage type mismatch

The symbol usage type (CODE, DATA, BIT, etc.) of the ABL file and of the program
currently being assembled do not match.

4-249

Chapter 4, RAS66K

F12

F13

F14

4-250

ABL file: local symbol value mismatch
A label or other local symbol stores an incorrect value.

ABL file: fileformat isillegal
The ABL file structure contains an error.

ABL file: absolute machine code mismatch.(line xxxx)
The machine code generated by re-assembly does not match the machine code fixed up
by RL66K.

ABL file: location of absolute code mismatch.(line xxxx)
The machine code generated by re-assembly does not match the address of the machine
code fixed up by RL66K.

ABL file: illegal machine code number information.(line xxxx)
The machine code information in the ABL file contains an error.
reading binary file check sum error

The checksum of code in a C debugging information file or ABL fileisnot correct.

/O error readingfile
A C debugging information file or ABL file could not be read.

old DCL file
A DCL filefor an old version of RAS66K is being used.

Chapter 4, RAS66K

4.15.2.2 Assembler Error Messages

EOO

EO1

EO2

EO3

EO4

EO5

EO6

EO7
EO8

E09

E10

Ell

E12

E13

bad operand

An operand is incorrect. For a microcontroller instruction, the addressing specification
might be in error, or there might be too many or too few operands. For a directive, the
code might not match the format of the directive.

bad syntax
Thisisabasic syntax error found before the instruction was recognized.

USING LREG required
Loca register address symbols (AERO-AER3,AR0-AR7) must be used after the bank
number is specified with a USING LREG directive.

physical segment address out of range

The physical segment address exceeds the actual number of usable segments. If this error
occurs while within the range of physical segments of the target microcontroller, then the
memory model might be SMALL.

bad character: ¢ (XX)
The character ¢ (ASCII code XX') cannot be used in a program.

illegal integer constant
The integer constant or address constant is incorrectly coded.

illegal escape sequence for mat
An incorrect escape sequence format is coded within a character constant or string con-
stant.

unexpected EOL
unexpected EOF
A character constant (‘c’) or string constant (“...") is not closed.

illegal string constant
The string constant has an invalid coding.

string constant too long
The number of characters in the string constant exceeds 256.

illegal option: option
The option is not recognized as an option. The specification will be ignored.

constant required
An integer constant needs to be specified as an instruction operand or option.

declaration duplicated

The same directive or option is specified two or more times, or a segment symbol previ-
oudly registered in agroup is specified in another GROUP directive.

4-251

Chapter 4, RAS66K

E14

E15

E16

E1l7

E18

E19

E20

E21

E22

4-252

location out of range

The location exceeds the permitted range. This error occurs when the AT address of a
segment start specification (CSEG directive, etc.) or start address of an ORG directive
exceeds the upper or lower segment restriction, or when the location exceeds the upper
restriction after being modified by an instruction or DS, DBIT, GIMP, GCAL, or DB
directive.

target microcontroller hasno EEPROM
When the target microcontroller has no EEPROM, EDATA segment code is not permit-
ted.

#N not allowed in EDATA segment
The EEPROM area is aways located in physical segment O or the COMMON area.
Therefore a physical segment address cannot be specified for the EDATA segment.

AT address must be NUMBER

If AT and # are specified when an absolute segment is started, then the AT specification
will be interpreted as an offset address. In this case the AT specification cannot be an
address expression. For example, the following will cause an error.

CSEG AT 2:3000 #4

segment type/usage type mismatch
The segment type or usage type required by an instruction does not match the specified
type. Thiserror occursin the following cases.

* The usage type of the start address of a segment start specification (ORG directive,
CSEG directive, etc.) does not match the segment type of the current segment.

* The usage type of an operand of a symbol definition directive (CODE directive, etc.)
does not match the type of instruction.

e A DSdirectiveis coded in a bit-oriented segment.

e A DBIT directiveis coded in a byte-oriented segment.

* A DB or DW directive is coded in a segment other than CODE or EDATA.

undefined symbol: symbol
The symbol is not defined.

segment symbol required
A segment symbol is required as the right term of the SIZE operator and as the operand
of RSEG and GROUP directives.

forward reference not allowed

A forward reference was made where it is not permitted. Many directives do not allow
forward references in their operands. Also segment names specified with the RSEG and
GROUP directives must be previously defined.

stack segment not allowed
The stack segment $STACK cannot be used.

Chapter 4, RAS66K

E23

E24

E25

E26

E27

E28

E29

E30
E31

E32

E33

E34

E35

E36

symbol redefinition; symbol
The symbol has already been defined.

NONE type not allowed
Address constants cannot be specified as operands of EQU and SET directives.

segment | D mismatch
When a relocatable address is specified in the operand of an ORG directive in a relocat-
able segment, the expression must represent an address in the current segment.

address not allowed
If the current segment is a relocatable segment of type ANY, then the address of an ORG
directive must be a numeric value (NUMBER).

physical segment address mismatch

The physical segment addresses do not match. This error occurs when an ORG directive
is specified in a segment with a known physical segment and that physical segment
address does not match the current segment. It also occurs when the physical segment
addresses of segment symbols specified for a GROUP directive do not match.

local symbol required: symbol
The publicly declared symbol must be defined as alocal symbol.

out of range: message
The operand value exceeds its permitted range. The message shows the specific name of
the area

illegal boundary

illegal relocation type

The boundary value specification or special area attribute specification of a SEGMENT
or COMM directive isincorrect.

EDATA segment cannot belong to group
An EDATA segment cannot be placed in agroup.

entry overflow
The number of segment symbols, communal symbols, external symbols, or segment
groups exceeds 65,535.

string constant required
The operand of aDATE or TITLE directive must be a string constant.

absolute expression required

The operand must be a constant expression. This error occurs when the operand of many
directives, the interrupt number of the SWI instruction, or the shift width of a rotate/shift
instruction is not a constant expression.

simplerelocatable expression required

The operand of a symbol definition directive (EQU directive, etc.) or ORG directive must
be a constant expression or simple relocatable expression.

4-253

Chapter 4, RAS66K

E37

E38

E39

E40

E41

E42

E43

E44

E45

E46

E47

E48

E49

ESO0

4-254

expression unresolved
An unresolved calculation cannot be evaluated, or the operand of a symbol definition
directive (EQU directive, etc.) or ORG directive includes unresolved calculation.

illegal expression for mat
The expression has a basic syntax error. For example, this error will occur if parentheses
do not balance.

invalid relocatable expression
An unpermitted operation on arelocatable symbol is being performed.

divide by zero
A division or modulo operation by 0 is being performed.

illegal bit offset
The hit offset that is the right term of a dot operator is not a constant, or the bit offset of
bit addressing is specified as a value greater than 7 or as a non-constant value.

right expression of SEG operator must be address
The operand of a SEG operator must be specified as an address.

nX-8/500 only
The codeis recognized only when the CPU core is nX-8/500.

illegal core name
The CPU core name in the #CORE statement in the DCL file isincorrect.

undefined symbol or forward reference: symbol
The symbol used in the DCL file is an undefined symbol or has not yet been defined.

mnemonic required
An instruction mnemonic is required after a#INSTRUCTION statement in the DCL file.

too many SWI address
The maximum number of addresses that can be defined with the #SWI statement in the
DCL fileis 32.

#ENDCASE does not have a matching #CASE
An#ENDCASE statement in the DCL file does not have a matching #CASE statement.

ROM-LARGE model only
The FJ, FCAL, and FRT instructions can only be used with the MEDIUM or LARGE
memory model.

cannot optimize RAM addressing

Optimization of RAM addressing cannot be determined. 64K RAM direct addressing (dir
N) is provided for nearly al instructions, but it is not supported for some. If an addressis
specified without an addressing operator for these instructions, or if “fix” and “sfr” opti-
mization is impossible, then no appropriate addressing will exist. This error will occur in
such cases.

Chapter 4, RAS66K

ES51

ES52

ES3

E54

ES5

ES6

ES7

ES8

ES9

EGO

E61

CODE segment only
Microcontroller instructions, GIMP directives, and GCAL directives can only be coded in
CODE segments.

GJIJMP/GCAL operand must be symbol
The operand of a GIMP or GCAL directive must be a specified as a symbol.

VCAL address must be even
The operand of aVVCAL instruction must be an even address.

out of relative jump range
The branch destination address of a relative jump instruction is not in the range -128 to
+127.

LABEL or NAME format error
The syntax relationship between the instruction and a symbol or label is incorrect. For
example, this error will occur in the following cases.

LABEL: EQU 100H
NAMES DS 100H

invalid CPU instruction
An instruction used in the program was not defined with an #NSTRUCTION statement
inthe DCL file.

invalid initialization directive

The position of a directive that initializes the assembler (WINDOW, COMMON,
MODEL) is not correct. This error occurs when an instruction that cannot be coded
before these directivesis. For example, an error will occur with the following code.

EXTRN NUMBER : MAXADDRESS :Cannot be coded before WINDOW and COMMON
WINDOW 8000H , 9FFFH
COMMON 2

illegal SFR word/byte attribute
The format of the word/byte access attribute field of an SFR access attribute definition
statement in the DCL fileisincorrect.

illegal SFR bit attribute
The format of the bit access attribute field of an SFR access attribute definition statement
inthe DCL fileisincorrect.

out of SFR addressrange
An SFR address of an SFR access attribute definition statement in the DCL file is not
within the range of the SFR area defined by the SFR or X SFR keyword.

misplaced ENDIF directive

There is no conditional assembly start directive (IF, IFDEF, IFNDEF) corresponding to
an ENDIF directive.

4-255

Chapter 4, RAS66K

E62

EG3

E64

EG5

E66

4-256

misplaced EL SE directive
There is no conditional assembly start directive (IF, IFDEF, IFNDEF) corresponding to
an EL SE directive.

unexpected end of filein conditional directive
There is no ENDIF directive corresponding to a conditional assembly start directive (IF,
IFDEF, IFNDEF). Thiserror will normally occur at the last line of the program.

too many conditional directive nesting levels
The nesting of conditional assembly directives exceeds 15 levels.

too many macro nesting levels
The nesting of macros exceeds 8 levels.

illegal relocation type combine
An unpermitted combination of specia area attribute is specified with a SEGMENT or
COMM directive.

Chapter 4, RAS66K

4.15.2.3 Warning Messages

There are six types of warnings. Warning checks can be disabled with the /NW option. Also, you
can limit warning checks to particular types by specifying character that represent the warning
types following /W. The characters that can be specified after /W and their meanings are shown

below.
Character Check
R Checks relocatable segment definitions.
P Checks directive coding.
E Checks expression evaluations.
A Performs addressing checks.
U Perform checks based on USING directives.
S Check SFR access attributes.

For example, to perform R, U, and S warning checks, specify /WRUS.

Warning check messages and their meanings are listed below. The character shown after the warn-
ing number represents the warning type.

WOO(R)

WOL(R)

WO2(P)

WO3(P)

WO4(E)

WOS(E)

WINDOW isnot set
If the ROM window area is not set by a WINDOW instruction, then the special area
attribute WINDOW isignored.

stack sizemust be even
The stack segment size must be an even number. RL66K will reserve a stack areawith a
size one greater than the specified value.

listing directive duplicated
A previously specified listing directive is being set again. This specification will be
ignored.

CPU type mismatch

The specification has no meaning for the target microcontroller CPU core. For example,
this error will occur if the MODEL directive is specified with a CPU core other than nX-
8/500.

invalid attribute COMMON
If an address with physical attribute COMMON is specified as the right term of a SEG
operator or as the operand of a DSREG or TSREG directive, then it has no meaning.

address expression required

An address expression is needed. This warning occurs when a numeric expression is
specified as the right term of an OFFSET or PAGE operator or as the operand of a
USING PAGE directive.

4-257

Chapter 4, RAS66K

WOB(E)

WO7(P)

WOS(E)

WO9(E)

W10(E)

W1L(E)

W12(A)

W13(E)

W14(E)

W15(E)

W16(E)

W17(A)

W18(U)

W19(U)

W20(U)

4-258

NUMBER expression required
A numeric expression is needed. This warning occurs when an address expression is
specified as the right term of HIGH, LOW, or MID operator.

directive will be supported in the future
Thedirective is not supported with the current version of RAS66K.

segment address mismatch
The segment addresses of the left and right term of an address operator do not match.

address attribute not inherited
The expression will be handled as anumber. The address attribute will be lost.

cannot check physical segment address matching
RASGE6K cannot guarantee that the physical segment addresses match.

right expression of operator must be NUMBER
Theright term of a shift, divide or modulo operation must be numeric.

usage type mismatch
The usage type of the addressing isincorrect, but machine code will be generated.

left expression of bit operator must be byte address
The |eft term of a dot operator must be a byte expression.

PAGE operator should be used only on byte/bit address
If the right term of a PAGE operator is a NONE expression, then RAS66K will perform
the calculation assuming the value is a byte.

DATA segment typeonly
The usage type of the right term of an LREG operator must be DATA.

BPOS operator should be used only on bit address
Theright term of a BPOS operator must be bit type.

address out of segment range

The value of an expression specified for addressing does not actually exist in its address
space. For example, this error will occur if a RAM address in the ROM window areais
specified.

(CHK) using data type mismatch
The DD state of the branch source and destination of the branch instruction do not match.

(CHK) using oper ation type mismatch
The SF state of the branch source and destination of the branch instruction do not match.

(USING DATA check) illegal data typeinstruction
The DD state specified with the USING DATA directive does not match the state
required by the instruction.

Chapter 4, RAS66K

W21(U)

W22(U)

W23(U)

W24(U)

W25(S)

W26(S)

W27(A)

W28(A)

W29(A)

W30(A)

W3L(E)

(USING OPRT check) illegal data typeinstruction
The SF state specified with the USING OPRT directive does not match the state required
by the instruction.

(USING DSREG check) out of RAM physical segment
The RAM physical segment address specified with the USING DSREG directive does not
match the physical segment address of the operand.

(USING TSREG check) out of ROM physical segment
The ROM physical segment address specified with the USING TSREG directive does not
match the physical segment address of the operand.

(USING PAGE check) out of current page
The current page number specified with the USING PAGE directive does not match the
page number of the operand.

illegal accessto SFR
The access to the SFR area is invalid. This warning occurs for writes to an SFR with
writes prohibited, and for word accesses to SFR with word accesses prohibited.

cannot accessto high byte of SFR word
A word access is being made to the high byte of an SFR that can only be accessed as a
word.

branch to different segment area
The physical segment addresses of the branch source and destination of a NEAR branch
instruction do not match.

cannot accessto high byte
A word access is being made to an odd addressin RAM.

cannot writeto ROM-WINDOW area
A writeis being made to the ROM window area.

VCAL address must be #0
The operand of aVVCAL instruction must be an address in physical segment 0.

reference beforefirst definition

A symbol defined with the SET directive was referred before its first definition. 1t will be
set to the last value defined.

4-259

Chapter 4, RAS66K

4.15.2.4 Internal Processing Error Messages

** RAS66K Internal Error : Process [function]**
This error occurs if RASE6K detects an internal processing error. The function is a string

that represents the internal processing location. This error will nhormally not occur, but if
it does, then please contact Oki Electric.

4-260

Chapter 5

RL66K

This chapter explains how to use the linker RL66K. It also explains the options and environment
variables for controlling RL66K operation, and describes the format of the map file generated by
RL66K.

Chapter 5, RL66K

5.1 Introduction

The linker RL66K links multiple object files generated by the relocatable assembler RAS66K, cre-
ating an absolute object file.

In addition to object files, library files created with LIB66K can also be specified as input to
RL66K. When library files are specified, RL66K extracts object modules from the library files and
links them. There are three ways to link object modulesin alibrary file.

e Extract and link all object modules.
» Extract and link only the specified object modules.
» Extract and link only object modules for resolving unresolved external references.

In this chapter, object modules are simply called modules.

The absolute object file generated by RL66K includes object code in which al relocatable parts
have been resolved. Debugging information can aso be output to this file using options.

RL66K generates amap file. The map fileisalist of segment allocation states and public symbols.
It is used during program debugging to see segment start addresses.

In order to express relative positions within one physical segment, this chapter calls memory
toward address 0 low memory, and memory toward address OFFFFH high memory.

Chapter 5, RL66K

5.2 RL66K Memory Space Management

RL66K defines the following memory spaces using memory information obtained from input mod-
ules. It uses these spaces to alocate segments and communal symbols and to resolve values of
relocatable symbols.

Program memory space
Data memory space
EEPROM space

Dual port RAM space

Program memory space and data memory space are defined for all OLMS-66K Series microcon-
trollers. EEPROM space and dual port RAM space are defined when the CPU core is nX-8/500
and the device contains EEPROM and dual port RAM.

5.2.1 Program Memory Space

Program memory space has up to 256 physical segments. The address range of one physical seg-
ment is 0 to OFFFFH. CODE segments, communal symbols, and quasi-segments are alocated in
program memory space. Refer to Section 5.5.4.2, “ Quasi-Segments,” regarding quasi-segments.

Physical Physical Physical
Segment O Segment 1 Segment 0FFH

0000H

OFFFFH

Figure5-1. Program Memory Space Managed By RL 66K

Chapter 5, RL66K

5.2.2 Data Memory Space

Data memory space has up to 256 physical segments. The address range of one physical segment is
0 to OFFFFH. DATA segments, BIT segments, communal symbols, and quasi-segments are allo-
cated in program memory space.

5.2.3 EEPROM Space

EEPROM space is the address range corresponding to the EEPROM area in data memory space.
EDATA segments, EBIT segments, and communal symbols are allocated in EEPROM space.

5.2.4 Dual Port RAM Space

Dua port RAM space is the address range corresponding to the dual port RAM area in data memo-
ry space. DATA and BIT segments with the special area attribute DUAL and communa symbols
are allocated in dual port RAM space.

Even DATA and BIT segments without the special area attribute DUAL will be alocated in dual
port RAM space if they are given addresses in the dual port RAM area by the /DATA or /BIT
option.

Physical Physical Physical
Segment 0 Segment 1 Segment OFFH

0000H

eeprom_min

EEPROM area

eeprom_max

EEPROM space

dual_min

Dual port RAM Area

dual_max

Dual port RAM space

OFFFFH

Data memory space

Figure5-2. Data Memory Space, EEPROM Space,
And Dual Port RAM Space Managed By RL 66K

Chapter 5, RL66K

5.3 Using RL66K

This section explains the command line format of RL66K and how to start RL66K.

5.3.1 Command Line Format
RL66K command line format is as follows.

RL66K object_files [, [absolute_file 1 [, [map_file] [, [libraries 111
1]

Each field is used as follows.

» Theobject_filesfield is used to specify the names of object filesand library files to be linked.
» Theabsolute filefield is used to change the default output file name to another name.

» Themap_ filefield is used to change the default map file name to another name.

» The libraries field is used to specify library files to be used to resolve unresolved externa
references.

Fields are delimited by commas. Input in fields is specified as needed. To specify nothing in afield,
input only the comma that immediately follows the field. If only a return key is input instead of a
comma, then RL66K will display aprompt for that field' s input.

RL66K provides severa options for changing its default processing. Options can be specified in
any field. Refer to Section 5.4, “RL66K Options, “ for details about options.

The semicolon (;) at the end of the RL66K command line indicates the end of the command. When
a semicolon is specified, RL66K will not display prompts for input of the remaining fields. In this
case RL66K will use the default values for the omitted fields. You can prevent unneeded prompts
from being output by using the semicolon.

Unless a path is specified in an input file name, RL66K will assume the current directory in the cur-
rent drive as the default path. For files not on the default path, you must give a path name in the file
specification.

To specify afile name without an extension, append a period (.) immediately after the name. If no
period is appended, then that field will be appended with its default extension.

In some fields, only a path name can be specified. In these cases, a backslash (\) must be added
immediately after the path name. For example, specify “\USR\APDIR\.” If this is not done,
RL66K will recognize the last directory of the path name as the file's base name, and will append
the default extension for that field.

The use of each field is explained next.

5-4

Chapter 5, RL66K

5.3.1.1 object files Field

The object_filesfield is used to specify the object files to be linked. At least one file name must be
specified. If no extension is specified, then RL66K will assume the default extension of “.OBJ.”

When multiple files are specified, they should be delimited by a space or plus sign (+). To specify
input in the object_files field that extends to the next line, type a plus sign (+) as the last character
of the current line, press the return key, and continue the remaining input. However, a single name
cannot be split in two. Refer to Example 4 of Section 5.3.1.5, “Command Examples.”

Library files can also be specified in the object_files field. Only file names with the extension
“.LIB” will be handled as library files. The default extension of this field is “.OBJ,” so you must
specify the extension “.LIB” to specify a library file. If no extension or an extension other than
“.LIB” is specified, then RL66K will handle that file as an object file.

When a library file is specified, RL66K will extract and link all object modules in the library file
regardless of whether or not they resolve unresolved external references. This is the same asif all
object modules in the library file were specified in the object_files field. This method allows you to
avoid typing many file names each time you invoke RL66K.

You can aso link only particular modules in the library file. To do this, specify those module
names after the library file name.

library file name (list of module names)
To specify multiple module names, delimit them with spaces in between. RL66K will extract and
link only the specified modules from the library. The other modules in the library will not be
linked.
m Examplem

RL66K MAIN PROJECT.LIB(GETDATA CALC DISPLAY) ;

In this example, only the modules GETDATA, CALC, and DISPLAY in the library PROJECT.LIB
will be extracted and linked as MAIN.OBJ.

5-5

Chapter 5, RL66K

File Sear ching M ethod

RL66K searches for object files and library files specified in the object_files field in the following
places.

e If the file name includes a path specification, then RL66K will search for the file in that
directory. If thefileis not found, then the search terminates.

« If the file name does not include a path specification, then RL66K will search for the file in the
current directory. If the file is not found, then the search terminates.

In either of the above cases, if the file is not found, then RL66K will display an error message and
end processing.

Displaying An Explanation Of Command Line Format

If nothing is specified in the object_files field and only areturn key is input, then RL66K will dis-
play a prompt. If only areturn key isinput to this prompt, then RL66K will display an explanation
of command line format and terminate. This is convenient when you have forgotten how to invoke
RL66K.

5.3.1.2 absolute file Field

The absolute file field is used to specify the name of the absolute object file that RL66K will out-
put. If no extension is specified, then RL66K will assume the default of “ . ABS.”

If nothing is specified in the absolute file field, then RL66K will use a default name. The default
name will be the base name of the first file in the object files field with the extension “.ABS’
appended.

If only a path is specified in the absolute file field, then RL66K will create an absolute object file
with the default name in that directory. Unless the path is explicitly specified, RL66K will create
the absolute object file in the current directory.

5.3.1.3 map_file Field

The map_filefield is used to specify the name of the map file or to suppress its generation. The map
fileis atext file that shows the results of linking. Refer to Section 5.6, “Map File,” for the format of
the map file.

If nothing is specified in the map_file field, then RL66K will use a default name. The default name
will be the base name of thefirst file in the object_files field with the extension “.M66" appended.

If only a path is specified in the map_file field, then RL66K will create a map file with the default
name in that directory. Unless the path is explicitly specified, RL66K will create the map filein the
current directory.

To suppress generation of amap file, specify “NUL” in thisfield.

Chapter 5, RL66K

5.2.1.4 libraries Field

The libraries field can be used to specify library files. When specifying multiple files, delimit the
names with spaces or plus signs (+). When the input to the libraries field extends to the next line,
enter aplus sign (+) as the last character of the current line, press the return key, and continue with
the remaining input. However, one name cannot be split over two lines. If only a library’s base
name is specified with no extension, then RL66K will assume a default extension of “.LIB.”

The library files specified in the libraries field are used to resolve unresolved external references.
RL66K searches the library files in the order in which they are specified in the libraries field. If the
path of afileis explicitly specified, then that directory will be searched. If the path is not specified,
then RL66K will search the following directoriesin order.

e Current directory
« Directory defined in LIB66K environment variable

If there is an unresolved external reference even after using all specified library files, then it will
remain unresolved by default. However, if the /CC option has been specified, then RL66K will
search the emulation library for C language programsin order to resolve the remaining external ref-
erences.

A path specification in the libraries field can inform RL66K of the directory in which to search for
the emulation library. When specifying a path name, a backslash (\) must be appended to the end of
the path name. If thisis not done, RL66K will recognize the last name of the path as a library file's
base name, and will search for that file with an extension “.LIB.”

RL66K searches for emulation librariesin the following order.

e Current directory

« Directory specified in thelibrariesfield

 All directories defined in the LIB66K environment variable

If RL66K cannot find an emulation library in one of these directories, then it will display a fatal
error and terminate processing.

5.3.1.5 Command Examples
Use of the RL66K command line is shown here using examples.
m Examplelm

RL66K MAIN CALC DISP,,MAINLIST,USER.LIB
RL66K MAIN+CALC+DISP,,MAINLIST,USER.LIB

These two commands indicate the same things to RL66K. RL66K will link MAIN.OBJ,
CALC.OBJ, and DISP.OBJ, generating the absolute object file MAIN.ABS. The map file name
will be MAINLIST.M66. RL66K will look into USER.LIB to resolve external references.

Chapter 5, RL66K

m Example2m
RL66K MAIN CALC DISP,,NUL;

In this example, RL66K will link MAIN.OBJ, CALC.OBJ, and DISP.OBJ, generating the absolute
object file MAIN.ABS. NUL is specified in the map_file field, so RL66K will not generate a map
file

m Example3m
RL66K PROJECT1.LIB;

In this example, RL66K will link all modules in the library PROJECT1.LIB, generating the
absolute object file PROJECT1.ABS. The map file name will be PROJECT1.M66.

m Example4 m

A>RL66K MAIN GETDATA +
INPUT FILES [.OBJ]: CALC ERRHDL +
INPUT FILES [.OBJ]: DISPLAY USER.LIB ;

In this example, the input to the object_filesfield is specified over three lines. In the first line (com-
mand line), MAIN.OBJ and GETDATA.OBJ are input. The last character of thislineisaplus sign,
so RL66K will display a prompt for required input to the object files field. Here CALC.OBJ and
ERRHDL.OBJ are input with a plus sign at the end. RL66K will again display a prompt for
required input to the object_files field. Here DISPLAY.OBJ and USER.LIB are input, followed by
a semicolon. Because a semicolon is specified, RL66K recognizes the end of the command, and
will not display a prompt for the remaining fields.

5.3.2 Execution

RL66K begins processing if at least one object file is specified. There are three ways to specify the
input needed by RL66K.

» Specify all needed input on the command line.

» Specify the input at prompts displayed by RL66K.

» Specify the input through a response file by specifying a response file name at a fixed position
on the command line.

These methods can be used in combination. For direct command line specification, refer to Section
5.3.1, “Command Line Format.” This section describes the other two methods.

5.3.2.1 Prompt-Based Input
When some of the fields of the command line are omitted and the command line is not terminated

with a semicolon, RL66K displays prompts for the omitted input. RL66K prompts for the input it
needs by displaying the following lines one line at atime.

Chapter 5, RL66K

INPUT FILES [.OBJ]:

OUTPUT FILE [base_name .ABS]:
MAP FILE [base_name .M66]:
LIBRARIES [.LIB:

RL66K will not display the next line until the current prompt is answered. Each prompt corre-
sponds to the command line fields explained in Section 5.2.1, “Command Line Format.”

Prompt Command Line Field
INPUT FILES object_files
OUTPUT FILE absolute_file

MAP FILE map_file
LIBRARIES libraries

To specify al fields using prompts, input only “RL66K” at the DOS prompt.
Options can be specified anywhere in any field if they are input before a semicolon isinput.

RL66K will display the default value for each field in right-angle brackets. If the default value is
acceptable, simply input the return key. To change to some other value, type the file name. The
base name is the base name of the first file specified in the object files field. To specify the
defaults for remaining fields without displaying the prompts, input a semicolon and press the return

key.

If afile name is specified without an extension, then RL66K will add the default extension. To
specify afile name that has no extension, append a period (.) immediately after that name.

When multiple files or paths are specified in the object_files or libraries fields, delimit them with
spaces or plus signs (+). If the response to object files or libraries is long and will extend to the
next ling, then input a plus sign as the last character of the current line, press the return key, and
continue the remaining input. If the same prompt is displayed on the new line, then the response
input can be continued. A single file name or path name cannot be split over two lines.

5.3.2.2 Specifying Response File Input

RL66K can be given its inputs using response files. A response file is text file that includes input
for the command line or prompts. By using response files, you can easily specify frequently used
options or inputs and you can make specifications that exceed the 128-character restriction on DOS
command lines.

Response File Usage

Specify a response file name to any prompt or at any position in the command line. Specify a
response file name immediately after a“@” symbol. Response files do not have default extensions,
so if aresponse file has an extension, then it must be specified. A path can be specified in the file

name.

Response files can be specified in any field (any command line field or any prompt), and can be

5-9

Chapter 5, RL66K

used as the specification for one field, multiple fields, or al remaining fields. RL66K does not
particularly regulate the contents of response files. RL66K reads fields from a response file and
assigns them in order to the fields that have not been input. RL66K will ignore field or command
line specifications in the response file that come after all four fields have been satisfied or after it
has encountered a semicolon.

m Examplelm

In the example below, response file MY OBJ.LNK is specified after the object file MAIN.OBJ.
RL66K MAIN @MYOBJ.LNK, MYLIB.LIB

m Example2m

In the example below, prompts are used to specify the same inputs asin Example 1.

A>RL66K MAIN
INPUT FILES [.OBJ]: @MYOBJ.LNK
LIBRARIES [.LIB]: MYLIB.LIB

Response File Contents

Input files may be input on separate lines or by delimiting them with commas on the same line. If a
plus sign is added to the end of aline, then afield can be extended to the next line. Fields not to be
input are expressed by blank lines or by commas.

Options can be input anywhere in any field if the come before a semicolon is specified.

Comments can be coded anywhere in response files. Comments have no effect on RL66K process-
ing. Comments are coded following two consecutive slashes (/). RL66K handles all characters on
aline after the slashes as a comment.

m Examplem

An example of aresponse file is shown below. Line numbers are shown at the left to aid in expla
nations, but they would not be coded in an actual responsefile.

// TM MODEL X1

/Il RELEASE 2.3.1

TMX1 GETDATA CALC+
COMP DISPLAY+ //[new module
TABLE /loriginal date

/S

TMXI1LIST

/I library

MATH.LIB

The first, second, and eighth lines are only comments, so they are ignored. The third and fourth
lines end with a plus sign, so they are continued to the following line. Thus the third, fourth, and
fifth line correspond to the object_files field. The sixth line corresponds to the absolute file field.

5-10

Chapter 5, RL66K

Only the /S option is specified; the absolute file specification is omitted. The seventh line corre-
sponds to the map filefield. The ninth line corresponds to the libraries field.

Assuming this responsefileis called TMX1.LNK, invoke RL66K as follows.
RL66K @TMX1.LNK
The above command specifies the following to RL66K using the response file.

« RL66K links the six object files TMX1.0BJ, GETDATA.OBJ, CALC.OBJ, DISPLAY.OBJ,
and TABLE.OBJ, creating an absolute object file called TMX1.ABS.

» RL66K extracts and links modules needed from library file MATH.LIB.
» RL66K generates amap file called TMX1LIST.MAP.

« The /S option is specified, so RL66K outputs a table of public symbols and communal symbols
to the map file.

5.3.3 Termination Code

When RL66K terminates operation, it will return one of the following termination codes. The
termination code can be used in aMAKE file or batch file.

Table5-1. Termination Code

Termination Code Description

No errors occurred.
Warning errors occurred.
Errors occurred.

Fatal errors occurred.

Command line errors occurred.

ga A W N B O

User input Ctrl+C.

Note that RL66K will not generate an absolute object file if the termination codeis 2, 3, or 4.

5-11

Chapter 5, RL66K

5.4 RL66K Options

This section explains how to use options for controlling RL66K operation and modifying its output.
It also introduces each option’s specification and interpretation.

5.4.1 Option Specifications
First, this section describes the rules for using options
5.4.1.1 Syntax
Option syntax is as follows.
[option_name [(argument_list)1
All options begin with a dash (/). The option name (option_name) follows the slash. Some options
also need arguments (argument_list). Arguments follow the option name and are enclosed in paren-
theses. The specifications should be made without delimiting between the slash, option name, and

left parenthesis with spaces.

RL66K does not distinguish between upper-case and lower-case letters in option names. For exam-
ple, the /CODE option can also be specified as/Code or /code.

5.4.1.2 Usage

Options can be specified anywhere in a command line, in a response to a prompt, or in a response
file. Options can be specified in multiple locations or can be gathered in one location.

When multiple options are specified contiguously, spaces may or may not be used to delimit
between them.

5.4.1.3 Name Arguments
Some options have names given as arguments. RL66K does distinguish between upper-case and
lower-case letters in names given as arguments. For example, the arguments “MOUSE,” “mouse,”
and “Mouse” are handled as different names for the /CODE option below.

/CODE(MOUSE mouse Mouse)
m Attention m
RASG6K provides the /CD option for case sensitivity of symbols. If the /CD option is not speci-
fied, RASE6K will convert all symbols defined by the programmer to upper-case |etters before out-

putting them to the object file. Thus, if you will use symbols defined in modules assembled with-
out the /CD option as arguments of RL66K operands, then be sure to specify upper-case |etters.

5-12

Chapter 5, RL66K

5.4.1.4 Address Arguments

Some options have addresses in memory space given as arguments. Address specifications are
coded as a physical segment address and offset address separated by a semicolon (;).

physical_seg . offset

Specify a physical segment address 0 to OFFH for physical_seg, and an offset address 0 to OFFFFH
for offset. These may be coded as either decimal or hexadecimal numbers. If the physical segment
address and colon are omitted, then RL66K will assume that the physical segment addressis 0.

Decimal numbers use the digits 0 to 9. Hexadecimal numbers use digits 0 to 9 and letters A to F (or
atof). Append an “H” or “h” to hexadecimal addresses. For example, the hexadecima number
1234 is expressed as 1234H or 1234h. If the first character of the number isaletter A to F (or ato
f), then specify the digit O immediately before that letter. For example, the hexadecimal number
CB800H starts with the letter C, so prefix it with 0 and specify it as 0C800H.

5-13

Chapter 5, RL66K

5.4.2 List Of Options

Table 5-2 lists the options provided by RL66K. The asterisks (*) indicate that an option’s functions
are specified by default.

Table5-2. List Of Options

Option Function

/D Output debugging information.

/IND * Do not output debugging information.

/S Output a public symbol list.

INS * Do not output a public symbol list.

/CODE Control allocation of CODE segments.

/IDATA Control allocation of DATA segments.

/BIT Control alocation of BIT segments.

/EDATA Control allocation of EDATA segments.

/EBIT Control alocation of EBIT segments.

/ORDER Control allocation order of segments with same precedence.
/ICM Set maximum address in program memory space.
/DM Set maximum address in data memory space.

/CC Automatically search emulation library.

/SD Output C source level debugging information.

INSD * Do not output C source level debugging information.
ISTACK Change the stack segment size.

1A Generate an ABL file.

INA * Do not generate an ABL file.

5-14

Chapter 5, RL66K

5.4.3 Option Use
5.4.3.1 Assembly Level Debugging Information Output Control (/D, /ND)

m Syntax m

/D
IND

m Description m

The /D option tells RL66K to output assembly level debugging information for symbolic debugging
to the absolute object file. This debugging information includes local symbols, public symbols,
communal symbols, and segment names. The /D option will not be effective unless the input object

filesinclude assembly level debugging information.

The /ND option suppresses the effect of the /D option. If both /D and /ND are specified in the com-
mand line, then the one specified last will be valid.

The default is/ND.
5.4.3.2 Map File Data Output Control (/S, /NS)

m Syntax m

IS
INS

m Description m

The /S option tells RL66K to add alist of all public symbols defined in the object files to the map
file. Symbolswill be output in aphabetic order.

If NUL is specified in the map_file field, then the map file will not be generated, so specifying this
option will have no effect.

The /NS option suppresses the effect of the /S option. If both /S and /NS are specified in the com-
mand line, then the one specified last will be valid.

The default is/NS.

5-15

Chapter 5, RL66K

5.4.3.3 CODE Segment Allocation Control (/CODE)

m Syntax m

/CODE(segment name [-] [address]..)
m Description m

The /CODE option is used to control allocation of relocatable CODE segments. CODE segments
are normally allocated to program memory space in accordance with the precedence shown in
Section 5.5.4.3, “Allocation Precedence.” Relocatable segments specified with the /CODE option
will be given a higher precedence than other rel ocatable segments and processed first.

The segment_name specifies a segment name. Specify the address using the syntax explained in
Section 5.4.1.4, “ Address Arguments.” For example, offset address 1234H in physical segment 0 is
specified as 1234H, while offset address 1234H in physical segment 8 is specified as 8:1234H.
This address must be less than or equal to the maximum address of program memory usable by
RL66K. If itisnot, then the specification will be invalid.

The following specifications for segments can be made using the /CODE option.

» Allocate a segment in memory higher than the specified offset address in the specified physical
segment.

» Allocate a segment to the specified offset address in the specified physical segment.
» Allocate multiple physical segments within the same physical segment.

These are explained in order below. This is followed by an introduction to specifying combina-
tions.

(1) Allocate a segment in memory higher than the specified offset address in the specified
physical segment.

Specify the segment name and the reference address. The level 1 precedence of the specified seg-
ment will become 3.

Theinitial value of the reference address is physical segment O, offset address 0. When an address
is encountered in parentheses, the reference address will be changed to it. Also, the reference
address will return to the initial value each time a/CODE option is encountered. Hereis an exam-
ple.

m Examplem

JCODE(SEG1 SEG2 3:100H SEG3 SEG4) /CODE(SEGS5)

Because the initial value of the reference address is physical segment 0, offset address 0O, the seg-
ments SEG1 and SEG2 will be allocated above offset address 0 in physical segment 0. At the point
where 3:100H is encountered the reference address will be changed to that value, so the following
segments SEG3 and SEG4 will be allocated above offset address 100H in physical segment 3. The

5-16

Chapter 5, RL66K

segment SEG5 is specified in a new /CODE option. This sets the reference address back to the ini-
tial value, so SEG5 will be allocated above offset address 0 in physical segment 0. The table below
summarizes this information with the ranges to which each segment can be allocated.

Segment Allocatable Range

SEG1 0:0000H to O:FFFFH
SEG2 0:0000H to 0:FFFFH
SEG3 3:0100H to 3:FFFFH
SEG4 3:0100H to 3:FFFFH
SEG5 0:0000H to O:FFFFH

(2) Allocate a segment to the specified offset addressin the specified physical segment.

This method allocates segments to specified addresses. Place a hyphen (-) after the segment name
and then specify the address. RL66K will place the start of that segment at the specified address.
Thelevel 1 precedence of the specified segment will become 2. Here is an example.

m Examplem

/CODE(SEG1-2:3800H SEG2-1:8000H SEG3-4:2000H)

In this example, first SEGL1 is allocated to offset 3800H in physical segment 2. Next SEG2 is alo-
cated to offset 8000H in physical segment 1. Finally SEG3 is allocated to offset 2000H in physical
segment 4. This example could aso be specified by splitting it up as follows.

/CODE(SEG1-2:3800H) /CODE(SEG2-1:8000H) /CODE(SEG3-4:2000H)
(3) Allocate multiple physical segmentswithin the same physical segment.

This method all ocates multiple segments within the same physical segment. The reference segment
is specified as explained in (2) above, followed by alist of the other segment names. The level 1
precedence of the reference segment will become 2, and the level 1 precedence of the following
segments will be 3.

The specified segments will be alocated in order of appearance after the reference segment toward
higher memory. For example, the following can be specified.

m Examplem

/CODE(SEG1-2:3800H SEG2 SEG3)

In this example, first SEGL1 is alocated to offset 3800H in physical segment 2. Then SEG2 and
SEG3 are dlocated in the same physical segment as SEG1 above offset address 3800H.

The address specified for the reference segment is valid until another address is specified in the
same /CODE option or until a right parenthesis is encountered. Its effect does not carry over to
other appearances of the /CODE option. Thus, this specification method differs from the others in
that it cannot be divided. If the previous example is divided as follows, then SEG3 will be alocat-

5-17

Chapter 5, RL66K

ed above offset address 0 in physical segment O, not in the same physical segment as SEG1.
/CODE(SEG1-2:3800H SEG2) /CODE(SEG3)

(4) Specify a combination of all methods.

The methods explained above can be used in combination.

/CODE(1:0FOH SEG1 SEG2-100H SEG3 5:200H SEG4 SEG5-2:300H SEG6 SEG7)

In this example, RL66K assigns alevel 1 precedence of 2 to SEG2 and SEG5, and a level 1 prece-
dence of 3 to all other segments. The segments will be alocated in the ranges shown below.

Segment Allocation Range
SEG1 1:00FOH to 1:FFFFH
SEG2 0:0100H

SEG3 0:0100H to O:FFFFH
SEG4 5:0200H to 5:FFFFH
SEG5 2:0300H

SEG6 2:0300H to 2:FFFFH
SEG7 2:0300H to 2:FFFFH

The physical segment is determined when the /CODE option is specified. However, you cannot
make a specification that would change a segment that was assigned a physical segment address in
the source program. RL66K will display an error message if an option attempts to make such a
change. For example, SEG3 in the above example is specified as physical segment 0, but if it had
been defined as follows, then an error would occur.

SEG3 SEGMENT CODE #1

Addresses specified with the /CODE option may contradict special area attribute and boundary
value attributes specified for segments in the source program. In this case, RL66K will ignore the
attributes and allocate the segments as specified. Then PL66K will output a warning message.
Refer to Section 4.12.8, “Using Relocatable Segments,” regarding special area attributes and
boundary value attributes.

RL66K will output a warning message if a specified segment has a group attribute. It will then

remove that segment from the segment group. Refer to Section 4.12.9, “Segment Group
Definition,” regarding group attributes.

5-18

Chapter 5, RL66K

5.4.3.4 DATA Segment Allocation Control (/DATA)

m Syntax m

/IDATA(segment name [-] [address] ...)
m Description m

The /DATA option is used to control allocation of relocatable DATA segments. DATA segments
are normally allocated to DATA memory space in accordance with the precedence shown in
Section 5.5.4.3, “Allocation Precedence.” Relocatable segments specified with the /IDATA option
will be given ahigher precedence than other relocatable segments and processed first.

The segment_name specifies a segment name. Specify the address using the syntax explained in
Section 5.4.1.4, “Address Arguments.” This address must be less than or equal to the maximum
address of DATA memory usable by RL66K. If it isnot, then the specification will be invalid.

Use of the /DATA option is the same as for the /CODE option. For details, refer to Section 5.4.3.3,
“CODE Segment Allocation Control.”

5-19

Chapter 5, RL66K

5.4.3.5 BIT Segment Allocation Control (/BIT)

m Syntax m

/BIT(segment name [-] [address] ...)
m Description m

The /BIT option is used to control allocation of relocatable BIT segments. BIT segments are nor-
mally allocated to data memory space in accordance with the precedence shown in Section 5.5.4.3,
“Allocation Precedence.” Relocatable segments have a level 1 precedence of 4 or more by default,
but those specified with the /BIT option will be given alevel 1 precedence of 2 or 3 and processed
before other segments.

The segment_name specifies a segment name. The address specifies a bit address.
Bit addresses can be specified using one of two methods.

» Directly specify a bit address as offset address and physical segment address, using the syntax
explained in Section 5.4.1.4, “ Address Arguments.”

» Specify the offset address as a byte address and bit position separated by a period (.), as shown
below.

data_address . bit_position

The data_address specifies a data address. The bit_position specifies a number 0 to 7 indicating
the bit position. These are coded using the syntax explained in Section 5.4.1.4, “Address
Arguments.”

For example, bit 5 of offset address 1234H in physical segment O is specified as 8:91A5H or
8:1234H.5. This address must be less than or equa to the maximum address of data memory
usable by RL66K. If it isnot, then the specification will be invalid.

Use of the /BIT option is the same as for the /CODE option. For details, refer to Section 5.4.3.3,
“CODE Segment Allocation Control.”

m Attention m
The maximum value that can be specified as an address argument is OFFFFH. Accordingly, when
directly specifying a bit address as the argument of the /BIT option, you can specify only bit

addresses up to OFFFFH. To specify a bit address beyond this, use a combination of a byte address
and bit offset. For example, specify OFFFE.3 for the bit address 7FFF3H.

5-20

Chapter 5, RL66K

5.4.3.6 EDATA Segment Allocation Control (/EDATA)

m Syntax m

/EDATA(segment name [-] [address] ..)
m Description m

The /EDATA option is used to control alocation of relocatable EDATA segments. EDATA seg-
ments are normally allocated to EEPROM space in accordance with the precedence shown in
Section 5.5.4.3, “Allocation Precedence.” Relocatable segments have a level 1 precedence of 4 or
more by default, but those specified with the /EDATA option will be given alevel 1 precedence of
2 or 3 and processed before other segments.

The segment_name specifies a segment name. Specify the address using the syntax explained in
Section 5.4.1.4, “ Address Arguments.” However, there is no concept of physical segmentsin EEP-
ROM space, so a physical segment address cannot be specified. This address must be less than or
equal to the maximum address of the EEPROM memory usable by RL66K. If it is not, then the
specification will be invalid.

Use of the /EDATA option is the same as for the /CODE option. For details, refer to Section
5.4.3.3, “CODE Segment Allocation Control.”

5-21

Chapter 5, RL66K

5.4.3.7 EBIT Segment Allocation Control (/EBIT)

m Syntax m

/EBIT(segment name [-] [address] ..)
m Description m

The /EBIT option is used to control allocation of relocatable EBIT segments. EBIT segments are
normally allocated to EEPROM space in accordance with the precedence shown in Section 5.5.4.3,
“Allocation Precedence.” Relocatable segments have a level 1 precedence of 4 or more by default,
but those specified with the /EBIT option will be given alevel 1 precedence of 2 or 3 and processed
before other segments.

The segment_name specifies a segment name. The address specifies a bit address.
Bit addresses can be specified using one of two methods.

» Directly specify a bit address as offset address and physical segment address, using the syntax
explained in Section 5.4.1.4, “ Address Arguments.”

» Specify the offset address as a byte address and bit position separated by a period (.), as shown
below.

data_address. bit_position

The data_address specifies a data address. The bit_position specifies a number 0 to 7 indicating
the bit position. These are coded using the syntax explained in Section 5.4.1.4, “Address
Arguments.”

For example, bit 5 of EEPROM address 1234H is specified as 91A5H or 1234H.5. This address
must be less than or equal to the maximum address of EEPROM space usable by RL66K. If it is
not, then the specification will beinvalid.

Use of the /EBIT option is the same as for the /CODE option. For details, refer to Section 5.4.3.3,
“CODE Segment Allocation Control.”

m Attention m
The maximum value that can be specified as an address argument is OFFFFH. Accordingly, when
directly specifying a bit address as the argument of the /EBIT option, you can specify only bit

addresses up to OFFFFH. To specify a bit address beyond this, use a combination of a byte address
and bit offset. For example, specify OFFFE.3 for the bit address 7FFF3H.

5-22

Chapter 5, RL66K

5.4.3.8 Segment Allocation Order Control (/ORDER)

m Syntax m

/ORDER(segment_name ...)
m Description m

The /ORDER option is used to control the order that segments with the same precedence are allo-
cated. Segments are always alocated in an order that accords with their own precedence, but the
order for processing of segments with the same priority is optional.

The segment_name specifies segment names. The specified segment names will be allocated in
their order of appearance. For example, assume the following program.

INP_DAT1 SEGMENT DATA INPAGE(1)
INP_DAT2 SEGMENT DATA WORD INPAGE(1)

RSEG INP_DAT1
TOP1: DS 3

RSEG INP_DAT2
TOP2: DS 253
END

In this program, segments INP_DAT1 and INP_DAT2 have the same precedence. If RL66K
processes INP_DAT1 first and alocates it on the boundary of page 1, then RL66K will no longer
be able to allocate INP_DAT?2 in page 1 since it has the word boundary value attribute. In this
case, make surethat INP_DAT?2 is alocated first by using the /ORDER option.

JORDER(INP_DAT2 INP_DAT1)

If multiple /ORDER options are specified, then each /ORDER option will have no affect on other
/ORDER options. For example, assume that SEG1, SEG2, SEG3, and SEG4 have the same prece-
dence, and that the following is specified.

/ORDER(SEG1 SEG2) /ORDER(SEG3 SEG4)

The first /ORDER options specifies that RL66K is to process SEG1 and SEG2 in that order, while
the second ORDER option specifies that RL66K is to process SEG3 and SEG4 in that order.
However, the order in which the two pairs are processed is not specified.

The segments specified with a single /ORDER option must have the same precedence. For exam-
ple, assume that SEG1 and SEG2 have the same precedence, while SEG3 and SEG4 have the same
but higher precedence, and that the following is specified.

/ORDER(SEG1 SEG2 SEG3 SEG4)

Based on the actual precedence of the segments and the /ORDER option specification, the segments
will be processed in the order SEG3, SEG4, SEG1, SEG2.

5-23

Chapter 5, RL66K

5.4.3.9 Program Memory Space Maximum Address Setting (/CM)

m Syntax m

/CM(address)
m Description m

RL66K allocates communal symbols and segments of usage type CODE to the usable range of pro-
gram memory space as defined by the DCL file. To make the usable range smaller than the defined
range, specify the new range’s maximum address using the /CM option. This address must be
smaller than the maximum address of the range defined in the DCL file. If it is not, then the /CM
option specification will be invalid.

The address specifies a physical segment address and offset address using the syntax explained in
Section 5.4.1.4, “Address Arguments.” For example, if the range of program memory space
defined by the DCL fileis 0 to OFH:0FFFFH, then specify the following to change the range to O to
3:7FFFH.

/ICM(3:7FFFH)
5.4.3.10 Data Memory Space Maximum Address Setting (/DM)

m Syntax m

/DM(address)
m Description m

RL66K allocates communal symbols and segments of usage type DATA or BIT to the usable range
of data memory space as defined by the DCL file. To make the usable range smaller than the
defined range, specify the new range’ s maximum address using the /DM option. This address must
be smaller than the maximum address of the range defined in the DCL file. If it is not, then the
/DM option specification will be invalid.

The address specifies a physical segment address and offset address using the syntax explained in
Section 5.4.1.4, “ Address Arguments.” For example, if the range of data memory space defined by
the DCL fileis 0 to0 FH:0FFFFH, then specify the following to change the range to 0 to 3;7FFFH.

IDM(3:7FFFH)

Data memory space exists separately from EEPROM space and dual port RAM space. Evenif the
/DM option restricts the EEPROM area and dual port areas mapped to data memory space, the
EEPROM space and dual port RAM space will not restricted. Therefore the /DM option has no
relation on the allocation of EDATA and EBIT segments, aswell as DATA and BIT segments with
the DUAL specia area attribute.

Refer to Section 5.2, “RL66K Memory Space Management,” regarding EEPROM space and dual
port RAM space.

5-24

Chapter 5, RL66K

5.4.3.11 Emulation Library Automatic Search (/CC)
m Syntax m
/ICC
m Description m
The /CC option tells RL66K to automatically search the emulation library provided for C language
programs and to extract and link necessary modules. For details refer to Section 5.3.1.4, “libraries
Field.”
5.4.3.12 C Source Level Debugging Information Output Control (/SD, /NSD)

m Syntax m

/SD
INSD

m Description m
The /SD option tells RL66K to output C source level debugging information to the absolute object
file. The debugging information includes information about line numbers and variables. Unless the

input object filesinclude C source level debugging information, the /SD option will be ineffective.

The /NSD option suppresses the effect of the /SD option. If both /SD and /NSD are specified in the
command line, then the one specified last will be valid.

The default is/NSD.
5.4.3.13 Stack Segment Size Change (/STACK)
m Syntax m
ISTACK(size)
m Description m

The /STACK option is used to change the size of the stack segment. The stack segment is defined
by the assembler directive STACKSEG.

The stack is aways reserved as an even number of bytes, so specify an even number for size. If an
odd number is specified, then RL66K will make it even by adding one to that value.

If no stack segment is defined in the input modules when the /STACK option is specified, then an
error will occur.

5-25

Chapter 5, RL66K

5.4.3.14 ABL File Generation Control (/A, /INA)

m Syntax m

IA [(abl_file)]
INA

m Description m
The /A option tells RL66K to generate an ABL file. An ABL file is necessary to have RAS66K
generate an absolute print file. Refer to Chapter 8, “Absolute Print File Generation,” for details on

absolute print files.

Specify the name of the ABL file to be generated in abl_file. If omitted, then the ABL file name
will be the absolute object file name with the extension “.ABL.”

The /NA option suppresses the effect of the /A option. 1f both /A and /NA are specified in the com-
mand line, then the one specified last will be valid.

The default is/NA.

5-26

Chapter 5, RL66K

5.5 Link Processing

To read the object modules from the files specified in the object_files field and generate an absolute
object file, RL66K goes through the following process.

« RL66K matches corresponding global symbols. If necessary, RL66K searches specified
libraries to resolve external symbols.

RL66K links segments with the same name.

RL66K links communal symbols with the same name.

RL66K allocates segments, communal symbols, and quasi-segments in memory.

RL66K fixes up unresolved operands and outputs the absolute object file.

The items you need to understand link processing are explained below.

5.5.1 Global Symbol Matching

RL66K reads the object modules specified in the object_files field in the order they were specified,
and resolves external symbols with public symbols or communal symbols that have the same name.
If there are still unresolved external symbols after all object modules have been read, then RL66K
will search for the library files specified in the libraries field. If it finds the library files, then
RL66K will check whether or not there are modules in the libraries that define public symbols with
the same name as the unresolved external symbols. If such a module exists, then RL66K extracts it
from the library and adds it to the modules to be linked. This processis repeated until all external
symbols have been resolved.

Whether an external symbol can be resolved with another module’s public symbol or communal
symbol depends on their usage types. If their usage types are the same, then the external symbol
will be resolved.

When RL66K encounters communal symbols and public symbols with the same name, the name
will be handled as a public symbol, not a communal symbol. This is conditional on the symbols
having the same segment type and a valid matching of physical segment attributes. Valid physical
segment attribute combinations are both symbols having the same physical segment address, both
having the COMMON attribute, either one having the ANY attribute. When a public symbol and
communal symbol match, the information about the communal symbol will be discarded, so it will
not be allocated to memory space.

Every symbol has flag attributes that indicate the state of DD and SF. When RL66K matches sym-

bols it compares those states. |If different, RL66K outputs a warning but the symbols will still be
correctly resolved.

5.5.2 Segment Linking

When multiple modules a linked, multiple segments with the same name (called partial segments)
may appear. RL66K will try to link the partial segments as a single segment. Segment linking is
performed by iterations of linking two segments. When RL66K links partial segments, it compares
their various attributes to determine if they actually can be linked.

Segments must satisfy the following conditions to be linked.

5-27

Chapter 5, RL66K

Both segments must have the same segment type.

When one segment has a group attribute, the other must not have a group attribute.

When one segment has the group attribute ANY/, the other must not have a physical segment
address.

The combination of physical segment attributes of the symbol must be valid. Valid physical
segment attribute combinations are both symbols having the same physical segment address,
both having the COMMON attribute, either one having the ANY attribute.

The combination of special area attributes of the symbol must be valid.

The total size of the two segments must not exceed the memory size of the area to which they
will be alocated.

The attributes of the segment linked and created by RL66K are as follows.

The segment type is inherited from the segments before linking.

The larger boundary value attribute of the segments before linking will be inherited.

The size will be the total size of the two segments.

When segments with the same physical segment attribute are linked, the created segment will be
given the same attribute and same physical segment address. When one segment is ANY and
the other is not, then the created segment will be given the attribute and physical segment
address of the other segment.

The specia area attribute will be a combination of the special area attributes of the segments
before linking.

As shown in Figure 5-3, partial segments are placed contiguously at the end in order of appearance
within the modules. In other words, all partial segments linked into one segment will be located
contiguously in memory. Because of this, some partial segments may not be placed on the bound-
ary value specified in the source program. For example, consider a case where two partial seg-
ments are both specified to have boundary value 2. The linked segment will also have boundary
value 2, so the start of the segment will be placed at an even address. If the size of the first partial
segment happens to be an even number of bytes, then the second partial segment will be placed at
an even address. However, if the size of the first partial segment happens to be an odd number of
bytes, then second partial segment will start at an odd address. Be careful of word based addressing
in these segments.

5-28

Chapter 5, RL66K

RL66K checks flag attributes at the same time it performs global symbol matching. The link will
be completed normally even when warnings are output.

Object Module 1 Llnk Absolute Object Module
—-

Segment SEG1 Segment SEG1

Segment SEG2 Y S
\\\\ ///
//\\\
7/ S
y ~
~o // \\\/
\\\\ /// //
> /
~ 4
o \\\\ //
) S N Segment SEG2
Object Module 2 ya ANy
Ve /// \\\\
/s ~
y
y

Segment SEG1 //

Figure 5-3. Segment Linking

5-29

Chapter 5, RL66K

5.5.3 Communal Symbol Linking

Similarly as for segments, RL66K links communal symbols with the same name into a single com-
munal symbol. The linking procedure is the same as for segments. However, partial segments are
placed contiguously at the end in order of appearance within the modules, but communa symbols
are linked to overlay at their start address, as shown in Figure 5-4. The communal symbol generat-
ed will have the same size isthe largest of the linked symbols.

Conditions for communal symbol linking are the same as for segment linking.

Link

Object Module 1 Absolute Object Module

Communal
Symbol CS1 Symbol CS1

Communal / /
/ /
Symbol CS2 J/ / Communal
/ / Symbol CS2
—————— S
/ T ———
7 / I
7/ 7/
/ 7/
/ /
/ 7/
/ /
7/ /
. // //
Object Module 2 / /

Communal
Symbol CS1

Figure5-4. Communal Symboal Linking

5-30

Chapter 5, RL66K

5.5.4 Segment Allocation

When segment linking and communal symbol linking are complete, RL66K allocates segments,
communal symbols, and quasi-segments in memory space. The areas to which RL66K allocates
segments and communal symbols are described next in Section 5.5.4.1, “Allocation Spaces And
Areas.” Quasi-segments are explained in Section 5.5.4.2, “ Quasi-Segments.”

The range of allocatable memory is specified in the DCL file or with /CM and /DM options. For
details, refer to Section 5.4.3.9, “Program Memory Maximum Address Setting,” and Section
5.4.3.10, “Data Memory Maximum Address Setting.”

RL66K allocates to memory in order from the segment with the highest precedence. Segments with
the same precedence can be processed in any order. When segments and communal symbols have
the same precedence, the segments will be allocated first. Precedence is explained later in Section
5.5.4.3, “Allocation Precedence.”

RL66K searches free areas for allocating segments and communal symbols in physical segment 0
from offset O up toward high memory. It then searches within physical segment 1 in the same way.
It searches this way until the last physical segment. RL66K will perform allocations to the first free
areathat it finds during its search process. If no allocatable areais found, then RL66K will display
an error message and stop link processing.

Segments are allocated on the boundary values specified in the program. The boundary value for
communal symbols depends on usage type and size. Communal symbols of type CODE, DATA,
and EDATA will be allocated on byte boundaries if their size is 1 byte, or word boundaries if their
sizeis 2 bytes or greater. Communal symbols of type BIT or EBIT will be allocated on bit bound-
aries without regard to size. Except for boundary value attributes, RL66K handles segments and
communal symbolsin the same way.

5-31

Chapter 5, RL66K

5.5.4.1 Allocation Spaces And Areas

The space and area to which RL66K allocates a segment or communal symbol is determined by the
segment type, physical segment attribute, and relocation attribute. Each of these is explained
below.

e Allocation space due to segment type

The alocation space is determined by the segment type. Segment types and their corresponding
allocation spaces are as follows.

Segment Type Allocation Space
CODE Program memory space
DATA Data memory space
BIT Data memory space
EDATA EEPROM space

EBIT EEPROM space

e Allocation area dueto physical segment attribute

CODE, DATA, and BIT segments have physical segment attributes. The correspondence between
physical segment attributes and allocation areais shown below.

Physical Segment Attribute Allocation Area

ANY Any physical segment

COMMON COMMON areain data memory space
Fixed* Specified physical segment

* “Fixed” means the physical segment addressis specified.

5-32

Chapter 5, RL66K

e Allocation area dueto special area attribute

When a segment has a specia area attribute, its allocation area will be determined by that attribute.
The correspondence between special area attributes and allocation areas is as follows.

Special Area Attribute

Allocation Area

INACAL
ACAL
WINDOWALL
WINDOW

ZERO

FIX

LREG
DUAL
DYNAMIC
INPAGE
SBA

SBAFIX

Within the ACAL area of program memory space.
Segment start address within the ACAL area of program memory space.
Within ROM window area of program memory space. (Refer to Figure 5-5)

Within ROM window area of program memory space. However, overlapping
with the EEPROM area, dual port RAM area, and internal RAM areain data
memory space will be excluded. (Refer to Figure 5-6)

Within zero page area of data memory space.

Within fixed page area of data memory space.

Within LREG area of data memory space.

Dual port RAM space.

Data memory space. Refer to “Dynamic Segment Allocation “ below.

If page value is specified, then within that page. Otherwise, within any page.

If page value is specified, then within the SBA area of that page. Otherwise,
within the SBA area of any page.

Within the SBA area of the fixed page area.

5-33

Chapter 5, RL66K

| Internal RAM Area |

EEPROM Area

ROM Window
Area

| Dual port RAM Area |

Program Memory Space Data Memory Space

- Allocation areas

Figure5-5. Allocation Area For Segments With Special Area Attribute WINDOWALL

| Internal RAM Area |

ROM Window EEPROM Area

Area = —_......

| Dual port RAM Area |

Program Memory Space Data Memory Space

- Allocation areas

Figure5-6. Allocation Area For Segments With Special Area Attribute WINDOW

5-34

Chapter 5, RL66K

Dynamic Segment Allocation

Segments with the special area attribute DYNAMIC are called dynamic segments. Dynamic seg-
ments differ from other segments in that their size is not determined during assembly. After
RL66K has alocated all segments, communal symbols, and quasi-segments in memory space,
RL66K allocates dynamic segments in the largest remaining free areas in data memory space. The
segment names will then be assigned the starting addresses of those areas.

A dynamic segment with the physical segment attribute COMMON will be allocated in the largest
remaining free areain the COMMON area.

A dynamic segment with the physical segment attribute ANY will be alocated in the largest
remaining free areain any physical segment.

A dynamic segment specified with a physical segment address will be alocated in the largest
remaining free areain the specified physical segment.

5.5.4.2 Quasi-Segments

There are several specia areas in memory space that must not be allocated to segments defined in a
program. RL66K makes its own segments and assigns them to those areas in advance, so it will
handle segments and communal symbols defined in the program such that they are not allocated to
those areas. The segments created by RL66K itself are called quasi-segments.

Please keep in mind that quasi-segments are not defined by the programmer.
Here are the areas to which quasi-segments are allocated.

e SFR areain data memory space

* XSFR areain data memory space

» Pointing register areas in data memory space used by the programmer
» Local register areas in data memory space used by the programmer

e EEPROM areain data memory space

« Dual port RAM areain data memory space

* ROM window areain data memory space

» Gapsin datamemory space

« Gapsin program memory space

Memory space gaps arise only from memory range definitions in the DCL file and from the /CM
and /DM options. They are unusable areas.

For example, assume that the range of data memory space is defined by the DCL file asfollows.

#RAM OH, OFFFFH, 1
DATA 0:0H, 0:7FFFH
DATA 0:0A000H, 0:FFFFH

In this definition, the area from offset address 8000H to 9FFFH in physical segment address O of
data memory space will be unusable. A quasi-segment will be allocated in that area.

5-35

Chapter 5, RL66K

Now assume that the following /DM option is specified with the above definition.
/DM(3FFFH)

The area from offset address 4000H to OFFFFH in physical segment address O of data memory
space will become unusable. A quasi-segment will be allocated in that area.

5.5.4.3 Allocation Precedence

RL66K assigns the highest precedence to segments with absolute addresses. It then considers
option specifications, physical segment attributes, and group attributes to assign precedence to seg-
ments in order of how strict their conditions are. Thisis called level 1 precedence. All segments
with the same level 1 precedence are then assigned a further precedence based on their relocation
attributes. Thisis caled level 2 precedence. The final precedence is obtained from the combina
tion of level 1 and level 2 precedence, as shown in the table below.

Level 1 Precedence Level 2 Precedence
High 1 1
A 1 2
1 3
2 1
2 2
2 3
\/ :

Low

The following tables show the level 1 and level 2 precedence for each space.

5-36

Chapter 5, RL66K

e Program memory space

Table5-3. Level 1 Precedence Of Segments Allocated In Program Memory Space

Precedence Segment Conditions

Absolute segment defined by CSEG directive or quasi-segment .
Segment in /CODE option specified with address.

Segment in /CODE option specified without address.

Segment has group attribute of physical segment address specification.
Segment has physical segment address.

Segment has group attribute ANY.

N o o b~ WN P

Other segments.

Table5-4. Level 2 Precedence Of Segments Allocated In Program Memory Space

Precedence Segment Conditions

Segment has INACAL attribute.

Segment has ACAL attribute*.

Segment has WINDOW attribute and SBA attribute with page value.
Segment has WINDOW attribute and INPAGE attribute with page value.
Segment has WINDOWALL attribute and SBA attribute with page value.
Segment has WINDOWALL attribute and INPAGE attribute with page value.
Segment has WINDOW and SBA attribute.

Segment has WINDOW and INPAGE attribute.

Segment has WINDOWALL and SBA attribute.

Segment has WINDOWALL and INPAGE attribute.

Segment has WINDOW attribute, but not SBA or INPAGE attribute.
Segment has WINDOWALL attribute, but not SBA or INPAGE attribute.
Other segments.

© 00 N O 0 B~ W N P

e <
w N B O

* Of segments with the ACAL attribute, those with smaller size have higher precedence.

5-37

Chapter 5, RL66K

e Data memory space

Table5-5. Level 1 Precedence Of Segments Allocated In Data Memory Space

Precedence

Segment Conditions

© 00 N O g b~ W N PP

=
N B O

Absolute segment defined by DSEG or BSEG directive or quasi-segment.
Segment in /DATA or /BIT option specified with address.

Segment in /DATA or /BIT option specified without address.

Segment has COMMON attribute.

Segment has group attribute of physical segment address specification.
Segment has physical segment address.

Segment has group attribute ANY.

Segment does not have physical segment address.

Stack segment.

Dynamic segment that has COMMON attribute.

Dynamic segment that has physical segment address.

Dynamic segment that does not have physical segment address.

Table5-6. Level 2 Precedence Of Segments Allocated In Data Memory Space

Precedence

Segment Conditions

© 00 N O g b~ W N PP

10
11
12

Segment has LREG attribute and SBA attribute with page value.
Segment has LREG attribute and INPAGE attribute with page value.
Segment has FIX and SBA attribute.

Segment has FIX attribute.

Segment has SBA attribute with page value.

Segment has INPAGE attribute with page value.

Segment has LREG attribute and SBA attribute.

Segment has LREG attribute and INPAGE attribute.

Segment has LREG attribute.

Segment has SBA attribute.

Segment has INPAGE attribute.

Other segments.

5-38

Chapter 5, RL66K

e EEPROM space

Table5-7. Level 1 Precedence Of Segments Allocated In EEPROM Space

Precedence Segment Conditions

1 Absolute segment defined by ESEG or EBIT directive.

2 Segment in /EDATA or /EBIT option specified with address.

3 Segment in /EDATA or /EBIT option specified without address.
4 Other segments.

Table5-8. Level 2 Precedence Of Segments Allocated In EEPROM Space

Precedence Segment Conditions

1 Segment has SBA attribute with page value.

2 Segment has INPAGE attribute with page value.
3 Segment has SBA attribute.

4 Segment has INPAGE attribute.

5 Other segments.

e Dual Port RAM space

Table5-9. Level 1 Precedence Of Segments Allocated In Dual Port RAM Space

Precedence Segment Conditions

1 Absolute segment defined by DSEG or BSEG directive.

2 Segment in /DATA or /BIT option specified with address.

3 Segment in /DATA or /BIT option specified without address.
4 Other segments.

Table5-10. Level 2 Precedence Of Segments Allocated In Dual Port RAM Space

Precedence Segment Conditions

1 Segment has SBA attribute with page value.

2 Segment has INPAGE attribute with page value.
3 Segment has SBA attribute.

4 Segment has INPAGE attribute.

5 Other segments.

5-39

Chapter 5, RL66K

5.5.5 Segment Groups

Multiple segments can be specified as a single group using the GROUP directive in a source pro-
gram. This type of group is called a segment group, or simply group. RL66K will try to allocate
all segments residing in the same group to be within the same physical segment. Groups are han-
died differently depending on whether or not they had physical segment addresses specified in the
source program.

When a group had a physical segment address specified in the source program, RL66K will allocate
the group’ s segments within that physical segment.

When a group did not have a physical segment address specified in the source program, RL66K
will search for a physical segment in which it can allocate all segments of the group. If it finds
such aphysical segment, it will allocate the group’ s segmentsto it.

5.5.6 Reserving The Stack Area
5.5.6.1 Stack Segment ($STACK)

When the assembler directive STACKSEG is coded in the source program, it defines the stack seg-
ment with the segment name $STACK. RL66K allocates the stack segment in physical segment O
of data memory space. If the free area of physical segment O is not enough to hold a stack segment
of the specified size, then RL66K will reduce the stack segment’s size until it can be allocated.
Thiswill also cause awarning.

To assign an absolute address to the stack segment, specify it with the /DATA option as for other
segments. For example, to assign absol ute address 8000H, specify the following.

IDATA($STACK-8000H)

Because the stack segment has physical segment address 0, a physical segment address other than 0
cannot be specified. For example, the following will cause an error.

/IDATA($STACK-1:8000H)
5.5.6.2 Stack Symbol (_$$SSP)

The stack symbol _$$SSP is a special symbol that provides the initial setting of the system stack
pointer SSP. When _$$SSP remains as an unresolved external symbol, RL66K refers the stack seg-
ment and sets the symbol to the stack’s starting address. If the stack segment is not defined in this
circumstance, then an error will occur.

The value of the starting address of the stack set by RL66K is one less than the ending address of
the stack segment.

In order to use the stack segment as a stack, initialize the system stack pointer using the stack sym-
bol.

EXTRN DATA: _$$SSP
MOV SSP, # $$SSP

5-40

Chapter 5, RL66K

The programmer may also defined _$$SSP, as show below. This means that _$$SSP will not
remain as an unresolved symbol, so RL66K will not handleit as a special symboal.

_$$SSP DATA 8000H
MOV SSP, #_3SSP

5.5.7 Fix-Up Processing

When absolute values are assigned to all symbols, RL66K resolves (fixes up) operands that were
left unresolved during assembly.

Normally not all parts of a program are given as absolute values when the program is assembled.
Operands that have relocatable symbols cannot be resolved during assembly and are left unre-
solved. The assembler temporarily assigns O to these parts. Then it outputs information for fixing
up these operands to the object file. RL66K fixes up the operands based on this information.

The fix-up process for an operand is performed as follows.

(1) RL66K calculates the absolute value from the fix-up information.

(2) RL66K performs checks on that value as necessary. (For details on checks, refer to Section
4.10, “Check Functions.”)

(3) When all checks have been complete, RL66K replaces the portion temporarily assigned 0 by
RAS66K with the new value.

The above process corresponds to a single fix-up. RL66K repeats this process until all fix-ups are
complete.

5-41

Chapter 5, RL66K

5.6 Map File

This section explains how to read the map file generated by RL66K.

The first part of the map file is shown below. It shows details of options that were given when

RL66K was invoked.

@

@

©)

4

@

@

©)

4

RL66K Obiject Linker,Ver.4.23 Linkage Information
[Wed Jun 2 18:34:04 1993]

I/O controls: DNSD S A
Locating controls:
Type Address Name

DATA After 00:0000 DSEG02
DATA At 00:8000 DSEGO01

Other controls: CC STACK(0002H(2)) CM(0:7FFFH)

A header is added to the top of the map file. It shows the RL66K version and the date that the
map file was created.

This line shows which of the following options were given when RL66K was invoked: /D,
IND, /SD, INSD, /S, INS, /A, INA.

This section shows details of /CODE, /DATA, /BIT, /EDATA, and /EBIT options given when
RL66K was invoked. In the “Address’ field, the address of “At address’ shows the given
absolute address. The address of “ After address’ shows the address above which the segment
was specified to be allocated.

This line shows details of options other that those of (2) and (3) that were given when RL66K
was invoked.

The next part of the map file shows information about processed modules.

5-42

Chapter 5, RL66K

©)

(6)
()

8
©)

©)

(6)

()

®)

9

Object Module Synopsis

Module Name File Name Creator

MAIN MAIN.OBJ RASG66K Ver.4.21
GETDATA GETDATA.OBJ RASG66K Ver.4.22
CALC CALC.OBJ RAS66K Ver.4.22
Number of Modules: 3

Number of Symbols:

+ +

| |CODE |DATA |BIT |EDATA |EBIT INUMBER|CBIT || total |
[-------- B — B — E — + [— + B — ++

|[ISEGMENT | 4| 3] 1 2| 0] |]I 10]
[COMMUNAL| O] 1] O] 0] 0] [l 1

[-------- B — B — B — + B + B — ++

IPUBLIC | 4] 1] O O O O 0] 5
+

Target: MSM66507 (nX-8/500)
Model: LARGE

For each module processed by RL66K, this section shows its name, the name of the file that
stores it, and the name and version number of the assembler that generated it.

Thisisthe number of modules processed.
For each segment type, this section shows the number of segments, communal symbols, and
public symbols in all modules processed. Linked segments or linked communal symbols are

counted as one.

This line shows the name of the target microcontroller and, in parentheses, the name of the
CPU core.

This line shows the memory model selected by the program when the CPU core is nX-8/500.
One of SMALL, MEDIUM, COMPACT, or LARGE will be shown.

5-43

Chapter 5, RL66K

The next part of the map file shows the alocation states of segments and communal symbols for
each address space.

(10) |Link Map - ROM Area (ROMWINDOW: 1000 - 1FFF)
Type Start Stop Size Name

S CODE 00:0000 00:0015 0016(22) (absolute)
S CODE 00:0018 00:0023 000C(12) CSEGO1
>GAP< OFDC(4060)

--- ROM WINDOW Start: 1000 ---
S CODE 00:1000 00:100B 000C(12 CSEG02
S CODE 00:100C 00:1017 000C(12 CSEGO03
--- ROM WINDOW Stop: 1FFF ---

(11) | Total size = 0003C(60)

(12) |Link Map - RAM Area (COMMON MAX: 03FF)
Type Start Stop Size Name

Q SFR 0000 00OFF 0100(256) (SFR)

S BIT 0100.0 0107.7 0008.0(8.0) (absolute)
OVL S DATA 0100 00:04FF 0400(1024) (absolute)

--- The above are in COMMON area ---

S DATA 00:0500 00:05FF 0100(256) DSEGO00

S DATA 00:0600 00:09FF 0400(1024) $STACK
>GAP< 3600(13824)

Q EEPROM 00:4000 00:5FFF 2000(8192) (EEPROM)

Q DUAL 00:6000 00:7FFF 2000(8192) (DUAL)

C DATA 01:0400 01:0401 0002(2) DCOMO1

Total size = 090A(2314)

(13) | Link Map - EEPROM Area: 4000 - 5FFF
Type Start Stop Size Name

S EDATA 4000 403F 0040(64) (absolute)
S EDATA 4040 407F 0040(64) ESEGO01

Total size = 00080.0(128.0)

(14) Link Map - DUAL_PORT_RAM Area: 6000 - 7FFF
Type Start Stop Size Name

S DATA 6000 603F 0040(64) DSEG02
S DATA 6040 607F 0040(64) DSEGO03

Total size = 00080.0(128.0)

5-44

Chapter 5, RL66K

(10) This section shows the allocations to program memory space. When a ROM window has been

defined, the range of the ROM window areawill be shown first.
(ROMWINDOW: 1000 - 1FFF)

When a ROM window has not been defined, the following message will be shown.
(ROMWINDOW: Not exist)

If a ROM window has been defined, then the following messages, the start and end addresses
of the ROM window areas, and the segments that contain the start addresses will be shown as
below.

--- ROM WINDOW Start: 1000 ---

S CODE 00:1000 00:100B 000C(12) CSEGO02
S CODE 00:100C 00:1017 000C(12) CSEGO03
---ROM WINDOW Stop: 1FFF ---

The “Type” field first shows one of the single characters S, C, or Q. These indicate a seg-
ment, communal symbol, or quasi-segment, respectively. Next the “Type” field shows a seg-
ment type or a quasi-segment type listed in Table 5-11.

The “Start” and “Stop” fields show the start and stop addresses of the area occupied by the
segment.

The“Size” field shows the size of the segment in hexadecimal and decimal.

The “Name” field shows the name of the segment. It shows “(absolute)” for absolute seg-
ments. It shows one of the names given in Table 5-11 for quasi-segments.

When segments or communal symbols were not allocated anywhere due to some error, the fol-
lowing will be shown.

Ignored 3 segments or communal symbols:

Type Start Stop Size Name

S CODE 0400(1024) PROC1

S CODE 0800(2048) LOAD_PROC
C DATA 0002(2) TMP_VAL

5-45

Chapter 5, RL66K

Also, one of the following messages might be displayed to the left of the “Type” field.

M essage Description
>GAP< Indicates thereis afree areain memory space.
QVL Indicates segments overlap in memory.

— Indicates the physical segment address changed there.

(11) This line shows the total size of segments and communal symbols in hexadecimal and deci-
mal. The sizes of quasi-segments are not included.

(12) This section shows the allocations to data memory space. First, the maximum address of the
COMMON areais shown.

(COMMON MAX: 03FF)
Then the following message is shown to point out segments allocated in the COMMON area.
--- The above are in COMMON area ---
The start addresses of segments shown above this message exist within the COMMON area.
The format of other information is the same as for program memory space.

(13) This section shows the allocations to EEPROM space, when that space has been defined.
First, the address range of EEPROM space is shown.

EEPROM Area: 4000 - 5FFF
The format of other information is the same as for program memory space.

(14) This section shows the allocations to dual port RAM space, when that space has been defined.
First, the address range of dual port RAM spaceis shown.

DUAL_PORT_RAM Area: 6000 - 7FFF

The format of other information is the same as for program memory space.

5-46

Chapter 5, RL66K

Table5-11. “Type” and “Name” Field Shown For Quasi-Segments

Quasi-Segment “Type” Fied Shown “Name” Field Shown
SFR SFR (SFR)
XSFR XSFR (XSFR)
Pointing registers PREG (PREGxx)*?
Local register set LREG (LREGyy)™?
ROM gap ROMGAP (ROMGAP)
RAM gap RAMGAP (RAMGAP)
Dual port RAM DUAL (DUAL)
EEPROM EEPROM (EEPROM)
ROM window ROMW (ROMW)

*1 The xx isanumber representing the bank number of the pointing register set.

*2 Theyy isanumber representing the bank number of the local register set.

The above are standard output items. RL66K will output several other types of information to the
map file depending on the options. This additional information is explained below.

When the /D option is specified, RL66K will extract symbol information from debugging informa-

tion that was output to the absolute object file, and output it to the map file. Symbols are gathered
by module.

Symbol Table Synopsis

Module Value Type Symbol

00:0100 Loc CODE START
00:0240.0 Loc BIT BSYMOO
00:6000 Loc DATA DSYM20
00:6010 Pub DATA INDEX

GETDATA
00:0509 Pub CODE PUTDATA
00:1000 Loc DATA CBUF
00:020C Pub CODE GETDATA
CALC

00:0660 Pub CODE CALC
00:090C Pub CODE CHKVAL

The“Pub” and “Loc” of the “Type” field indicate public symbols and local symbols respectively.

When the /S option is specified, RL66K outputs in aphabetical order information about public

5-47

Chapter 5, RL66K

symbols and communal symbols used in the program.

Public Symbols Regerence

Symbol Value Type Module

CALC 00:0660 CODE CALC
CHKVAL 00:090C CODE CALC
GETDATA 00:020C CODE GETDATA
INDEX 00:6010 DATA MAIN
PUTDATA 00:0509 CODE GETDATA

If there were no errors other than warnings, then the following line will be output at the end of the
map file.

End of mapfile.

5-48

Chapter 5, RL66K

5.7 RL66K Messages

This section describes all the messages output by RL66K. There are messages that indicate pro-
cessing status and error messages that indicate problems.

5.7.1 Messages Indicating Processing Status

RL66K displays the following message to the screen immediately after it isinvoked.

RL66K Object Linker, Ver.4.23 Jun 1993
Copyright (C) 1988-1993. Oki Electric Ind. Co.,Ltd.

It then proceeds with link processing and displays the following messages.

Loading segments and symbols...
Allocating segments...
Writing fixed data...

These messages have the following meanings.

¢ RL66K isloading segments and symbols.
* RL66K isallocating segmentsin memory space.
* RL66K isfixing up unresolved operands.

When all processing completes normally, RL66K displays the following message.

Linkage completed.

Absfile: absolute_file
Mapfile: map_file

The absolute file and map_file are the names of the absolute file and map file created as a result of
linking. If the /A option was specified to generate an ABL file, then the following message will
aso bedisplayed. Theabl_fileisthe ABL file name.

ABLfile: abl_file

5.7.2 Error Message Format

When RL66K detects an error during processing, it displays a message to the screen. Error mes-
sages output by RL66K are command line error messages, fatal error messages, error messages, and
warning messages.

Command line error messages are displayed when the RL66K command line input is invalid and
processing cannot continue. When one of these errors occurs, RL66K discontinues processing
immediately. Command line error messages are displayed with the following format.

Command line error: message

5-49

Chapter 5, RL66K

Fatal error messages are displayed when a clear error is found, and RL66K processing cannot con-
tinue. When one of these errors occurs, RL66K discontinues processing immediately. Fatal error
messages are displayed with the following format.

Fatal error: message

Error messages are displayed when a clear error is found, and absolute object file is impossible.
Error messages are displayed with the following format.

Error: message

When RL66K outputs an error message, it will also output one of the following messages corre-
sponding to how far it has processed. It will then discontinue processing.

Discontinue! Loading error detedted.
Discontinue! Allocation error detedted.
Discontinue! Fix up error detedted.

These messages have the following meanings.
» Anerror occurred while loading segments and symbols. Processing will discontinue.
« Anerror occurred while allocating segments in memory space. Processing will discontinue.
» Anerror occurred while fixing up unresolved operands. Processing will discontinue.
Warning messages are displayed when something unusual but not fatal is found in the program. In
these cases, RL66K processing will continue, and the absolute object file will be generated.
Warning messages are displayed with the following format.

Warning: message
In addition to messages, RL66K outputs as much information as needed to understand the causes of
errors, such as file names or symbol names. In particular, when an error is detected while RL66K
is fixing up unresolved data, the location where the error occurred will be displayed after the mes-
sage as follows.

offset / segment_name / module_name

This means that the error occurred at offset address offset in segment segment_name, which is
defined in object module module_name.

The offset addresses correspond to values in the location column of the assembly list in the print
file generated by RL66K.

5-50

Chapter 5, RL66K

m Examplem
The assembly list of print file TEST.PRN generated by RL66K is shown below.
Loc. Object Line Source Statements
1 TYPE (m66507)

2 EXTRN DATA: FIX_DAT DAT_BUF
3 PROC SEGMENT CODE

4 RSEG PROC
?7?:0000 A4 00'97 5 MOV A, fix FIX_DAT
?7?:0003 38 6 ST A, ERO
?7?:0004 AC 00' 7 ADD A, fix DAT_BUF
?7?:0006 DF 8 SWAP

Assume that when the object modules of this program were linked, the following message was dis-
played.

Error: Out of FIXED PAGE area, 0005/PROC/TEST
This means that an error occurred when RL66K tried to fix up the unresolved data at offset address
0005 in segment PROC, which was defined in the module TEST. The programmer can see from
this message that the problem is the symbol DAT_BUF coded as the instruction operand on the sev-
enth line.

5.7.3 Error Message Redirection

All error messages are sent to the standard output device. This device is the screen by default, but
error messages can also be redirected to devices such as files and printers.

m Examplem
RL66K MAIN WORD CALC; > ERRORS.MSG

In this example, all error messages generated during link processing will be output to the file
ERRORS.MSG.

5-51

Chapter 5, RL66K

5.7.4 List Of Error Messages
Theindividual error messages displayed by RL66K are described in aphabetical order.

5.7.4.1 Command Line Error Messages

Bad constant
An address argument of an option is not correct. For example, this message might be dis-
played if an “H” is not appended to a hexadecimal constant, such asin /DM (4C0).

Command line syntax error
A syntax error was found in the command line. Input the command line again with correct
syntax.

Missing object file name
No input file was specified. Specify at least one input file to call RL66K. For example,
this message would be output if the following isinvoked.

RL66K ;
Unrecognized option name
An incorrect option was found in the command line input.

5.7.4.2 Fatal Error Messages

All Machine names are STANDARD
All input modules are standard modules. At least one dedicated module must be given. A
dedicated module is an object module that was created using a DCL file that specified a
particular microcontroller name.

Bad module
Contents of an input module are corrupted. Reassemble the module and link again.

Cannot closefile
The file cannot be closed.

Cannot open file
The file cannot be opened.

Cannot write, disk full!?
The file cannot be written. Disk capacity is probably insufficient. Free up enough space,
and link again.

Check sum error
A check sum error was found in an input module. Reassemble the module and link again.

5-52

Chapter 5, RL66K

File seek error
A file seek error occurred.

File used in conflicting contexts
An input file and output file with the same name are specified. Specify a different name
for the output file.

Illegal trandlation 1D
A given module was not generated by RASE6K. It might have been generated by other
software, such as RL66K or a debugger. RL66K handles only modules generated by
RAS6E6K asinput.

Inconsistent Machine name
The microcontroller name differs between input modules.

Invalid CorelD
An input module is not an object module for a CPU core that RL66K can handle.
The following are CPU coresthat RL66K can handle.
nX-8/100, nX-8/200, nX-8/300, nX-8/400, and nX-8/500

Inconsistent Memory model
Memory models differ between input modules. Specify the same memory model in the
program, reassemble, and link the object modules again.

Inconsistent Memory values
There is a problem with the combination of memory information between input modules.
Define valid combinations of memory information in COMMON directives, WINDOW
directives, and DCL instructions.

I nsufficient memory
Memory is insufficient for RL66K to execute. The input modules may include too many
symbols.

Invalid Family ID
An input module is not an object module for the OLMS-66K series.

Not alibrary file
A file specified as alibrary fileis not alibrary file.

Record length too long
A given module includes a record that is too long. The module might have been corrupt-
ed. Reassemble the module and link again.

Specified module not found
A module specified as “library(modname...)” in the object_files field was not found in the
library file. Verify the correct module name and link again.

Unexpected end of file

A given module does not end correctly. The module might have been corrupted.
Reassemble the module and link again.

5-53

Chapter 5, RL66K

Version not compatible

5.7.4.3

A specified object module cannot be linked with the current version of RL66K.
Reassemble with a compatible version of RAS66K and link again.

Each object module has information that indicates the software that created it and that soft-

war€e s version number. RL66K looks at the version number to determine if it can link a
module.

Error Messages

Cannot find segment

A segment specified in a /CODE, /DATA, /BIT, /EDATA or /EBIT segment was not
found. Verify the correct segment name and link again.

Cannot change physical segment

A /CODE, /IDATA, /BIT, /[EDATA or /EBIT directive tried to change a physical segment
address specified during assembly. Physical segment addresses specified during assembly
cannot be changed. For example, consider the following program.

SEGO SEGMENT DATA
RSEG SEGO
TOPO: DS 10H

SEG1 SEGMENT DATA #1
RSEG SEG1
TOP1: DS 10H
END

Segment SEGL1 in this program is assigned physical segment address #1. If the following
specifications are made to change the physical segment address of SEG1, this error will
occur.

/DATA(SEG1-3:800H)
/IDATA(SEGO0-3:800H SEG1)

Control type mismatch

A /CODE, /DATA, /BIT, /EDATA or /EBIT directive tried to alocate a segment to the
wrong memory space. For example, this might occur if a segment of usage type CODE is
specified with a/DATA option.

Duplicate public symbol

The same public symbol is defined more than once in more than one module.

Group incomplete

5-54

RL66K tried to allocate all segments of a group in the same physical segment, but there
was not enough free area. These segments will not be alocated anywhere.

Chapter 5, RL66K

Not allocated segment
A segment was not allocated to memory space.

Out of area_name area
A calculated value exceeds the range of an area. The area_name is the name of the area.

Out of range: min to max
A calculated value is not in the permitted range. The min and max are the minimum and
maximum permitted values.

Physical segment address mismatch
The physical segment addresses of two partial segments linked as one segment do not
match. The link processing will not be performed.

Physical segment attribute mismatch
The physical segment attributes of two partial segments linked as one segment do not
match. The link processing will not be performed.

Segment size out of range
When two partial segments are linked, the permitted size is exceeded. The link processing
will not be performed.

Segment type mismatch
The segment types of two partial segments linked as one segment do not match. The link
processing will not be performed.

Special area specification mismatch
There is a problem with the combination of special area attributes of two partial segments
linked as one segment. The link processing will not be performed.

Unresolved external symbol
An external symbol does not match any other public symbol or external symbol. The sym-
bol declared as an external symbol must be declared as a public symbol or communal sym-
bol in one other module.

Usage type mismatch
Usage types did not match when RL66K was matching external symbols, communal sym-
bals, or public symbols. Both symbols must have the same usage type.

VCAL address must be even number
A VCAL address must be an even number.

5-55

Chapter 5, RL66K

5.7.4.4 Warning Messages

Branch to different segment area

The branch source and branch destination of a near branch instruction have different phys-
ical segment addresses.

Cannot accessto high byte
Aninstruction is performing aword access on an odd addressin RAM.

Cannot writeto ROM WINDOW area
An instruction is trying to write to the ROM window area.

CODE segments overlap
A new segment is being allocated to an areain code memory space where another segment
was previoudly alocated. This message is displayed when the following segments over-
lap.

» Absolute CODE segment
* Quasi-segment
» Relocatable segment specified with /CODE option

DATA/BIT segments overlap
A new segment is being allocated to an area in data memory space where another segment
was previously allocated. This message is displayed when the following segments over-
lap.

» Absolute DATA segment

» Absolute BIT segment

* Quasi-segment

» Relocatable segment specified with /DATA option
» Relocatable segment specified with /BIT option

DUAL type DATA/BIT segments overlap
A new segment is being allocated to an area in dua port RAM space where another seg-

ment was previously alocated. This message is displayed when the following segments
overlap.

» Absolute DATA segment

» Absolute BIT segment

» Relocatable segment specified with /[DATA option
» Relocatable segment specified with /BIT option

EDATA/EBIT segmentsoverlap
A new segment is being allocated to an area in EEPROM space where another segment
was previously alocated. This message is displayed when the following segments over-
lap.

» Absolute EDATA segment
» Absolute EBIT segment

5-56

Chapter 5, RL66K

» Relocatable segment specified with /EDATA option
» Relocatable segment specified with /EBIT option

Ignor e Boundary specification
An absolute address specified with a /CODE, /DATA, /BIT, [EDATA, or /EBIT option
does not match the boundary value of the segment. RL66K will allocate the specified
absolute address in the segment, ignoring the segment’ s boundary value attribute.

Ignore Group specification
The group attribute of a relocatable segment specified with a /CODE, /DATA, /BIT,
/EDATA, or /EBIT option was ignored. RL66K removes that segment from the group
before processing it.

No stack segment, ignore/STACK option
No stack segment exists, so the specified /STACK option will be ignored.

No stack segment, set 0to _$$SSP
No stack segment exists, so the stack start address in stack symbol _$$SSP cannot be set.
RL66K will set _$$SSP to 0.

Out of area_name area, dueto allocation control
An absolute address specified with a/CODE, /DATA, /BIT, /EDATA, or /EBIT option is
not in the relocation area of the segment. RL66K will allocate the specified absolute
address in the segment, ignoring the segment’s special area attribute. The area_name is
the name of the special area attribute specified by the program for that segment.

For example, assume the fixed page areais 200H to 2FFH, and consider the following pro-
gram.

SEG1 SEGMENT DATA FIX
RSEG SEG1
TOP: DS 10H
END

This warning message will be displayed when an address outside the above range is speci-
fied for segment SEGL1 of this program, asin the option below.

IDATA(SEG1-400H)

Out of ROM WINDOW area
The calculated code address is outside the ROM window area.

Over a page boundary, dueto allocation control
An absolute address that was specified with a/CODE, /DATA, /BIT, /[EDATA, or /EBIT
option for a segment with the INPAGE attribute was all ocated across a page boundary.

Specified stack sizeistoo big, adjusted to sizel6(sizel0) bytes
There is not enough space to allocate a stack segment of the size specified by the program
or /STACK option. RL66K will reduce the stack segment size and allocate it. The
sizel6(sizel0) represent the reduced size in hexadecimal and decimal.

5-57

Chapter 5, RL66K

Stack size must be even number
An odd number was specified with the /STACK option for the stack size. The stack size
must be an even number. RL66K will adjust the specified value up by one to make it
even.

Using data type mismatch
DD states did not match when RL66K was linking segments, linking communal symbols,
or matching external symbols, communal symbols, and public symbols.

Using oper ation type mismatch
SF states did not match when RL66K was linking segments, linking communal symbols,
or matching external symbols, communal symbols, and public symbols.

Within ROM WINDOW area
The calculated data address is outside the ROM window area.

0 size segment detected
The size of a segment is 0. RL66K will allocate this segment to the highest address of
memory space.

(USING DSREG check) out of RAM physical segment
The physical segment address of an operand value differs from the DSR value specified by
the USING directive.

(USING PAGE check) out of current page
The current page value differs from the page value specified by the USING directive.

(USING TSREG check) out of ROM physical segment
The physical segment address of an operand value differs from the TSR value specified by
the USING directive.

5-58

Chapter 5, RL66K

5.7.5 Internal Processing Error Messages

Internal processing error messages are displayed when there is a problem with RL66K’s internal
processing. The format of these messagesis as follows.

RL 66K internal error(position)
The position is a string that shows the location that generated the internal processing error. These

errors should never occur, but if one does, then please inform Oki Electric of your RL66K version,
the state when the error occurred, and the contents of position.

5-59

Chapter 6

LIB66K

The librarian LIB66K is the librarian for the OLMS-66K Series. It gathers multiple object files
created by RAS66K into asingle library file. Library files are used by the linker RL66K.

This chapter explains how to use LIB66K.

Chapter 6, LIB66K

6.1 Introduction

LIB66K is software for managing library files.

A library file is a single file that gathers multiple object files that were created by RAS66K. It is
created and modified using LIB66K. An object file that is added to alibrary file is called an object
module. This chapter sometimes calls library files and object modules as simply libraries and mod-
ules.

Generated library files are used by RL66K.

6.1.1 LIB66K Functions

LIB66K functions are as follows. Section 6.3, “ LIB66K Operations’ explains these functions in
detail.

* Createsnew library files.

* Adds object modulesto library files.

e Addslibrary filesto other library files.

* Deletes modules from library files.

* Replaces modulesin library files with new modules.
» Copiesmodulesin library filesto object files.

o Extracts modulesin library filesto object files.

» Createslist files.

6.1.2 Advantages Of Using LIB66K

When you have created a program split into many modules, some modules will probably have
generic use for other programs. A few of these generic modules will not be a problem, but as their
number increases, it becomes difficult for the user to manage them all.

By registering these modulesin alibrary, you can solve the problem described above. If you speci-

fy the library file when linking with RL66K, RL66K will search the library file for the necessary
object modules.

6-1

Chapter 6, LIB66K

6.1.3 Differences Between File Names And Module Names
LIB66K defines file names and module names as follows.

A file name indicates a DOS file name. A file name can specify a drive name, directory name, and
extension.

A module name is the name that will indicate the module in the library file. This name is deter-
mined by RAS66K. RAS66K removes the drive name, directory name, and extension from the
source file name specified in the command line, and uses the remaining base name as the module
name. Thisinformation isthen output in the object file.

Module names are case sensitive. This means that RAS66K may generate object files from the
same source file but with different module names. Take the following for example.

RAS66K MODULE
Thisis coded with upper-case | etters, so the module name will be “MODULE.”
ras66k module

Thisis coded with lower-case letters, so the module name will be “module.” The object file will be
MODULE.OBJin both cases.

Generate alist file to see the module names of the modules in the library file.
m Examplem

LIB66K MYLIB;
Thiswill generatethelist file MYLIB.L66 of MYLIB.LIB.

To add amodule using LIB66K, specify the object file name. To delete or copy from alibrary file,
specify the module name.

Chapter 6, LIB66K

6.2 Executing LIB66K

There are four ways to execute LIB66K.

» Execute from acommand line

» Execute using prompts

» Use acombination of command line and prompts
* Useredirection

This section explains each of these in order.

6.2.1 Command Line Execution

In this execution method, al input is specified to LIB66K at the DOS prompt. Command line
format is asfollows.

LIB66K library_file [operations] [, [list file]
[, [output_ library file m I;:]

The number of characters in the command line can be up to the DOS limit of 127. To specify more
than this, refer to Section 6.2.4, “Redirection.” Note that wild card should not be contained in the
file name.

Spaces delimit between library_file and operations. Use commas (,) to delimit all fields after oper-

ations. Options can be specified at any position on the command line. The contents specified in
each field are shown in Table 6-1.

Table6-1. Contents Specified In Each Field

Field Contents specified

library file Input library file name (name of library file to be generated or modified).
operations Operation on the library file specified by library file.

list_file List file name.

output_library file Output library file name (name of library file to generate by the operation).

Chapter 6, LIB66K

Thelibrary _file cannot be omitted. The following fields can be omitted by specifying commas. If a
semicolon (;) is specified, then all following fields will be omitted. In other words, a semicolon
indicates the end of input. All characters after the semicolon until the carriage return are ignored.
Default values will be used in fields omitted by comma or semicolon.

Table 6-2. Default Value Of Each Field

Field Default value
operations No operation performed.
list_file List file generated. Its name will be that of the output library file with extension

changed to “.L66.”

output_library file The input file name specified with library file. Invalid if library contents are not
changed.

m Examplelm
LIB66K MYLIB;

The operations are omitted, so no operation will be performed. Only a list file will be generated.
Thelist_file specification is also omitted, so the list file name will be MY LIB.L66.

m Example2m
LIB66K MYLIB +CALC;

This command adds CALC.OBJto MYLIB.LIB. The list_file and output_library file are omitted,
so thelist file name will be MYLIB.L66 and the output library file name will be MYLIB.LIB.

(1) library file Field

The library file specifies the file name of the library file to be generated or operated upon. This
field cannot be omitted. If thisfield is omitted from the command line, then LIB66K will display a
prompt for it. If no file name is specified at this point, then LIB66K will display a brief explanation
of how to use it and then terminate.

The default extension of the library fileis“.LIB.” For example, if MYLIB is specified, the LIB66K
will interpret that as MYLIB.LIB. Extensions other than the default can be appended. To do that,
specify up to and including the extension. To append no extension, append a period (.) to the end of
the file name, as in “MYLIB.”. If the drive name and directory name are not specified, then
LIB66K will proceed asif the current drive and directory were specified.

If the specified library file does not exist, then anew library file will be created. For details, refer to
Section 6.3.1, “Creating New Libraries.”

Chapter 6, LIB66K

(2) operationsField

The operations field determines the operation on the library specified with library file. If thisfield
is omitted, then no operation will be performed on the library file. However, LIB66K will check the
library file and output alist file.

The operation is coded as an operation symbol (+, -, %, *, &) that expresses the operation and afile
name or index name that will be operated on. When specifying multiple options, always separate
them with spaces, asin this example.

LIB66K MYLIB +ADCON +CALC + DISPLAY;

It does not matter if there are spaces after the operation symbols. The meanings of the operation
symbols are as shown below.

Table6-3. Operation Symbols

Function Operation Symbol Description

Add + Adds an object file or module in alibrary file to the library.
Delete - Deletes a module from the library.

Replace % Replaces amodule in the library with anew module.

Copy * Copiesamodule in the library to an object file.

The module will remain in the library.
Extract & Extracts amodule in the library to an object file.

The module will not remain in the library.

If the file name extension is omitted, then the default extension will be “.OBJ.” If a drive name,
directory name, or extension are specified for an module name, then those specifications will be
ignored.

The operation symbols (-, %, &) can be used with file names or index names. The other operation
symbols (+, *) can be used with file names, subject to the limitations of DOS.

m Examplem

LIB66K MYLIB +GET-KEY;
LIB66K MYLIB +GET -KEY;

In the top example, GET-KEY.OBJis added to MYLIB.LIB. In the bottom example, module KEY
will be deleted from MY LIB.LIB, and then GET.OBJ will be added.

When multiple operations are coded, their order of execution will be determined by the precedence
of the operations. For details, refer to Section 6.3.8, “ Operation Precedence.”

6-5

Chapter 6, LIB66K

(3) list_fileField

Thelist_filefield specifiesthe file name of thelist file. Thelist fileis atext file that shows in alpha
betical order information about the modulesin the library along with the public symbolsincluded in
those modules. For details on list files, refer to Section 6.4, “List Files.”

The list file will be generated by default even if not explicitly specified. The file name in this case
will be the output library file name with the extension changed to “.L66.” When you do not want to
use the default file name, specify afile namein thisfield.

To not generate the list file, specify NUL inthisfield. If CON is specified instead of NUL, then the
list file will be output to the screen. If PRN is specified instead of NUL, then the list file will be
output to the printer.
m Examplelm
LIB66K MYLIB +CALC, C:\WORK\LIBLIST. ;
In this example, the list file name will be C:AWORK\LIBLIST.
m Example2m
LIB66K MYLIB %CALC, NUL;
NUL is specified in this example, so alist file will not be generated.
(4) output_library file Field
The output_library file field specifies the output library file name. If this specification is omitted,
then the output library file name will be the same name as the input library file. When you want to

change the default file name, you must specify thisfield.

If afile with the same name as the output library file already exists, then LIB66K will change the
extension of that fileto “.LBK” and make a backup.

m Examplem
LIB66K MYLIB -DISPLAY,,NEWLIB

In this example, module DISPLAY is deleted from MYLIB.LIB, and the result is output to
NEWLIB.LIB. If NEWLIB.LIB aready exists, then LIB66K will change its name to
NEWLIB.LBK and make a backup. MYLIB.LIB will not be rewritten. A list file NEWLIB.L66
will be generated.

This field is valid only when the contents of the library file are changed. When no operation is
specified, or when the operations are only copies, or when a new library will be created, this field
will have no meaning even if specified, so LIB66K will output awarning.

Chapter 6, LIB66K

(5) Options

Options can be specified at any position. Options are used to restrict the modules that can be regis-
tered in the library file. They can be used only when creating a new library file. If they are speci-
fied in any other case, then they will be ignored. Options can be specified any number of times, but
only the last one specified will be valid.

Option types are listed below. Spaces must not be inserted after the slash (/).

Option Function

/100 Generate library for nX-8/100 CPU core.

/200 Generate library for nX-8/200 CPU core.

/300 Generate library for nX-8/300 CPU core.

1400 Generate library for nX-8/400 CPU core.

/500 Generate library for nX-8/500 CPU core.

/[500]S Generate library for SMALL memory model of nX-8/500 CPU core.
/[500]C Generate library for COMPACT memory model of nX-8/500 CPU core.
/[500|M Generate library for MEDIUM memory model of nX-8/500 CPU core.
/[500]L Generate library for LARGE memory model of nX-8/500 CPU core.

When the /S, /C, /M, and /L options for restricting memory model are specified, the CPU core will
automatically be restricted to nX-8/500. Therefore an error will occur for specifications such as
/200S and /L 300.

If no options are specified when creating a new library file, then any file can be registered in it,
regardless of CPU core or memory model.

Generate alist file to see the settings of the library file.
m Examplelm
LIB66K NEW-FILE /300 +FOR300 +FOR500;

This creates the new library file NEW-FILE.LIB. Because the /300 option is specified, object files
that can be registered are restricted to only those generated for the nX-8/300 CPU core.

The above example attempts to register two object files in NEW-FILE.LIB. FOR300.0BJ is an
object file generated for nX-8/300, and FOR500.0BJ is an object file generated for nX-8/500. In
this example, FOR300.0BJ will be registered correctly in NEW-FILE.LIB, but FOR500.0BJ will
not be registered because it has a different CPU core.

Chapter 6, LIB66K

m Example2m
LIB66K NEW-FILE /L +SMALL +LARGE;

This creates the new library file NEW-FILE.LIB. Because the /L option is specified, object files
that can be registered are restricted to only those generated for the LARGE memory model of the
nX-8/500 CPU core.

The above example attempts to register two object files in NEW-FILE.LIB. SMALL.OBJis an
object file generated for the SMALL memory model, and LARGE.OBJ is an object file generated
for the LARGE memory model. In this example, LARGE.OBJ will be registered correctly in
NEW-FILE.LIB, but SMALL.OBJwill not be registered because it is a different memory model.

6.2.2 Prompt-Based Execution

In this execution method, all input is specified in response to prompts output by LIB66K. When
LIB66K istyped at the DOS prompt, LIB66K will display the following prompts one line at atime
and wait for user response. LIB66K will not display the next prompt until the user responds to the
current prompt. If thereis any input, then LIB66K will display the next prompt.

Library file
Operations
List file
Output library

These prompts correspond to the fields of the command line.

Table6-4. Prompts And Corresponding Command Line Fields

Prompt Command Line Field
Library file : library_file field
Operations : operations field

List file : list_file field

Output library : output_library_file field

Options can be input at any prompt.
m Examplelm

Library file : ABC
Operations : +A +B +C;

This example adds object files A.OBJ, B. OBJ, and C.OBJto the library file ABC. It will aso gen-
eratethelist file ABC.L66.

Chapter 6, LIB66K

m Example2m

Library file : ABC
Operations : %B:XYZ
Listfile : NUL

OUTPUT LIBRARY : B:ABC

In this example, module XY Z of library file ABC.LIB will be replaced by object file B:XYZ.0OBJ.
The result will be output to B:ABC.LIB. The original ABC.LIB will not be rewritten. NUL is speci-
fied, so alist file will not be generated.

m Example3m

Library file : MYLIB;
or

Library file : MYLIB

Operations D,

Both of these examples operate the same. Both generate list file MYLIB.L66 of library file
MYLIB.LIB. Thelibrary file will not change.

m Example4m

Library file : MYLIB
Operations . -DISPLAY
List file D,

Output library : NEWLIB

In this example, module DISPLAY will be deleted from library file MY LIB.LIB, and the result will
be output to NEWLIB.LIB. If NEWLIB.LIB aready exists, then LIB66K will change its name to
NEWLIB.LBK and make a backup. MYLIB.LIB will not be rewritten. A list file NEWLIB.L66
will be generated.

Chapter 6, LIB66K

6.2.3 Using Command Line And Prompts Together
When the command line is insufficient input to LIB66K, then LIB66K will prompt for the missing
input. For example, when the following line is entered, LIB66K will display prompts after the
operations.

LIB66K MYLIB +CALC

When the following prompts are answered, LIB66K will execute.

List file
Output library

To prevent these prompts from being displayed, add a semicolon at the end of the command line to
tell LIB66K that input has ended.

LIB66K MYLIB +CALC,;

In this case, prompts will not be displayed.

6.2.4 Redirection

The DOS redirection function can be used when LIB66K is invoked. This is convenient for com-
mands that are too long to fit on one command line or for repeating the same operation many times.

First, create a file for redirection using an editor. Write the needed operations in either command
line or prompt input format. Then redirect LIB66K to thisfile.

m Examplem

Thefile COMFILE is coded in command line input format. All fields are specified.
MYLIB +A +B +C +D +E +F +G +H +| +J +K +L, PRN, OUTLIB;

Type the following DOS command line to execute.

LIB66K < COMFILE

6-10

Chapter 6, LIB66K

6.2.5 Redirecting Output Messages
Messages that LIB66K displays on the screen are all output to the standard output device. Thus,
messages can be output to afile using the DOS redirection function. If the redirection destination is
PRN, then messages can be output to a printer. To prevent messages from being output to the
screen, specify NUL.
m Examplelm
LIB66K MYLIB + ERR; > ERRMES
Messages displayed to the screen will be redirected to file ERRMES.
m Example2m
LIB66K MYLIB %A %B %C; > PRN
Messages displayed to the screen will be output to the printer.
m Example3m

LIB66K < COMFILE > NUL

LIB66K will execute the operations coded in the file COMFILE. It will not display messages to the
screen.

6.2.6 Termination Code
LIB66K returns the following termination codes to DOS when it terminates.

Table6-5. Termination Codes

Termination Code Termination Status Description

0 Normal termination No errors occurred.

1 Warning Operations with problems were executed.

2 Error Operations with problems were ignored
(other operations were executed).

3 Fatal error Execution could not be continued due to problems in
operations.

Refer to Section 6.5, “Error Messages,” regarding fatal errors, errors, and warnings.

6-11

Chapter 6, LIB66K

6.3 LIB66K Operations

LIB66K provides the following operations.

(1) Creating new libraries.
(2) Adding modules.

(3) Adding library files.
(4) Deleting modules.
(5) Replacing modules.
(6) Copying modules.
(7) Extracting modules.
(8) Generating list files.

This section describes operations (1) to (7) in detail.

The list files of (8) are generated by default. Section 6.2.1, “list_file Field,” explains how to specify
list file names. Section 6.4, “List File Format,” describes list file format.

6.3.1 Creating New Libraries

To create a new library, specify its file name in the library file field of the command line or at the
“Library_file” prompt.

If the specified file name has no extension, then LIB66K will automatically append “.LIB.” Other
extensions can be specified, but both LIB66K and RL66K use “.LIB” as the default extension for
library file names, so that extension is recommended.

A drive name and directory name can be specified in the library file name. If they are not specified,
then the library file will be created in the current drive and current directory.

Unless a name other than of a library file is specified when LIB66K is invoked, the following
prompt will be displayed.

file_name .LIB - File does not exist, Create ? [Y/N]

If either ‘'n" or ‘N’ is entered here, then the file will not be created and LIB66K will terminate.
Entera‘'y’ or 'Y’ to create thefile. A carriage return has the same meaning as'Y.’

If other fields are specified, then LIB66K will assume that the library file is to be created. In such

cases, the prompt will not be displayed. Thisisidentical to when there is a semicolon or other fields
in the command are omitted.

6-12

Chapter 6, LIB66K

m Examplelm

LIB66K NEWLIB
LIB66K will display a prompt asking if the operation is valid or not.
m Example2m

LIB66K NEWLIB,;

LIB66K will create NEWLIB.LIB and NEWLIB.L66 without displaying a prompt. No modules
will be entered in NEWLIB.LIB.

m Example3m

LIB66K NEWLIB /500S;
LIB66K will create NEWLIB.LIB and NEWLIB.L66 without displaying a prompt. Object files
that can be registered in NEWLIB.LIB are restricted to only those generated for a SMALL memory
model of the nX-8/500 CPU core.
m Example4m

LIB66K NEWLIB +A;

LIB66K will create NEWLIB.L66 and NEWLIB.LIB containing module A without displaying a
prompt.

When anew library is created, operations other than addition will cause an error. There will be no
modulesin the library file, so deletion, copying, replacement, and extraction will beinvalid.

When anew library is created, the output library file cannot be specified. If specified, then LIB66K
will issue awarning and ignore the output library file specification.

6-13

Chapter 6, LIB66K

6.3.2 Adding Modules

m Syntax m
+object_file

m Description m

The ‘+" will add the specified object file to the library. The object_file specifies the name of the
object file to be added to the library. DOS file names can be used in object_file. If the file extension
is omitted, then the default extension “.OBJ’ will be added.

LIB66K takes the base name of the specified file as the module name. The modules in the created
library file will bein alphabetic order by module name.

When LIB66K adds a module to a library, it performs some checks on the modules that have

already been added. These checks are as follows.

(1) Does amodule with the same module name aready exist in the library?

(2) Are the same public symbols declared in the module to be added already declared in other
modules of the library? (Public symbols are symbols declared using the PUBLIC directive of
RASG6K. They can be referred from other modules. For details, refer to Section 4.12.13.1,

“Public Symbol Declarations.”)

If thereisasingle error in any of these checks, then LIB66K will not add the module.

m Examplem

LIB66K MYLIB +B:\B. OBJ;

Input Library File

Module name A

Module name C

File Name
MYLIB.LIB

6-14

Addition

+

Object File

Output Library
File

Module name A

Module name B

/////////////////4
Module name Bg

File Name
B:\B.OBJ

Module name C

File Name
MYLIB.LIB

Chapter 6, LIB66K

6.3.3 Adding Library Files
m Syntax m

+library_file
m Description m
When alibrary fileis specified after the ‘+' al of the modulesin it will be added to the input library
file. DOS file names can be specified in the library file. However, the extension cannot be omitted.
This is the operations field, so if the file name extension is omitted, then LIB66K will assume an

extension of “.OBJ.” The library file extension can be different than “.LIB.”

When LIB66K adds a module to a library, it checks whether that module can be added. These
checks are asfollows.

(1) Does a module with the same name as the module to be added exist in the library being modi-
fied?

(2) Are the same public symbols declared in the module to be added already declared in other
modules of the library being modified?

If there isa single error in any of these checks, then LIB66K will not add the module. Other mod-
ules that had no errors will be added.

The modulesin the created library file will be in alphabetic order by module name.
m Examplem

LIB66K MYLIB +B:\ADDLIB.LIB;

Output Library

File
Additional
Input Library File Library File Module name A
A ition D,
Module name A d(_jlio Module name B Module name B
Module name C Module name D Module name C
File Name File Name Module name D
MYLIB.LIB B:\ADDLIB.LIB
File Name
MYLIB.LIB

6-15

Chapter 6, LIB66K

6.3.4 Deleting Modules
m Syntax m

- module_name
m Description

Use ‘-’ to delete a module from alibrary file. The module_name specifies the name of the module
to be deleted. The following example deletes module B from library MYLIB.LIB.

LIB66K MYLIB -B;

If module_name specifies a drive name, directory name, or extension, then they will be ignored.
The following example deletes module B from library MYLIB.LIB.

LIB66K MYLIB -C:\WORK\B;
If the specified module name is not found in the library, then an error occurs.
m Examplem

LIB66K MYLIB -B;

Input Library File Output Library
File
Module name A Delet
eletion
I 7 Module name A
Module name B —_ Module name Bg >
Module name C
Module name C
File Name
File Name MYLIB.LIB

MYLIB.LIB

6-16

Chapter 6, LIB66K

6.3.5 Replacing Modules
m Syntax m
%object_file
m Description m
The ‘%’ replaces a module in the library will the specified object file. The object file specifies the
name of the object file to be replaced in the library. DOS file names can be used in object file. If

the file extension is omitted, then the default extension “.OBJ’ will be added.

LIB66K takes the base name of the specified file as the module name. This module name indicates
the modulein the library.

LIB66K first performs the following checks. If there is a single error in any of these checks, then
LIB66K will not replace the module.

(1) Isthe specified module namein the library?

(2) Do the names of the library module and replacement module match?

(3) Are the public symbols in the replacement module not defined in other library modules? (The
public symbols of the replaced module are not considered.)

If no errors occur in the above checks, then LIB66K will delete the specified module from the
library. If the deletion finishes normally, then LIB66K will add the object file. If the specified
object file does not exist or an error occurs, then LIB66K will leave the library as is, without delet-
ing the module for replacement.

m Examplenm

LIB66K MYLIB %B:\B.OBJ;

Input Library File

Module name A)
Output Library
Ll File

Module name B <_|
Module name C Module name A
Replacement

File Name MYLIB.LIB % Module name B

Module name C

Object File

File Name
Module name B MYLIB.LIB

File Name B:\B.OBJ

6-17

Chapter 6, LIB66K

6.3.6 Copying Modules
m Syntax m

*object_file
m Description m

The ‘*’ extracts a module from the library and copies to the object file. The copied module will
remain in thelibrary.

DOS file names can be used in object file. If the file extension is omitted, then the default exten-
sion “.OBJ" will be added.

LIB66K takes the base name of the specified file as the module name. LIB66K will search for the
module in the library using this module name. If it cannot find the module, then an error will occur
and this operation will be ignored. If it can find the module, then it creates an object file with the
name specified in object file and copies the module to it. If a file with the same name already
exists, then LIB66K will output a warning message and overwrite the module.

This operation does not modify the contents of the library. Therefore, when only copy operations
are specified, an output library file will not be created. In this case, if an output library file was
specified when LIB66K was invoked, then an error will occur. No backup file will be created.

m Examplem

LIB66K MYLIB *B:\B.OBJ;

Input Library File

Module name A Copy Object File
Y,
Module name B —— |:| — Module name B
Module name C File Name
B:\B.OBJ
File Name
MYLIB.LIB

6-18

Chapter 6, LIB66K

6.3.7 Extracting Modules
m Syntax m
&object file
m Description m
The ‘&’ extracts a module from the library and copies to the object file. The copied module will be
deleted from the library. This operation is the same as a module copy (*) followed by a module

deletion (-).

DOS file names can be used in object file. If the file extension is omitted, then the default exten-
sion “.OBJ" will be added.

LIB66K takes the base name of the specified file as the module name. LIB66K will search for the
module in the library using this module name. If it cannot find the module, then an error will occur
and this operation will be ignored. If it can find the module, then it creates an object file with the
name specified in object file and copies the module to it. If a file with the same name aready
exists, then LIB66K will output a warning message and overwrite the module.

When the copy is complete, LIB66K will delete the module from the library.

m Examplem

LIB66K MYLIB &B:\B.OBJ;

Output Library
File

Input Library File Module name A

Y

Module name C

Module name A

Extract
T File Name

Module name B — & — MYLIB.LIB

Module name C

Object File

File Name MYLIB.LIB

D —— Module name B

File Name
B:\B.OBJ

6-19

Chapter 6, LIB66K

6.3.8 Operation Precedence

Operations have precedence. LIB66K executes operations from highest precedence to lowest,
regardless of their order of specification. A table of precedence is shown below. A precedence of 1
is the highest. When two operations have the same precedence, they will be executed in their order
of specification (from left to right).

Table6-6. Operation Precedence

Precedence Operations

1 Delete(-) Copy (*) Extract (&)
2 Replace (%)

3 Add (+)

m Examplem

LIB66K MYLIB +ADCON %RAMCHK -DISPLAY *CALC &EXTMEM,;
LIB66K first deletes module DISPLAY, copies module CALC, and extracts module EXTMEM
from library MYLIB. It then replaces module RAMCHK, and finally adds ADCON.OBJ to the
library.
6.3.9 Cautions During Execution
(1) Disk Capacity
LIB66K normally creates temporary files and backup files. Their directories and sizes are shown in
the table below. When LIB66K is executed, there must be sufficient disk capacity to create these

files.

Table6-7. Directories And Sizes Of Temporary Files And Backup Files

File Created In Directory FileSize
Temporary file Same directory as output library file Same size as output library file
Backup file Same directory asinput library file Samesize asinput library file

6-20

Chapter 6, LIB66K

(2) Temporary Files

LIB66K creates a temporary file in the same directory as the output library file. LIB66K performs
its operations using this file. When the operations complete normally, the temporary file's name is
changed to the output library file name. Accordingly, the temporary file will not remain in the direc-
tory.

However, if afatal error occurs during execution or if the user interrupts LIB66K execution with a
CTRL+C, then the temporary file may be left as is. Even though the temporary file remains,
LIB66K operation will not be incorrect.

The temporary file name will be “$LIB66K$.$$$,” so the user should avoid creating files with the
same name. |f temporary fileisto be handled as a library file, then change the file name with using
the DOS REN command.

When the library contents do not change, LIB66K will not create a temporary file. This will happen
in the following cases.

(1) No options are specified.
(2) Only copy operations are specified.

6-21

Chapter 6, LIB66K

6.4 List File Format

The list file is a text file that shows the contents of the library. It gives information about the
library itself, all modulesincluded in the library, and public symbols defined in those modules.

A list file is always generated by default. To not generate alist file, specify “NUL” in the list_file
field.

An example list file is shown below. The numbers (1) to (14) are added for the explanation, but
they are not shown in the actual list.

LIB66K Object Librarian, Ver.4.00 Library Information
[Mon Nov 09 19:49:38 1992] ... @)
LIBRARY FILE : TEST.LIB = e)
MODULE COUNT : 1 oooememserseernee ®)
CPU CORE :nX-8/500 e 4
MEMORY MODEL : COMPACT......... (5)

e (6) e O T— ®)
MODULE NAME : TEST 11-09-1992 19:49:38
BYTE SIZE :000001A8H(424) @ .. 9)
COREID :nX-8/500 @ s (10
MEMORY MODEL : COMPACT-...cocorsvrsien (12)
TRANSLATOR : RAS66K(Ver.4.00) ... (12)
TARGET : MSMB6507 e (13)
= PUBLIC SYMBOLS = P— (14)
BUF FLAG LOOP NUM :

Figure6-1. List File Example

The numbers added to the above list file example are explained in order. (1) to (5) show informa-
tion about the library itself. (6) to (14) show information about each modulein the library file.

(1) Thisisthe date when LIB66K was executed. It is displayed in the following format.
[day month date hour:minute:second year]

(2) Thisisthelibrary file name.
(3 Thisisthe number of modulesincluded in the library.

(4) This shows the CPU core restriction. It will not be displayed when the library file is not
restricted to a CPU core.

6-22

Chapter 6, LIB66K

(5) This shows the memory model restriction. It will not be displayed when the library file is not
restricted to a memory model.

(6) Thisisamodule name. Module names can be up to 32 charactersin length.

(7) Thisisthe date that the module was registered in the library. It is shown in the format “ month-
date-year.”

(8) This is the time that the module was registered in the library. It is shown in the format
“hour:minute:second.”

(9) Thisis the size of the module in bytes. It is shown as a hexadecima number followed by the
equivalent decimal number in parentheses.

(10) Thisisthe target CPU core. It showswhich CPU core the module was created for.

(11) This is the target memory model. It is shown only when the CPU core is nX-8/500. It shows
which memory model the module was created for.

(12) This is the name of the assembler that created the module. The assembler version is shown in
parentheses.

(13) This is the target microcontroller of the module. It shows the device name of the microcon-
troller type.

(14) These are public symbols declared in the modules. They are shown in aphabetic order. If
there are no public symbols, then “~-None-" will be shown.

6-23

Chapter 6, LIB66K

6.5 Error Messages

LIB66K outputs three types of error messages. fatal errors, errors, and warnings.

e Fatal errors

When a fatal error occurs, LIB66K displays an error message and immediately stops operation.
Existing files are not changed. The temporary file might remain on disk when a fatal error occurs.
Refer to Section 6.3.9 (2), “Temporary Files,” regarding processing temporary files.

e Errors

When an error occurs, LIB66K will ignore the operation that caused the error, but will perform
other operations. Thefileit creates can be used. LIB66K will display the number of errors when it
terminates.

e \Warnings

When a warning occurs, LIB66K will still execute the operation that caused the warning. The file
it creates can be used. LIB66K will display the number of warnings when it terminates.

6.5.1 Error Message Format

Error messages are displayed on the screen in the following format.

error_level . error_message

Depending on the error, an additional line may be displayed in order to provide more information
about the error. The additional line will be displayed in one of the formats below.

Library file: library file Module name : module_name

Library file: library file Module : module name Offsat : XXXXH
Library file: library file Offsat : XXXXH

Module name : module name Offset : XXXXH

The explanation below uses the above formats.

6-24

Chapter 6, LIB66K

Table 6-8. SymbolsUsed To Explain Error Messages

Symbol Used In Manual Contents Displayed On Screen

error_level Either “Fatal error,” “Error,” or “Warning.”

error_message Message indicating contents of the error.

library file The name of the library file that caused the error.

module_name The name of the module that caused the error.

XXXX The location of the error (an offset from the beginning of thefile),

displayed in hexadecimal.

The error messages are explained below divided by error type. Error messages are shown in alpha-
betical order.

6.5.2 Fatal Error Messages
“file_name” iswrite-protected

The output library file or backup file shown in file_name is a read-only file. Cancel the
file'sread-only attribute by using the DOS ATTRIB command.

Bad input format
The command line format isimproper.
Bad object filename specification

There was no object file name given after an operation symbol, or the object file name
contains an invalid character.

Cannot open temporary file.

The temporary file “$LIB66K$.$$$” is a read-only file. Cancel the file's read-only
attribute by using the DOS ATTRIB command.

Cannot renameold library

The input library file cannot be changed to a backup file. This message will be displayed
when the extension specified for the input library fileis“.LBK.”

LIB66K does not check the extension of the input library file. When the library is to be
rewritten, the library file name’'s extension will be changed unconditionally to “.LBK.”
However, if the input library file name's extension is aready “.LBK,” then it cannot be
changed to the backup file name.

To handle the backup file as an input library file, change the file name using the DOS
REN command.

6-25

Chapter 6, LIB66K

Checksum error

The checksum of the record currently being processed is incorrect. The file may be cor-
rupted. Execute LIB66K after rebuilding thefile.

Disk full error

Disk capacity is insufficient. Move or delete unnecessary file to create a free area on the
disk.

EOF expected after module index records
There is no EOF at the end of thelibrary file. Thelibrary fileis corrupted.
Filenametoo long

The length of a file name or module name specified when LIB66K was invoked exceeds
255 characters.

File operation failure
A seek error occurred.
[/Oread error
Data could not be read from the file.
/O writeerror
Data could not be written to thefile.
[llegal input
An EOF was input at an LIB66K prompt. An EOF was encountered before the end of
LIB66K specification when redirection was used to invoke LIB66K. The line below is an
example.
MYLIB %ADCON %CALC %DISPLAY , PRN ,<EOF>
The line needs to end with a carriage return code, as shown below.
MYLIB %ADCON %CALC %DISPLAY , PRN ,< carriage return code >

The line could also end with a semicolon.

MYLIB %ADCON %CALC %DISPLAY , PRN ;

6-26

Chapter 6, LIB66K

I nsufficient memory

Memory is insufficient for LIB66K execution. Increase usable memory by releasing resi-
dent programs and reducing device drivers.

Invalid library file

The specified library file includes an abnormal record or information.
Library file might be corrupted

The library file contains some improper information.
Record length too long for processing

An input file record was too long to be processed. This message will be displayed if the
record length exceeds OFFECH bytes.

Too many public symbols
There are too many public symbols to be registered in the library. Create a separate
library or remove public declarations for symbols that do not need to be public symbols
(that are not referred from other modules). The number of public symbols that can be reg-
istered in asingle library file will be 1844 when all symbols are the maximum 32 charac-
terslong.

Unableto create new library file
The output library file could not be created.

Unableto open library file
Theinput library file could not be opened.

Unexpected end of file

LIB66K could not read data that it expected to exist. This error will be output when the
file ends prematurely. The specified file may be corrupted.

6-27

Chapter 6, LIB66K

6.5.3 Error Messages
Cannot exceed 65535 modules; ignored

Up to 65535 modules can be registered in alibrary file. Further modules cannot be regis-
tered. Create a separate library file.

CPU coreisdifferent; ignored

A module of one CPU core would be registered in a library restricted to a different CPU
core. The module will not be registered.

Invalid object module; ignored

The specified object module is improper. Specify an object file generated by RAS66K
when adding a module to the library file.

Memory model isdifferent; ignored

A module of one memory model would be registered in a library restricted to a different
memory model. The module will not be registered.

Module already included in thelibrary; ignored

The specified module is aready registered in the library. This module will not be regis-
tered.

Module nameredefinition; ignored

The name of the specified module is aready registered in the library. This module will
not be registered.

Module names ar e different; ignored

This error occurs only during module replacement. The module in the object file is differ-
ent from the module in the library file. This module will not be registered.

Module not found in thelibrary; ignored

The module specified to be copied (*), extracted (&), or deleted (-) is not registered in the
library. Thisoperation will beignored.

No spacein thelibrary; ignored

The library file is too big for the module to be registered. Delete unneeded modules, or
create anew library file and register the module there.

6-28

Chapter 6, LIB66K

Public symbol redefinition; ignored

A public symbol of a module to be registered is aready defined an another module. This
module will not be registered.

Unableto open file; ignored

A file specified for a copy (*) or extract (&) operation could not be opened. This opera
tion will be ignored.

Unableto open list file
The list file could not be opened.
Unableto open object file; ignored

The specified object file could not be opened. Thisfilewill beignored.

6.5.4 Warning Messages
Filealready existsin the directory; overwritten

Thiswarning occurs only for copy (*) or extract (&) operations. The specified file already
exists. LIB66K will overwrite the file, erasing the previous object file.

Module not found in thelibrary; ignored

This warning occurs only for replacement (*) operations. The specified module does not
exist inthelibrary.

Output library specification; ignored

Even though the input library file will not be rewritten, an output library file was specified.
The output library file specification will be ignored. This message is displayed in the fol-
lowing cases.

1) Theinput library file does not exist (when anew library is being created).
2) No operation was specified.
3) Only copy (*) operations are specified.

6-29

Chapter 7

OH66K

This chapter explains how to use OH66K and describes the files generated by OH66K .

OH66K is software that converts absolute object files generated by RAS66K or RL66K into HEX
files.

Chapter 7, OH66K

7.1 Introduction

The object converter OH66K is software that converts absolute object filesinto HEX files.

Absolute object files are object files that do not contain relocatable information. Generally these
are .ABSfiles generated by RL66K. Some .OBJfiles generated by RAS66K can also be converted,
but they must have been written without any relocatable code.

The HEX files generated by OH66K have two possible formats, either Intel HEX format or
Motorola S2 format. This chapter calls files in Intel HEX format Intel HEX files, and files in
Motorola S2 format S2 format files. Refer to Section 7.3.2, “Output Files,” for a detailed explana-
tion of HEX files.

The generated HEX file can be used with emulators or PROM programmers. To do symbolic
debugging with an emulator, output debugging information by specifying the /D option. Refer to
“(3) Options” of Section 7.2.1, “Command Line Conversion,” regarding options. The format of
debugging information is explained in Section 7.3.2 (3), “Debugging Information.”

Figure 7-1 shows the basic concepts of OH66K input and output.

Chapter 7, OH66K

Absolute Object File

(.ABS/.0OBJ)
Y
OH66K
/S option not

/D option specified /S option /D option

Intel HEX format Motorola S2 format

1A Y Y Y Y
.HEX file XE file .S file .SE file .SYM file
ROM code EEPROM ROM code EEPROM Debugging
file code file file code file information

file

Figure7-1. OH66K Input/Output

If the /S option is not specified, then the output file will be in Intel HEX format. If the /S option is
specified, then the output file will be in Motorola S2 format.

A ROM code fileisa HEX file converted from object code located in the program area. An EEP-
ROM codefileisaHEX file converted from object code located in the EEPROM area.

An EEPROM code file is generated only when the absolute object file includes object code located
in the EEPROM area. Otherwise only aROM code file will be generated.

When the /D option is specified with Intel HEX format, debugging information will be output at the
start of the ROM code file with extension “.HEX.” When the /D option is specified with Motorola
S2 format, debugging information will be output to a debugging information file with extension
“.SYM.”

Chapter 7, OH66K

7.2 Using OH66K

OHB66K’ s operation can be invoked in the following ways.

(1) Conversion from DOS command line
(2) Conversion using prompts output by OH66K

This sections describes these methods in order.

7.2.1 Command Line Conversion
This method specifies OH66K at the DOS prompt. Command line format is as follows.
OH66K object_file [hex_file 1 [;]
Separate the fields with spaces. The semicolon (;) indicates end of input, so al characters after it
will be ignored. If a field is not specified fully, then OH66K will use default specifications.
Options can be specified anywhere on the command line.
m Examplem
OHG66K TEST;
This example converts TEST.ABSto create TEST.HEX.
Each field is explained below.
(1) object_fileField
Thisfield contains the name of the absolute object file to be converted by OH66K. Thisfield spec-
ification cannot be omitted. If omitted, then OH66K will output a prompt. If object file is not

specified at the prompt either, then OH66K will display an explanation of its use on the screen and
then terminate.

If the object_file has no extension, then the default extension “.ABS’ will be used. A drive name
and directory name can be specified in object_file. If not specified, then OH66K will assume the
current drive and current directory.

(2) hex_fileField

This field specifies the name of the HEX file to be generated by OH66K. A drive name and direc-
tory name can be specified, but if an extension is specified, then an error will occur.

Thisfield can be omitted. To omit it, specify a semicolon as follows.
OH66K TEST;

If omitted, then the input file name extension will be changed to match the format of the output file.
The output file format can be specified by options, which will be explained later.

7-3

Chapter 7, OH66K

File Format And Extension

File For mat ROM CodeFile EEPROM CodeFile
Intel HEX format .HEX XE
Motorola S2 format .S .SE

m Examplelm
OH66K TEST SAMPLE

In this example, the HEX file name is specified. OH66K will convert TEST.ABS and generate
SAMPLE.HEX.

If TEST.ABS includes object code located in the EEPROM area, then SAMPLE.XE will aso be
created. The following examples are the same, so the description of the EEPROM code file will be
omitted below.

m Example2m

OHG66K TEST B:

In this example, only the drive name is specified. OH66K will convert TEST.ABS and generate
B:TEST.HEX.

m Example3m
OH66K TEST \DATA\

In this example, only the directory name is specified. OH66K will convert TEST.ABS and gener-
ate \DATA\TEST.HEX. When specifying only a directory name, add a backslash (\) at the end.

m Example4 m
OH66K TEST B:\DATA\;

In this example, both a drive name and directory name are specified. OH66K will convert
TEST.ABS and generate BADATA\TEST.HEX.

m Example5m
OH66K TEST SAMPLE.HHH

When an extension is added like this, an error will occur.

Chapter 7, OH66K

(3) Options

Options can be specified in any position. When multiple options are specified, it does not matter if
spaces are placed between them. The following options are provided.

IS Specifies that the output files are to be in Motorola S2 format. Extensionswill be“.S” and
“.SE.”

If the /S option is not specified, then the output file will bein Intel HEX format.

/D Output debugging information.
For Intel HEX format, public symbols and local symbols will be output as debugging
information at the start of afile with the extension “.HEX.” For Motorola S2 format, pub-
lic symbols only will be output as debugging information to a file with the extension

“.SYM.”

Refer to 7.3.2 “Output Files” regarding Intel HEX format, Motorola S2 format, and the format of
debugging information.

m Examplelm
OH66K TEST /D;

OH66K will generate Intel HEX file TEST.HEX, and output debugging information at the start of
thisfile.

m Example2m
OH66K TEST /S /D;

OH66K will output debugging information for public symbols only to TEST.SYM. Object code
will be output to TEST.S.

Chapter 7, OH66K

7.2.2 Prompt-Based Conversion

In this method, al input is specified in response to prompts output by OH66K. When OH66K is
typed at the DOS prompt, OH66K will display the following prompts one line at atime and wait for
user response. OH66K will not display the next prompt until the user responds to the current
prompt.

INPUT FILE [.ABS]:
OUTPUT FILE(S)[inputext 1]:

These prompts correspond to the fields of the command line.

Table7-1. Prompts And Corresponding Command Line Fields

Prompt Corresponding Command Line Field
INPUT FILE [.ABS]: object_file
OUTPUT FILE(S)[input .ext]: hex_file

If OH66K is not given enough information to execute, then it will prompt the user for input.
OH66K will display promptsin the following cases.

If only OH6E6K is typed at the DOS prompt, then OH66K will not know the input file name.
OH66K will display the following prompt.

INPUT FILE [.ABS]:
The [.ABS] means that the default extension of the input fileis“.ABS.” Specify the input file name
at this prompt. If areturn is entered without an input file name being specified, then OH66K will
display an explanation of its use and then terminate. Options can be specified after the input file
name. After the input file nameis specified, OH66K will display the following prompt.

OUTPUT FILE(S) [input.ext]:

This prompt displays the default output file name in brackets []. The input is the base name of the
input file, and the ext is the appropriate extension for the output file format.

Table7-2. Promptsand Output File Format

Option Output File Name Shown At Output File Prompt Output File Format
None [input.HEX]: Intel HEX format
/S [input.§]: Motorola S2 format

input indicates the base name of the input file name.

If the file name displayed at the prompt is acceptable, then press return.

Chapter 7, OH66K

To change it, specify the new file name. When you want to change the output file format at an Intel
HEX format prompt, specify the /S option. Refer to Table 7-2 for the relationship between the out-
put file prompt and output file. When output file name specification is complete, OH66K will
begin the conversion operation.

If only the input file name is specified on the command line, then OHE66K will start by displaying
the prompt for the output file name.

e Using semicolonswith prompts

Even with prompts, specifications can be omitted using semicolons. The meaning is the same as
that for command lines.

The next example uses a semicolon at the input file prompt in order to suppress the output file
prompt.

INPUT FILE [.ABS] :TEST,;
The next example uses a semicolon to omit the output file specification.

OUTPUT FILE(S) [TEST.HEX] : ;

7.2.3 Redirecting Output Messages

All messages displayed by OH66K to the screen can be redirected to a file using the DOS redirec-
tion function. In the following example, messages displayed to the screen will be redirected to the
file ERRMES.

OH66K BROKEN; > ERRMES

Output can be sent to a printer by using PRN instead of a file name. To prevent messages from
being displayed on the screen, you may redirect to NUL.

7.2.4 Termination Code

When OH66K terminates, it returns atermination code to DOS. The termination code indicates the
state of OH66K when it terminated. When OH66K terminates normally it returns 0. When OH66K
terminates on a fatal error it returns 3. OH66K does not return other termination codes. Refer to
Section 7.4, “Error Messages,” regarding fatal errors.

Chapter 7, OH66K

7.3 Files Used With OH66K

7.3.1 Input Files
Two types of files can be input to OH66K .

(1) Object files generated by RAS66K that contain no relocatable information.
(2) Absolute object files generated by RL66K.

The input file must not contain rel ocatable information, or an error will occur. OH66K will display
which software generated the input file to the screen during its conversion operation.

7.3.2 Output Files
OH66K generates two types of HEX files.

Table7-3. HEX File Types

Option HEX File Extension (ROM Code File/EEPROM Code File)
None Intel HEX file HEX /| XE
/S option S2 format file .S/ .SE

Intel HEX filesarefilesin Intel HEX format. S2 format files are filesin Motorola S2 format.

An EEPROM code file is generated only when the object file includes object code located in the
EEPROM area. A ROM codefile is always generated.

To perform symbolic debugging with an emulator, specify the /D option when invoking OH66K so
it will output debugging information. Debugging information is in the same format for all HEX
files, but whereit iswritten will differ depending on the output file format. For Intel HEX format, it
will be written at the start of the ROM code file with the extension “.HEX.” For Motorola S2 for-
mat, it will be written in an independent file with the extension “.SYM..”

The format each HEX file and debugging information is shown next. First, the file structure is
shown, followed by an explanation of each record. The record descriptions start with an output
example to show how each field is structured, and then explain the fields.

Chapter 7, OH66K

(1) Intel HEX Files

Thesefilesarein the Intel HEX format of Intel Corporation.

e Intel HEX filestructure

...............................

Code Segment Record

Data Record repeated

End-Of-File Record

e Code Segment Record

202 0000 02 2000 DC

RECTYPE | CHKSUM

: I:OAD ADR DA:TA
: RéC LEN
FEEC MARK
Field Description
REC MARK The character “:” (3AH).
REC LEN Fixed as“02.”
LOAD ADR Fixed as “0000.”
RECTYP Fixed as“02.” Thisindicates a code segment record.
DATA The physical segment address. Thisvalueis only the upper 4 bits, so it can be 0 to F.
Therest of thefield is fixed to “000.”
CHK SUM A check sum. Thisisthe two’'s complement of the lower 8 bits of the sum of all

individual bytes of the REC LEN, LOAD ADR, REC TYP, and DATA fields.

The OLMS-66K Series can have a maximum logical 16 Mbytes, which is a program memory space
up to OFFH:OFFFFH.

However, Intel HEX format data records can only express values up to OFFFFH. Because of this,
physical segment addresses of program memory space are represented with code segment records.
The value represented by the DATA field in a code segment record is added as bits 19 to 4 of aload
address of data records encountered after the code segment record. This means that only the upper
4 bits will be valid as an actual physical segment address. Therefore, only physica segment
addresses 0 to OFH can be represented in code segment records. If a physical segment exceeds this,
or in other words, if a file includes object code located at an address above 10H:0000H, then the
file cannot be converted to Intel HEX format. In such cases, convert the file to Motorola S2 format

7-9

Chapter 7, OH66K

by specifying the /S option.

Code segment records are output when the physical segment address is to be changed. If only seg-
ment address 0 is used, then no code segment records will be output.

e Data Record

+. 10 0000 00 00000000414243444546303132333435 2C

{ RECTYPE DATA CHK SUM

: .LOAD ADR

: IiEC LEN

IiEC MARK
Field Description
REC MARK The character “:” (3AH).
REC LEN The number of bytes of object code stored in the DATA field.
LOAD ADR The load address of the first object code stored in the DATA field.
RECTYP Fixed as“00.” Thisindicates a data record.
DATA Stores object code.
CHK SUM A check sum. Thisis calculated the same as for code segment records.

e End-Of-File Records

200000001 FF

. RECTYPE CHKSUM
LOAD ADR

; REC LEN
I?\;EC MARK
Field Description
REC MARK The character “:” (3AH).
REC LEN Fixed as“00.”
LOAD ADR Fixed as“0000.”
RECTYP Fixed as“01.” Thisindicates an end-of-file record.
CHK SUM Fixed as“FF.”

7-10

Chapter 7, OH66K

(2) S2 Format File

Thisfileis of Motorola S2 format.

e S2format filestructure

e S0 Record

S0 Record

S2 Record repfeated

S8 Record

S0 10 0000 4F4B492C30312C30302C36364B 10

DATA CHK SUM

LdAD ADR
i RECLEN

REC MARK

Field Description

REC MARK Fixed as“S0.”

RECLEN The number of bytes (1 byte=2 characters) from the next field until the CHK SUM field.
The SO records generated by OH66K have the following LOAD ADR, DATA, and CHK
SUM fields are fixed, so the REC LEN field isfixed as“10.”

LOAD ADR Fixed as “0000.”

DATA Fixed as the constant “4F4B492C30312C30302C36364B." This DATA isused by Oki
Electric; it has no relation with the program generated by the user.

CHK SUM Thisisthe one’s complement of the lower 8 bits of the sum of al individual bytes from

the REC LEN field to the field immediately preceding the CHK SUM field.

7-11

Chapter 7, OH66K

e S2 Record

S2 14 000000 000102030405060708090A0B0OCODOEOF 73

DATA CHK SUM

LOAD ADR
i RECLEN
REC MARK
Field Description
RECTYP Fixed as“S2.”
REC LEN Thisis calculated in the same way as for SO records.
LOAD ADR Thisisthe address where the first byte of the DATA field will be loaded.
DATA Field where object code is stored.
CHK SUM Thisis calculated the same as for SO records.
e S8 Record
S8 04 000000 EB
; CHK SUM
LbAD ADR
: RECLEN

REC MARK

Field Description

REC MARK Fixed as“S8.”

REC LEN Thisis calculated the same as for SO records. However, the LOAD ADR and CHK SUM

fields are fixed in S8 records generated by OH66K, so thisfield isfixed as“04.”

LOAD ADR Fixed as “000000.”

CHK SUM Thisis calculated the same as for SO records. However, the LOAD ADR and CHK SUM
fields are fixed in S8 records generated by OH66K, so thisfield isfixed as“FB.”

7-12

Chapter 7, OH66K

(3) Debugging Information

When the /D option is specified, OHE66K will add debugging information to the output file. This
information is used for symbolic debugging with an emulator. The debugging information has the
same format for any type of HEX file. However, depending on the output file format, the debug-
ging information will be written at different locations.

Table 7-4. Debugging Information and Output L ocation

Output File Format Necessary Options Output L ocation of Debugging I nformation
Intel HEX format /D option Start of .HEX file
Motorola S2 format IS, ID options In newly created .SYM file

e Debuginformation structure

Debug Symbol Record rep:eated

End-Of-Debugging
Information Record

7-13

Chapter 7, OH66K

e Debug Symbol Record

0 DEBUGSYM 80H 0 D

SEG

: VALUE UéAGE

: S\:(M BOL
REC MARK
Field Description
REC MARK The character “0.” Indicates this record.
SYMBOL A local symbol or public symbol in the module (only public symbolsfor S2 format).
VALUE The value of the symbol, expressed in hexadecimal.
SEG The physical segment address. Expressed as a hexadecimal number 0 to OFFH.
USAGE The usage type of the symbol.

C:. Usagetype CODE
CB: Usagetype CBIT
D: Usagetype DATA

B: UsagetypeBIT

ED: Usagetype EDATA
EB: Usagetype EBIT

N: Usage type NUMBER

e End-Of-Debugging I nformation Record

s

Sbace (20H)

This record indicates the end of debugging information. It consists of one space and one dollar sign

$).

7-14

Chapter 7, OH66K

7.3.3 Input And Output File Examples

This section uses some examples to shown how source files are actually converted. First assume
that source file TEST.ASM was assembled with the /D option, creating object file TEST.OBJ.

RAS66K TEST /D

e Sourcefile TEST.ASM

TYPE (M665XX)
MODEL LARGE
NUM EQU 100H

CSEG
CODE_SYM1:
DB 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

CSEG AT 1:0000H
CODE_SYM2:
DW 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

CBIT_SYM1: CBIT 3000H:0
CBIT_SYM2: CBIT 3000H:1

DSEG
DATA_SYML1:
DS 1

DSEG AT 1:1000H
DATA_SYM2:
DS 1

BSEG
BIT_SYM1:
DBIT 1

BSEG AT 2:1000H.0
BIT_SYM2:
DBIT 1

ESEG
EDATA_SYM1:

DB 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
EDATA_SYM2:

bw 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

EBSEG
EBIT_SYM1:

DBIT 1
EBIT_SYM2:

DBIT 1

PUBLIC NUM CODE_SYM1 CBIT_SYM1 DATA_SYM1 BIT_SYM1
PUBLIC EDATA_SYM1 EBIT_SYM1
END

7-15

Chapter 7, OH66K

Next are shown examples of the two types of HEX file conversions of TEST.OBJ using OH66K .
m Examplelm
OH66K TEST.OBJ /D;

This command will generate Intel HEX files, TEST.HEX and TEST.XE with debugging informa-
tion.

e Inte HEX file with debugging information (ROM codefile) : TEST.HEX

0 CBIT_SYM2 18001H 0 CB
0 BIT_SYM2 8000H 2 B
0 EBIT_SYM2 20001H O EB
0 CODE_SYM20H1C
0 DATA_SYM2 1000H 1 D
0 EDATA_SYM2 4010HO E
0 CBIT_SYM1 18000H 0 CB
0 BIT_SYM1 1000H 0 B
0 EBIT_SYM1 20000H 0 EB
0 CODE_SYM10HOC
0 DATA_SYM1 200H 0 D
0 EDATA_SYM1 4000H 0 E
0NUM 100H O N
$
:10000000000102030405060708090A0BOCODOEOF78
:020000021000EC
:1000000000000100020003000400050006000700D4
:10001000080009000A000B000C0O00DOOOEOOOF0084
:00000001FF

e Intel HEX file (EEPROM codefile) : TEST.XE

:10400000000102030405060708090A0BOCODOEOF38
:104010000000010002000300040005000600070084
:10402000080009000A000B000C0O00D0O0OOEOOOF0034
:00000001FF

7-16

Chapter 7, OH66K

m Example2m
OH66K TEST.OBJ /S /D;

This command will generate S2 format files TEST.S and TEST.SE, as well as a debugging infor-
mation file TEST.SYM for only public symbols.

e S2format file (ROM codefile) : TEST.S

S01000004F4B492C30312C30302C36364B10
$214000000000102030405060708090A0BOCODOEOF73
$21401000000000100020003000400050006000700CE
$214010010080009000A000BO00CO00DOOOEOOOFO07E
S804000000FB

e S2format file (EEPROM codefile) : TEST.SE

S01000004F4B492C30312C30302C36364B10
$214004000000102030405060708090A0BOCODOEOF33
$214004010000001000200030004000500060007007F
$5214004020080009000A000BO0O0CO00DOOOEOOOFO02F
S804000000FB

e Debugging information file (public symbolsonly) : TEST.SYM

0 CBIT_SYM1 18000H 0 CB
0 BIT_SYM1 1000H 0 B
0 EBIT_SYM1 20000H 0 EB
0 CODE_SYM10HOC
0 DATA_SYM1 200HO D
0 EDATA_SYM1 4000H 0 E
O0NUM 100HO N

$

7-17

Chapter 7, OH66K

7.3.4 Temporary Files

During the conversion operation, OH66K uses up to three temporary files: “$ $,” “$_$,” and
“$ $” Thenumber of temporary files used changes depending on the output file format.

OHG66K reads data from the input file. It then outputs converted data to temporary files. After con-
version completes normally, temporary files are written to output files. OH66K erases the tempo-
rary fileswhen it terminates.

Temporary files are created in the current directory. Do not place files with the same names in the
current directory.

7-18

Chapter 7, OH66K

7.4 Error Messages

All errors generated by OH66K are fatal errors. After an error, the conversion operation will halt,
and no output file will be created.

7.4.1 Error Message Format

Error message formats can be classified in two types. The first is for errors during conversion, and
the second is for other errors.

» Format for errors during conversion

Error : error_messsage
File Offset : hhhhhhhh H (dddddddd)

« Format for other errors
Error : error_message

The symbols used in the above format descriptions are explained below.

Symbol Used In Manual Screen Display

hhhhhhhh H File offset when error occurred (in hexadecimal).
(dddddddd) The offset in decimal.

error_message A message indicated error status.

Error messages and their explanations are given below. The error messages are listed in alphabeti-
cal order.

7-19

Chapter 7, OH66K

7.4.2 Fatal Error Messages

Bad syntax in command line
The command line specification isimproper.
Checksum failure

A record read from the input file has an incorrect checksum. The input file format is
improper. Remake the input file.

Command option duplicated
The same option is specified twice on the command line

Extension not allowed in output file name
An extension cannot be specified in the output file name. Drive name, directory name,
and base hame can be specified. To change the extension, use the DOS REN command
after the HEX file has been created.

File not absolute

There isrelocatable information in the input file. If you have specified an .OBJ file gener-
ated by RAS66K, then create an .ABSfile using RL66K and specify that file.

File offset error
Thefile offset of arecord read from the input file could not be obtained.
Fileread error
An error occurred when the input file was read.
Fileremoveerror
An error occurred when atemporary file was erased.
/O error
An error occurred when the file was closed.
[llegal command option

An improper option was specified on the command line.

7-20

Chapter 7, OH66K

Input file not specified

The input file specification isimproper. Something other than afile name was specified in
thefield for the input file name.

Insufficient disk space

An error occurred when OH66K tried to close files upon termination.
I nsufficient memory

There is not enough memory for the conversion operation.
Invalid family ID

The input file was not created for OLMS-66K. OH66K can convert only absolute object
files generated by RAS66K or RL66K.

Invalid object module
Theinput file isimproper.
Invalid record type
There is arecord type not recognized by OH66K in the input file. Check if the RAS66K
or RL66K version that created the input file was provided together with OH66K. Use
software provided in the same package.
Invalid segment type
A debugging information symbol in the input file has a segment type that is not supported.
Invalid tar get
The input file was created as a general -purpose module.
Invalid version number
The version number of the software that generated the object file is abnormal.
Unableto convert Intel HEX format
The input file includes object code that exceeds the range OH:0H to OFH:0OFFFFH. This
file cannot be converted to Intel HEX format. Convert it to Motorola S2 format by speci-
fying the /S option.
Unableto open file_ name

Thefilefile_name could not be opened.

7-21

Chapter 7, OH66K

Unableto open OH66K temporary file

One of the temporary files“$ $’,“$_$" or“$___$" isread-only. Remove the read-only

attribute of the file using the DOS ATTRIB command.

7-22

Chapter 8

Absolute Print File
Generation

This chapter explains how to generate absolute print files.

An absolute print file is a print file that does not include unresolved machine code information or
address information. All of itsinformation is resolved.

Make use of the absolute print file when splitting a program into multiple modules or when debug-
ging a program that uses relocatable segments.

Chapter 8, Absolute Print File Generation

8.1 Introduction

An absolute print file is a print file that does not include unresolved machine code information or
address information. All of itsinformation is resolved.

When splitting a program into multiple modules or debugging a program that uses relocatable seg-
ments, a normal print file will include unresolved machine code or address information. To debug
using this print file requires that you simultaneously look at the symbol information included in the
map file output by RL66K, which is extremely tedious.

The MAC66K Assembler Package supports the generation of absolute print files that do not include

unresolved information as a solution to this problem. It provides functions for re-assembling pro-
grams that have been assembled once based on their link information.

8.2 Absolute Print File Generation Procedure

As an example, this section will explain the procedure for making absolute print files for a program
configured asthreefiles: FOO1.ASM, FOO2.ASM, and FOO3.ASM.

First, assemble the files as usual .
RAS66K FOO1
RAS66K FOO2
RAS66K FOO3
Then link the three object files. Thistime specify the /A option.
RL66K FOO1 FOO2 FOO3 /A;

RL66K will generate a file called FOO1.ABL. This file includes resolved machine code and
absolute addresses of symbols. Itiscalled an ABL file.

Next, assemble the source files again. This time specify /AFOOL as an assembler option.
RAS66K FOO1 /AFOO1
RAS66K FOO2 /AFO0O2
RAS66K FOO3 /AFOO03
Thisre-assembly will generate three files with the extension “.APR.”
FOO1.APR
FOO2.APR
FOO3.APR

These files are absolute print files.

8-1

Chapter 8, Absolute Print File Generation

This processis shown in the figure below.

8-2

>

FOO1.ASM

A

RASG66K

Y

FOO1.0BJ

RASG66K

Y

FOO2.ASM

Y

RASG66K

Y

FOO2.0BJ

.

/

FOO1.ABL

FOO1.APR

Figure 8-1. Flow Of Absolute Print File Generation Process

Ly

RASG66K

Y

FOO3.ASM

FOO3.0BJ

First, assemble as

Link using the /A option. RL66K will output
FOO1.ABL. Thisfile storesinformation for gen-
erating the absolute print files.

N\

FOO2.APR

>

Re-assemble with the /AFOO1 option.
RAS66K will read the file FOO1.ABL to
generate the absolute print files.

RASG66K

Y

FOO3.APR

The extension of the
print fileswill be
“ APR”

Chapter 8, Absolute Print File Generation

8.3 Link Processing For
Absolute Print File Generation

To generate absolute print files, specify the /A option when linking. When linking is performed
with the /A option. RL66K will generated a file called the ABL file, which contains resolved
machine code and absol ute addresses of symbols.
The proper format of the RL66K /A option is as below.

/A [(abl_file)]
The abl_file specifies the name of the ABL file to be generated. If abl_file is omitted, then the
ABL file name will be the name of the absolute object file (ABS) with an extension “.ABL.” If just
the extension of abl_file is omitted, then the extension will become“.ABL.”
m Examplelm

RL66K FILE1 FILE2 FILE3 /A;
Theabl_fileis omitted, so the ABL file name will be FILEL.ABL.
m Example2m

RL66K FILE1 FILE2 FILE3 /A(PRNDATA);
The extension of abl_fileis omitted, so the ABL file name will be PRNDATA.ABL.
m Example3m

RL66K FILE1 FILE2 FILE3 /A(PRNDATA.DAT);

A file name is specified for abl_file, so the ABL file name will be PRNDATA.DAT.

8-3

Chapter 8, Absolute Print File Generation

8.4 Re-Assembly
For Absolute Print File Generation
To generate absolute print files, add the RAS66K /A option when re-assembling
The proper format of the RAS66K /A option is as below.
/A [abl_file]
The abl_file specifies the name of the ABL file generated by RL66K. If abl_file is omitted, then
the ABL file name will be the name of the source file with an extension “.ABL.” If just the exten-

sion of abl_fileis omitted, then the extension will become “.ABL."

When RAS66K is invoked with the /A option, it reads the ABL file to generate an absolute print
file

The absolute print file name will be the name of the source file with the extension “.APR.” The
absolute print file name can be changed by using the /PR option.

A comparison of re-assembly processing against normal assembly processing gives the following
differences in operation.

(1) Noobject fileis generated. The /O option and OBJ directive will beinvalid.

(2) No processing is performed for C source level debugging information. The /CC option is
invalid.

(3) No EXTRN declaration fileis generated. The/X option isinvalid.

(4) The absolute print file will be generated even if the /NPR option or NOPRN directive is speci-
fied.

Theinvalid options and directives are simply ignored. It does not matter if they are still specified.

Certain option must be specified identically when normal assembly and re-assembly are invoked.
These are listed below.

(D) /Mx Memory model (nX-8/500 only).
It is recommended that the memory model be specified using the MODEL
directive.

(2) /ICD, INCD Case sensitivity of symbols.

(3) /linclude_path Include file path specification.

When generating an absolute print file, it is recommended that you re-assemble using the exact
options from invoking assembly the first time, with the /A option added.

8-4

Chapter 8, Absolute Print File Generation

For example, assume the options specified during normal assembly are these.
RAS66K FOO1 /D /S /IR /PW120 /PL60 /T4 /V [IHEADER
During re-assembly, add the /A option.

RAS66K FOO1 /D /S /IR /PW120 /PL60 /T4 /V /IHEADER /AFOO1

Chapter 8, Absolute Print File Generation

8.5 Re-Assembly Errors

A program that did not generate errors during normal assembly may still generate errors or warn-
ings during re-assembly with the /A option. This is because the normal assembly process does not
perform error checking on operands with unresolved addresses, while the re-assembly process per-
forms error checking on all operands.

Consider the following example.

EXTRN DATA:DATA_TBL
MOV X1,DATA TBL e (1)

Theinstruction statement (1) will not cause an error in the normal assembly process. However, this
does not mean that there is no error. It is that error checking cannot be performed during normal
assembly because the address of DATA_TBL isnot clear.

Assume for the moment that the address of DATA_TBL is odd, such as 1001H. This access is a
word boundary error. RL66K will display the following message when linking. (The source file
name is assumed to be “fool.asm” and the address of the instruction causing the warning to be
200H.)

Warning : cannot access to high byte , 0200/(absolute)/fool

The error’ s existence is confirmed. However, to find the actual position of errors in the source pro-
gram, the programmer must search for all addressesincluded in RL66K error messages. For alarge
program, this can be very tedious work.

The generation of an absolute print file can be extremely convenient in these cases. Try to re-
assembl e the above source program with the /A option. This time, RAS66K will display an error
message that has the same contents of that displayed by RL66K.

fool.asm (215):215:Warning 28: cannot access to high byte
Thisinforms the program of the precise position (line number) of the error.

Thus, the absolute print file generation function can also be used for purposes of learning the pre-
cise position in the source program of addressing-related errors and warnings generated during link-

ing.
m Attention m

All link errors will not necessarily make re-assembly invalid. The link errors that will not affect re-
assembly are limited to the following.

(1) All warnings.

(2) Other errors:
VCAL address must be even number
Out of range: min to max
Out of area_name area

A correct absolute print file cannot be obtained if re-assembly is performed after any other errors
are generated. Instead afatal error will occur during re-assembly.

8-6

Chapter 8, Absolute Print File Generation

8.6 If Fatal Error 11 Occurs

The following fatal error message may be displayed when performing re-assembly.

Fatal Error 11 : illegal reading binary file
ABL file : error_message

The cause of this error is nearly always a problem in the contents of the ABL file. If this error
occurs, then first verify the following items.

» Did thefirst assembly have no errors (excluding warnings)?

» Doesthe re-assembly match the first assembly in:
memory model specification (/Mx option or MODEL directive)?
case sensitivity of symbols (/CD, /INCD option)?
include path specification (/linclude_path option)?

« Did linking have no fatal errors (excluding addressing errors)?

» Wasthe /A option specified when linking?

If you have verified these items and the error still occurs, then please contact Oki Electric.

For details on ABL file error messages, refer to Section 4.15.2.1, “Fatal Error Messages.”

Appendices

e Appendix A List Of Directives
e Appendix B List Of Reserved Words

Appendix A. List Of Directives

Appendix A. List Of Directives

RASG6K directives are listed below.

Directive Syntax
Function
TYPE TYPE (dcl_name)
Specify aDCL file.
MODEL MODELmemory_model
Specify atype of memory model.
COMMON COMMO Nvch_value
Specify the COMMON area.
WINDOW WINDOWstart_address, end_address
Specify the ROM window area.
EQU symbol EQU simple_expression
Definealoca symbol.
SET symbol SET simple_expression
Define alocal symbol (redefinition possible).
CODE symbol CODE simple_expression
Define alocal symbol representing a byte addressin CODE address space.
CBIT symbol CBTI simple_expression
Define alocal symbol representing a bit addressin CODE address space.
DATA symbol DATA simple_expression
Define alocal symbol representing an addressin DATA address space.
BIT symbol BIT simple_expression
Define alocal symbol representing an addressin BIT address space.
EDATA symbol EDATA simple_expression
Define alocal symbol representing an addressin EDATA address space.
EBIT symbol EBIT simple_expression
Define alocal symbol representing an address in EBIT address space.
CSEG CSEG [# physical_segment_address][AT start address]
CSEG[AT start address][# physical_segment_address]
Define an absolute CODE segment.
DSEG DSEG [{# physical_segment_address | COMMON][AT start address]
DSEG[AT start address][{# physical_segment address | COMMON]
Define an absolute DATA segment.
BSEG BSEG [{# physical_segment_address | COMMON][AT start address]
BSEG [AT start address][{# physical_segment _address | COMMON]
Define an absolute BIT segment.

A-1

Appendix A.

List Of Directives

Directive Syntax
Function
ESEG ESEG[AT start address]
Define an absolute EDATA segment.
EBSEG EBSEG[AT start_address]
Define an absolute EBIT segment.
SEGMENT segment_symbol SEGMENTsegment_type [boundary attr]
[relocation_attr]
Define a segment symbol.
STACKSEG STACKSEGstack_size
Define a stack segment.
RSEG RSEG segment_symbol
Define arel ocatable segment.
GROUP GROUPsegment_symbol [segment_symbol...]
[#physical_segment_address]
Define a segment group.
ORG ORG address
Set the location counter.
DS [Bbd :] DS sze
Allocate memory in a CODE segment, DATA segment, or EDATA segment.
DBIT [Bbd :] DBIT sze
Allocate memory in aBIT segment or EBIT segment.
DB [Bod :] DB{ expression | sting_constant }
[.{expression | string_constant -
Initialize program memory in bytes.
DW [Bod :] DWexpression [, expression] ..
Initialize program memory in words.
PUBLIC PUBLIC symbol [symbol] ..
Declare a public symbol.
EXTRN EXTRNusage type [atbue] : symbol [symbol]..
[usage type [afbue] : symbol [symbol]...]..
Declare an external symbol.
COMM communal_symbol COMMsegment_type sz [relocation atfr]
Declare acommunal symbol.
USING USING register_name status
Check program states.
CHK CHK
Check flag attributes of branch instructions.

A-2

Appendix A. List Of Directives

Directive Syntax
Function
INCLUDE INCLUDE (incdude fle)
Use an includefile.
END END
End the program.
NAME NAME (module_name)
Set amodul€’ s name.
PRBANK PRBANKbank no [,bank no ...]
NOPRBANK NOPRBANK
Declare pointing register bank to be used.
LRBANK LRBANK bank_no [,bank_no ..]
NOLRBANK NOLRBANK
Declare local register bank to be used.
IF IFxxx conditional operand (IFxxx isone of IF, IFDEF, IFNDEF)
IFDEF true_conditional_body
IFNDEF [ELSE
ELSE false_conditional_body]
ENDIF ENDIF
Conditional assembly.
DEFINE DEFINE symbol "macro_body "
Define a macro.
CFILE CHLE expression
CFUNCTION CFUNCTION expression
CLINE CLINE expression
C source level debugging information.
GIMP GJMP symbol
Optimize ajump instruction.
GCAL GCAL symbol
Optimize acall instruction.
PRN PRN [(pitfie)1
NOPRN NOPRN

Control print file output.

Appendix A. List Of Directives

Directive Syntax
Function
PAGE PAGE
Force a page break.
PAGE PAGE [page_length] [, page_width]
Set lines per page and characters per line.
TITLE TITLE" character_string "
Set the print filetitle.
DATE DATE " character_string "
Set the print file data.
LIST LIST
NOLIST NOLIST
Control assembly list output.
SYM SYM
NOSYM NOSYM
Control symbol list output.
REF REF
NOREF NOREF
Control cross-reference list output.
TAB TAB [tab_width]
Replace tab codes.
OBJ OBJ [(odect fie)]
NOOBJ NOOBJ
Control object output.
DEBUG DEBUG
NODEBUG NODEBUG
Control assembly level debugging information output.
ERR ERR[(emor fle)]
NOERR NOERR
Control error message output.

Appendix B. List Of Reserved Words

Appendix B. List Of Reserved Words

RAS6E6K reserved words are listed below in alphabetic order. This list also shows the use of each
reserved word. For reserved words restricted to a CPU core, the name of the CPU core is shown in
the CPU type column. If thereis no restriction, then the column will be blank.

Reserved Word | Use CPU Type

A A Register name
ACAL Instruction nX-8/500
ADC Instruction
ADCB Instruction
ADD Instruction
ADDB Instruction
ADP Pointing register address
AERO Local register address nX-8/500
AER1 Local register address nX-8/500
AER2 Local register address nX-8/500
AER3 Local register address nX-8/500
AND Instruction
ANDB Instruction
ANY Directive operand
ARO Local register address nX-8/500
AR1 Local register address nX-8/500
AR2 Local register address nX-8/500
AR3 Local register address nX-8/500
AR4 Local register address nX-8/500
AR5 Local register address nX-8/500
AR6 Local register address nX-8/500
AR7 Local register address nX-8/500
AT Directive operand
AUSP Pointing register address
AX1 Pointing register address
AX2 Pointing register address

B BAND Instruction nX-8/500
BANDN Instruction nX-8/500
BIT Directive
BOR Instruction nX-8/500

A-5

Appendix B. List Of Reserved Words

Reserved Word | Use CPU Type
B BORN Instruction nX-8/500
BPOS Operator
BRK Instruction
BSEG Directive
BXCHG Instruction nX-8/500
BXOR Instruction nX-8/500
BXORN Instruction nX-8/500
BYTE Directive operand
C c Register name
CAL Instruction
CBIT Directive
CFILE Directive
CFUNCTION Directive
CHK Directive
CLINE Directive
CLR Instruction
CLRB Instruction
CMP Instruction
CMPB Instruction
CMPC Instruction
CMPCB Instruction
CODE Directive
COMM Directive
COMMON Directive
COMPACT Directive operand nX-8/500
CPL Instruction nX-8/500
CR Register set nX-8/500
CSEG Directive
CY JC instruction branch condition
D DAA Instruction
DAS Instruction
DATA Directive
DATE Directive
DB Directive
DBIT Directive
DEBUG Directive

Appendix B. List Of Reserved Words

Reserved Word | Use CPU Type
DEC Instruction

DECB Instruction

DEFINE Directive

DI Instruction nX-8/500
DIR Addressing specifier nX-8/500
DIV Instruction

DIVB Instruction

DIVQ Instruction nX-8/500
DINZ Instruction nX-8/500
DP Register name

DPL Register name nX-8/500
DS Directive

DSEG Directive

DSREG Directive operand

DUAL Directive operand nX-8/500
DW Directive

DYNAMIC Directive operand

EBIT Directive

EBSEG Directive

EDATA Directive

El Instruction nX-8/500
ELSE Directive

END Directive

ENDIF Directive

EQ JC instruction branch condition

EQU Directive

ER Register set nX-8/500
ERO Register name

ER1 Register name

ER2 Register name

ER3 Register name

ERR Directive

ESEG Directive

EX Instruction nX-8/300
EXTND Instruction

EXTRN Directive

Appendix B. List Of Reserved Words

Reserved Word | Use CPU Type
F FCAL Instruction nX-8/500
FILL Instruction nX-8/500
FILLB Instruction nX-8/500
FIX Addressing specifier nX-8/500
FJ Instruction nX-8/500
FRT Instruction nX-8/500
G GCAL Directive
GE JC instruction branch condition
GES JC instruction branch condition nX-8/500
GIMP Directive
GROUP Directive
GT JC instruction branch condition
GTS JC instruction branch condition nX-8/500
H HIGH Operator
I IF Directive
IFDEF Directive
IFNDEF Directive
INACAL Directive operand nX-8/500
INC Instruction
INCB Instruction
INCLUDE Directive
INPAGE Directive operand
J J Instruction
JBR Instruction
JBRS Instruction nX-8/500
JBS Instruction
JBSR Instruction nX-8/500
JC Instruction
JCY Instruction
JEQ Instruction
JGE Instruction
JGES Instruction nX-8/500
JGT Instruction
JGTS Instruction nX-8/500
JLE Instruction
JLES Instruction nX-8/500

Appendix B. List Of Reserved Words

Reserved Word | Use CPU Type
AT Instruction

JTS Instruction nX-8/500
INC Instruction

INE Instruction

JINS Instruction nX-8/500
INV Instruction nX-8/500
INZ Instruction

Jov Instruction nX-8/500
JPS Instruction nX-8/500
JRNZ Instruction

Jz Instruction

L Instruction

LARGE Directive operand nX-8/500
LB Instruction

LC Instruction

LCB Instruction

LE JC instruction branch condition

LES JC instruction branch condition nX-8/500
LIST Directive

LOW Operator

LRB Register name

LRBANK Directive nX-8/500
LREG Operator nX-8/500
LT JC instruction branch condition

LTS JC instruction branch condition nX-8/500
MAC Instruction nX-8/500
MB Instruction

MBR Instruction

MEDIUM Directive operand nX-8/500
MID Operator

MODEL Directive nX-8/500
MOV Instruction

MOVB Instruction

MUL Instruction

MULB Instruction

Appendix B. List Of Reserved Words

Reserved Word | Use CPU Type
N NAME Directive

NC JC instruction branch condition

NE JC instruction branch condition

NEG Instruction nX-8/500

NEGB Instruction nX-8/500

NODEBUG Directive

NOERR Directive

NOLIST Directive

NOLRBANK Directive nX-8/500

NOOBJ Directive

NOP Instruction

NOPRBANK Directive

NOPRN Directive

NOREF Directive

NOSYM Directive

NS JC instruction branch condition nX-8/500

NULL Addressing nX-8/300

NUMBER Directive

NV JC instruction branch condition nX-8/500

NZ JC instruction branch condition
@) OBJ Directive

OCT Directive operand

OFF Addressing specifier

OFFSET Operator

OPRT Directive operand nX-8/300

OR Instruction

ORB Instruction

ORG Directive

ov JC instruction branch condition nX-8/500
P PAGE Directive

POPS Instruction

POPU Instruction nX-8/300, 500

POPUB Instruction nX-8/300

PR Register set

PRBANK Directive

PREG Directive operand

A-10

Appendix B. List Of Reserved Words

Reserved Word | Use CPU Type
PRN Directive

PS JC instruction branch condition nX-8/500
PSW Register name

PSWH Register name

PSWL Register name

PUBLIC Directive

PUSHS Instruction

PUSHU Instruction nXx-8/300, 500
PUSHUB Instruction nX-8/300
RO Register name

R1 Register name

R2 Register name

R3 Register name

R4 Register name

R5 Register name

R6 Register name

R7 Register name

RB Instruction

RBR Instruction

RC Instruction

RDD Instruction nX-8/500
REF Directive

RLNC Instruction nX-8/500
RLNCB Instruction nX-8/500
ROL Instruction

ROLB Instruction

ROR Instruction

RORB Instruction

RRNC Instruction nX-8/500
RRNCB Instruction nX-8/500
RSEG Directive

RT Instruction

RTI Instruction

A-11

Appendix B. List Of Reserved Words

Reserved Word | Use CPU Type
S SB Instruction

SBA Addressing specifier nX-8/500

SBAFIX Addressing specifier nX-8/500

SBAOFF Addressing specifier nX-8/500

SBC Instruction

SBCB Instruction

SBR Instruction

SC Instruction

SCAL Instruction

SCMP Instruction nX-8/300

SCMPEQ Instruction nX-8/500

SCMPEQB Instruction nX-8/500

SCMPNE Instruction nX-8/500

SCMPNEB Instruction nX-8/500

SDD Instruction nX-8/500

SEG Operator

SEGMENT Directive

SET Directive

SFR Addressing specifier nX-8/500

SIZE Operator

SJ Instruction

SLL Instruction

SLLB Instruction

SMALL Directive operand nX-8/500

SMoV Instruction nX-8/500

SMOVB Instruction nX-8/500

SMOVD Instruction nX-8/300

SMOVI Instruction nX-8/300

SQR Instruction nX-8/500

SQRB Instruction nX-8/500

SRA Instruction

SRAB Instruction

SRL Instruction

SRLB Instruction

SS Instruction nX-8/300

SSsP Register name

A-12

Appendix B. List Of Reserved Words

Reserved Word | Use CPU Type
S ST Instruction
STACK Directive operand nX-8/300
STACKSEG Directive
STB Instruction
SUB Instruction
SUBB Instruction
SWAP Instruction
SWAPB Instruction
SWiI Instruction nX-8/500
SYM Directive
T TAB Directive
TBR Instruction
TITLE Directive
TINZ Instruction nX-8/500
TINZB Instruction nX-8/500
T)Z Instruction nX-8/500
TJZB Instruction nX-8/500
TRNS Instruction nX-8/300
TSREG Directive operand nX-8/500
TYPE Directive
U UNIT Directive operand
USING Directive
UsP Register name
USPL Register name nX-8/500
\ VCAL Instruction
W | winDOwW Directive nX-8/500
WINDOWALL | Directive operand nX-8/500
WORD Directive operand

A-13

Appendix B. List Of Reserved Words

Reserved Word | Use CPU Type
X X1 Register name

X1L Register name

X2 Register name

X2L Register name

XCHG Instruction

XCHGB Instruction

XNBL Instruction

XOR Instruction

XORB Instruction
Z ZERO Directive operand nX-8/100 to 400

ZF JC instruction branch condition

A-14

	Chapter1.Introduction
	1.1 About The MAC66K Assembler Package
	1.2 System Requirements
	1.3 About This Manual
	1.4 Related Documents
	1.5 CPU Core
	1.6 Symbol Usage In This Manual
	1.7 Changes From Previous MAC66K Assembler Package Ver.2.XX
	1.7.1 RAS66K
	1.7.2 RL66K
	1.7.3 LIB66K
	1.7.4 OH66K

	Chapter2.Instration And Usage
	2.1 Introduction
	2.2 Disk Contents
	2.3 Instllation
	2.4 Environment Variables
	2.5 Program Development Flow
	2.6 Module Programming
	2.7 Using The MAC66K Assembler Package Software
	2.7.1 MP:Macro Expansion
	2.7.2 RAS66k:Assembler
	2.7.3 LIB66K:Registering Object Modules In Library Files
	2.7.4 RL66K:Linker
	2.7.5 OH66K:Changing File Format
	2.7.6 Generating Assembly Level Debugging Information

	Chapter3.Basic Programming Knowledge
	3.1 Introduction
	3.2 Memory Space
	3.2.1 Overview Of Memory Space
	3.2.2 Memory Space OF nX-8/200,nX-8/400
	3.2.2.1 Program Memory Space
	(1)Vector Table Area
	(2)VCAL Table Area

	3.2.2.2 Data Memory Space
	(1)Special Function Register (SFR) Areas
	(2)Pointing Register Area
	(3)Curent Page Areas
	(4)Zero Page Area

	3.2.3 Memory Space Of nX-8/300
	3.2.3.1 Program Memory Space
	(1)Vector Table Area
	(2)VCAL Table Area

	3.2.3.2 Data Memory Space
	(1)Special Function Register (SFR) Areas
	(2)Pointing Register Area
	(3)Current Page Area
	(4)Zero Page Area
	(5)COMMON and Separate Areas

	3.2.4 Memory Space Of nX-8/500
	3.2.4.1 Program Memory Space
	(1)Vector Table Area
	(2)VCAL Table Area
	(3)ACAL Area
	(4)ROM Window Area

	3.2.4.2 Data Memory Space
	(1)Special Function Register (SFR) and Extended Special Function Register (XSFR) Area
	(2)Current Page Area
	(3)Fixed Page Area
	(4)Pointing Register Area
	(5)Local Register Area
	(6)EEPROM Area
	(7)Dual Port RAM Area
	(8)SBA Area
	(9)ROM Window Area
	(10)COMMON and Separate Areas

	3.2.4.3 Memory Models

	3.2.5 Memory Access
	3.2.5.1 Wraparround
	3.2.5.2 Word Boundaries

	3.3 Address Space
	3.4 Logical Segments
	3.5 Series Correspondence With DCL Files
	3.5.1 Information in DCL Files
	(1)Core ID number
	(2)Microcontroller ID number
	(3)Usable range of program memory space
	(4)Usable range of data memory space
	(5)SFR area range and permitted range of access
	(6)Reserved words representing address
	(7)Permitted instructions

	3.5.2 About DCL66K.DOC

	3.6 File Specifications

	Chapter4.RAS66K
	4.1 Introduction
	4.2 File Specification
	4.3 Using RAS66K
	4.3.1 Executing RAS66K
	4.3.2 Option Specifications
	4.3.2.1 List Of Options
	4.3.2.2 Option Functions
	(1)Memory Model Specification(/MS,/MC,/MM,/ML)
	(2)Control of Branch Instruction Flag A
	(3)Suppression Of Upper And Lower Case Distinction(/CD,/NCD)
	(4)Warning Check Control(/W,/NW)
	(5)Include File Path Specification(/I)
	(6)Output of Source Level Debugging Information(/CC)
	(7)Saving File Read Buffer(/V)
	(8)Print File Generation Control(/PR,/NPR)
	(9)Absolute Print File Generation(/A)
	(10)Assembly List Output
	(11)Symbol List Output Control(/S,/NS)
	(12)Cross-Reference List Output Contorol(/R,/NR)
	(13)Print File Characters Per Line Specification(/PW)
	(14)Print File Lines Per Page Specification(/PL)
	(15)Tab Code Replacement(/T)
	(16)Object File Output Control(/O,/NO)
	(17)Output of Assembly Level Debugging Information(/D,/ND)
	(18)Error Message Output(/E,/NE)
	(19)Generation of EXTERN Declaration Files(/X)

	4.3.3 Termination Code
	4.3.4 Symbol Table

	4.4 Creating Programs
	4.4.1 Initial program Code
	4.4.1.1 Target Microcontroller Specification
	4.4.1.2 COMMON Ares Specification
	4.4.1.3 Memory Model Specification
	4.4.1.4 ROM Window Area Specification
	4.4.1.5 Code Position Restrictions

	4.4.2 Program End Specification
	4.4.3 Writing Source Statements
	4.4.3.1 Writing Instruction Statements
	4.4.3.2 Writing Directive Statements
	4.4.3.3 Writing Special Statements

	4.4.4 Block Comments

	4.5 Coding Logical Segments
	4.5.1 Source Statements Coded Logical Segments
	(1)Source statements coded mainly in the DATA segments
	(2)Source statements coded mainly in the DATA segments
	(3)Source statements coded mainly in the BIT segments
	(4)Source statements coded mainly in the EDATA segments
	(5)Source statements coded mainly in the EBIT segments

	4.5.2 Absolute Segments And Relocatable Segments
	4.5.2.1 Absolute Segments
	4.5.2.2 Relocatable Segments

	4.5.3 COMMON Area
	4.5.3.1 Data Memory Space Seen By RAS66K
	4.5.3.2 Segment Allocation to COMMON Area

	4.5.4 Stack Segments
	4.5.5 Overlapping Logocal Segments

	4.6 Location Counter
	4.6.1 Location Counter Initialization
	(1)Initialization of location couters of relocatable segments
	(2)Initialization of location couters of absolute segments

	4.6.2 Changing location Counter Values
	4.6.3 Referring Location Counter Value

	4.7 Conditional Assembly and Macros
	4.7.1 Using Conditional Assembly
	4.7.1.1 IF Directive
	4.7.1.2 IFDEF Directive
	4.7.1.3 IFNDEF Directive

	4.7.2 Using Macro

	4.8 Program Elements
	4.8.1 Character Set
	4.8.1.1 Letters,Digits,Underscore,Question Mark,Dollar Sign
	4.8.1.2 White Space
	4.8.1.3 Line Feed Code,Carriage Return Code
	4.8.1.4 Special Characters
	4.8.1.5 Operators
	4.8.1.6 Escape Sequences

	4.8.2 Constants
	4.8.2.1 Integer Constants
	4.8.2.2 Address Constants
	4.8.2.3 Character Constants
	4.8.2.4 String Constants

	4.8.3 Symbols
	4.8.3.1 User Symbols
	(1)Absolute Symbols
	(2)Relocatable Symbols
	(3)Referring User Symbols
	(4)Referring User Symbols From Multiple Source Files
	(5)Macro Symbols

	4.8.3.2 Reserved Words
	(1)Instructions
	(2)Directives
	(3)Registers
	(4)Operators
	(5)Fixed microcontroller addresses
	(6)Local register addresses
	(7)Pointing register address
	(8)Addressing specifiers
	(9)Special operands of instructions
	(10)Special operands if directives

	4.8.4 Location Counter Symbols
	4.8.5 Value Attributes
	4.8.5.1 Numeric Values and Address Values
	4.8.5.2 Usage types and Physical Segment Attributes
	(1)Usage Types
	(2)Phsical Segment Attributes

	4.8.5.3 Flag Attributes
	4.8.5.4 Addressing Attributes

	4.9 Operators and Expressions
	4.9.1 Basic Concepts O Expressions
	4.9.1.1 Meaning Of Attributes Of Expressions
	4.9.1.2 Using physical Segment Addresses
	4.9.1.3 Unresolved Expression　During　Assembly

	4.9.2 Operators
	4.9.2.1 Arithmetic Operators
	4.9.2.3 Logical Operators
	4.9.2.4 Relational Operators
	4.9.2.5 Dot Operator
	4.9.2.6 Special Operators

	4.9.3 Expression Type
	4.9.3.1 Constant Expressions
	4.9.3.2 Simple Expressions
	4.9.3.3 General Expressions
	4.9.3.4 Restrictions On Coding Expressions
	(1)Restrictions On ORG Directive Operands
	(2)Restrictions On Operands Of Directives That Define Local Symbols
	(3)Restrictions On Operands Of Other Directives
	(4)Restrictions On Microcontroller Instruction Operands

	4.9.4 Expression Evaluation
	4.9.4.1 Operator Precedence
	4.9.4.2 Evaluation Of Expression Values
	4.9.4.3 Evaluation Of Expression Attributes
	(1)Attribute of parentheses()
	(2)Attribute Evaluation of Operators + and -
	(3)Attribute Evaluation of Operators *,/,and %
	(4)Attribute Evaluation of Logical Operators
	(5)Attribute Evaluation of Bitwise Logical Operators
	(6)Attribute Evaluation of Relational Operators
	(7)Attribute Evaluation of Dot Operator
	(8) Attribute Evaluation of Special Operators

	4.10 Check Functions
	4.10.1 Operand Value Checks
	4.10.2 Location Counter Value Checks
	4.10.3 Usage Type Checks
	4.10.4 Physical Segment Address Checks
	(1)DSR Checks
	(2)TSR Checks
	(3)CSR Checks

	4.10.5 Word Boundary Checks
	4.10.6 Special Functions Register Access Checks
	4.10.7 Current Page Checks
	4.10.8 Program Memory Space Checks
	4.10.9 Flag Attribute Checks
	(1)Flag Attribute Checks of Instructions Affected By Flags
	(2)Flag Attribute Checks of Branch Instructions

	4.11 Addressing Modes
	4.11.1 Addressing Modes That Specify Numbers
	4.11.1.1 Immediate Addressing
	4.11,1,2 Rotate/Shift Addressing

	4.11.2 RAM Addressing
	4.11.2.1 Register Addressing
	(1)Accumulator Addressing
	(2)Control Register Addressing
	(3)Pointing Register Addressing
	(4)Local Register Addressing
	(5)Register Sets

	4.11.2.2 Page Addressing
	(1)SFR Page Addressing
	(2)Fixed Page Addressing
	(3)Current Page Addressing
	(4)Fixed Page SBA Area Addressing
	(5)Current Page SBA Addressing

	4.11.2.3 Direct Addressing
	(1)Direct Dara Addressing

	4.11.2.4 Pointing Register Indirect Addressing
	(1)DP/X1 Indirect Addressing
	(2)Indirect Addressing With Post-Increment
	(3)Indirect Addressing With Post-Decrement
	(4)DP/USP Indirect Addressing With 7-Bit Displacement
	(5)X1/X2 indirect Addressing With 16-Bit Base
	(6)X1 Indirect Addressing With 8-bit Register Displacement

	4.11.3 Table Data Addressing
	4.11.3.1 Direct Addressing
	(1)Direct Table Addressing

	4.11.3.2 Indirect Addressing
	(1)RAM Indirect Addressing
	(2)RAM Addressing indirect Addressing With 16-Bit Base

	4.11.4 Program Code Addressing
	4.11.4.1 Direct Addressing
	(1)Near Code Addressing
	(2)Far Code Addressing

	4.11.4.2 Relative Addressing
	(1)Relative Code Addressing

	4.11.4.3 Special Code Addressing For Particular Instructions
	(1)ACAL Code Addressing
	(2)VCAL Code Addressing

	4.11.4.4 Indirect Addressing
	(1)RAM Addressing Indirect Code Addressing

	4.11.5 ROM Window Addressing
	4.11.6 Addressing For nX-8/100 to nX-8/400
	4.11.6.1 Zero Page Addressing
	4.11.6.2 USP Indirect Addressing With Pre-Increment

	4.11.7 Optimization Of Addressing
	4.11.7.1 Optimization Of RAM Address Specifications Without Addressing Specifiers
	4.11.7.2 Optimization Of RAM Address Specification With The Addressing Specifier \

	4.12 Directives
	4.12.1 DCL File Specification(TYPE)
	4.12.2 Memory Model Specification('MODEL)
	4.12.3 COMMON Area Specification(COMMON)
	4.12.4 ROM Window Area Specification(WINDOW)
	4.12.5 Local Symbol Definition(EQU,SET)
	4.12.6 Defintion of Local Symbols That Represent Address(CODE,CBIT,DATA,BIT,EDATA,EBIT)
	4.12.7 Absolute Segment Definition(CSEG,DSEG,BSEG,ESEG,EBSEG)
	4.12.8 Using Relocatable Segments
	4.12.8.1 Segment Symbol Definition(SEGMENT)
	4.12.8.2 Stack Segment Definition(STACKSEG)
	4.12.8.3 Relocatable Segment Definition(RSEG)

	4.12.9 Segment Group Definition(GROUP)
	4.12.10 Location Counter Setting(ORG)
	4.12.11 Memory Allocation(DS,DBIT)
	4.12.12 Program Memory Initilization(DB,DW)
	4.12.13 Creating Programs From Multiple Source Files
	4.12.13.1 Public Symbol Declaration(PUBLIC)
	4.12.13.2 External Symbol Declaration(EXTRN)
	4.12.13.3 Communal Symbol Declaration(COMM)
	4.12.13.4 Using Public,External,And Communal Symbols
	4.12.13.5 Using Partial Segments

	4.12.14 Assumptions And Checks Of Program State(USING)
	4.12.14.1 Assumption Of Physical Segment Address in Data Memory Space(USING DSREG)
	4.12.14.2 Assumption Of Physical Segment Address In Progress Memory Space
	4.12.14.3 Assumption Of Current Page(USING PAGE)
	4.12.14.4 Assumption Of Data Descriptor(USING DATA)
	4.12.14.5 Assumption Of Stack Flag(USING OPRT)
	4.12.14.6 Flag Attribute Checks Of Branch Instruction(CHK)
	4.12.14.7 Assumption Of Pointing Register Set Bank Number(USING PREG)
	4.12.14.8 Assumption Of Local Register Set Bank Number(USING LREG)

	4.12.15 Include File(INCLUDE)
	4.12.16 Program Termination(END)
	4.12.17 Module Name Setting(NAME)
	4.12.18 Register Bank Declararions
	4.12.18.1 Pointing Register Bank Declaration(PRBANK,NOPRBANK)
	4.12.18.2 Local Register Bank Declaration(LRBANK,NOLRBANK)

	4.12.19 Conditional Assembly(IF,IFDEF,IFNDEF,ELSE,ENDIF)
	4.12.19.1 Conditional Assembly On Expression Value(IF)
	4.12.19.2 Conditional Assembly On

	4.12.20 Macro Definition(DEFINE)
	4.12.21 C Source Level Debug Information(CFILE,CFUNCTION,CLINE)
	4.12.22 Optimization Of Branch Instructions
	4.12.22.1 Optimization Of Jump Instructions(GJMP)
	4.12.22.2 Optimization Of Call Instructions(GCAL)

	4.12.23 Print File Control
	4.12.23.1 Print File Output Control(PRN,NOPRN)
	4.12.23.2 Force Page Break(PAGE without operand)
	4.12.23.3 Lines Per Page and Characters Per Line Specification
	4.12.23.4 Title Specification(TITLE)
	4.12.23.5 Data Specification(DATE
	4.12.23.6 Assembly List Output Control(LIST,NOLIST)
	4.12.23.7 Symbol list Output Control(SYM,NOSYM)
	4.12.23.8 Cross-Reference List Output(REF,NOREF)
	4.12.23.9 Tab Code Replacement(TAB)

	4.12.24 Object File Control
	4.12.24.1 Object File Output Control(OBJ,NOOBJ)
	4.12.24.2 Assembly Level Debugging Information Output Control(DEBUG,NODEBUG)

	4.12.25 Error Message Output Control(ERR,NOERR)

	4.13 Print Files
	4.13.1 How To Read Assembly Lists
	4.13.2 HowTo Read Cross-Referrence Lists
	4.13.3 How To Read Symbol Lists
	4.13.3.1 Symbol Information
	4.13.3.2 Segment Information
	4.13.3.3 Segment Group Information

	4.13.4 How To Read Termination Messages

	4.14 EXTRN declaration Files
	4.14.1 Purpose Of EXTRN Declaration
	4.14.2 Use Of EXTRN Delralation Files

	4.15 Error Messages
	4.15.1 Format Of Error Messages
	4.15.2 List Of Error Messages
	4.15.2.1 Fatal Error Messages
	4.15.2.2 Assembler Error Messages
	4.15.2.3 Warning Messages
	4.15.2.4 Internal Processing Error Messages

	Chapter5.RL66K
	5.1 Introduction
	5.2 RL66K Memory Space Management
	5.2.1 Program Memory Space
	5.2.2 Data Memory Space
	5.2.3 EEPROM Space
	5.2.4 Dual Port RAM Space

	5.3 Using RL66K
	5.3.1 Command Line Format
	5.3.1.1 object files Field
	5.3.1.2 absolute_file Field
	5.3.1.3 map_file Field
	5.3.1.4 libraries Field
	5.3.1.5 Command Examples

	5.3.2 Execution
	5.3.2.1 Prompt Based Input
	5.3.2.2 Specifying Response File Input

	5.3.3 Termination Code

	5.4 RL66K Options
	5.4.1 Option Specifications
	5.4.1.1 Syntax
	5.4.1.2 Usage
	5.4.1.3 Name Arguments
	5.4.1.4 Address Arguments

	5.4.2 List Of Options
	5.4.3 Option Use
	5.4.3.1 Assembly Level Debugging Information Outout (/D,/ND)
	5.4.3.2 Map File Data Output Control(/S,/NS)
	5.4.3.3 CODE Segment Allocation Control(/CODE)
	5.4.3.4 DATA Segment Allocation Control(/DATA)
	5.4.3.5 BIT Segment Allocation Control(/BIT)
	5.4.3.6 EDATA Segment Allocation Control(/EDATA)
	5.4.3.7 EBIT Segment Allocation Control(/EBIT)
	5.4.3.8 Segment Allocation Order Control(/ORDER)
	5.4.3.9 Program Memory Space Maximum Address Setting(/CM)
	5.4.3.10 Data Memory Space Maximum Address Setting
	5.4.3.11 Emulation Librabry Automatic Search (/CC)
	5.4.3.12 C source Level Debugging information Output Control(/SD,/NSD)
	5.4.3.13 Stack Segment Size Change(/STACK)
	5.4.3.14 ABL File Generation Control(/A,/NA)

	5.5 Link Processing
	5.5.1 Global Symbol Matching
	5.5.2 Segment Linking
	5.5.3 Communal Symbol Linking
	5.5.4 Segment Allocation
	5.5.4.1 Allocation Spaces And Areas
	5.5.4.2 Quasi-Segments
	5.5.4.3 Allocation Precedence

	5.5.5 Segment Groups
	5.5.6 Reserving The Stack Area
	5.5.6.1 Stack Segment($STACK)
	5.5.6.2 Stack Symbol(_$$SSP)

	5.5.7 Fix-Up Processing

	5.6 Map File
	5.7 RL66K Messages
	5.7.1 Messages Indicating Processing Status
	5.7.2 Error Message Format
	5.7.3 Error Message Redirection
	5.7.4 List Of Error Messages
	5.7.4.1 Command Line Error Messages
	5.7.4.2 Fatal Error Messgaes
	5.7.4.3 Error Messages
	5.7.4.4 Waring Messages

	5.7.5 Internal Processing Error Messages

	Chapter6.LIB66K
	6.1 Introduction
	6.1.1 LIB66K Functions
	6.1.2 Advantages Of Using LIB66K
	6.1.3 Differences Between File Names And Module Names

	6.2 Executing LIB66K
	6.2.1 Command Line Execution
	(1) library_file Field
	(2) operation Field
	(3) list_file Field
	(4) output_library_file Field
	(5) Options

	6.2.2 Prompt-Based Execution
	6.2.3 Using Command Line And Prompts Together
	6.2.4 Redirection
	6.2.5 Redirecting Output Messages
	6.2.6 Termination Code

	6.3 LIB66K Operations
	6.3.1 Creating New Libraries
	6.3.2 Adding Modules
	6.3.3 Adding Library Files
	6.3.4 Deleting Modules
	6.3.5 Replacing Modules
	6.3.6 Copying Modules
	6.3.7 Extracting Modules
	6.3.8 Operation Precedence
	6.3.9 Cautioins During Execution
	(1) Disk Capacity
	(2) Temporary Files

	6.4 List File Format
	6.5 Error Messages
	6.5.1 Error Message Format
	6.5.2 Fatal Error Messages
	6.5.3 Error Messages
	6.5.4 Warning Messages

	Chapter7.OH66K
	7.1 Introduction
	7.2 Using OH66K
	7.2.1 Command Line Conversion
	(1) object_file Field
	(2) hex_file Field
	(3) Options

	7.2.2 Prompt Based Conbversion
	7.2.3 Redirecting Output Messages
	7.2.4 Termination Code

	7.3 Files Used With OH66K
	7.3.1 Input Files
	7.3.2 Output Files
	(1) Intel HEX Files
	(2) S2 Format File
	(3) Debugging Information

	7.3.3 Input And Output File Examples
	7.3.4 Temporary Files

	7.4 Error Messages
	7.4.1 Error Messages Format
	7.4.2 Fatal Error Messages

	Chapter8.Absolute Print File Generation
	8.1 Introduction
	8.2 Absolute Print File Generation Procedure
	8.3 Link Processing For Absolute Print File Generation
	8.4 Re-Assembly For Absolute Print File Generation
	8.5 Re-Assembly Errors
	8.6 If Fatal Error 11 Occurs

	Appendices
	Appendix A.List Of Directives
	Appendix B.List Of Reserved Words

