
1

MP Macroprocessor
User's Manual

Program Development Support Software

FIRST EDITION
ISSUE DATE:Aug. 1993

E2Y0002-29-62

NOTICE
1. The information contained herein can change without notice owing to product and/or

technical improvements. Before using the product, please make sure that the information
being referred to is up-to-date.

2. The outline of action and examples for application circuits described herein have been
chosen as an explanation for the standard action and performance of the product. When
planning to use the product, please ensure that the external conditions are reflected in the
actual circuit, assembly, and program designs.

3. When designing your product, please use our product below the specified maximum
ratings and within the specified operating ranges including, but not limited to, operating
voltage, power dissipation, and operating temperature.

4. OKI assumes no responsibility or liability whatsoever for any failure or unusual or
unexpected operation resulting from misuse, neglect, improper installation, repair,
alteration or accident, improper handling, or unusual physical or electrical
stress including, but not limited to, exposure to parameters beyond the specified
maximum ratings or operation outside the specified operating range.

5. Neither indemnity against nor license of a third party's industrial and intellectual property
right, etc. is granted by us in connection with the use of the product and/or the information
and drawings contained herein. No responsibility is assumed by us for any infringement of
a third party's right which may result from the use thereof.

6. The products listed in this document are intended for use in general electronics equipment
for commercial applications (e.g., office automation, communication equipment,
measurement equipment, consumer electronics, etc.). These products are not authorized
for use in any system or application that requires special or enhanced quality and reliability
characteristics nor in any system or application where the failure of such system or
application may result in the loss or damage of property, or death or injury to humans.
Such applications include, but are not limited to, traffic and automotive equipment,
safety devices, aerospace equipment, nuclear power control, medical equipment, and
life-support systems.

7. Certain products in this document may need government approval before they can be
exported to particular countries. The purchaser assumes the responsibility of determining
the legality of export of these products and will take appropriate and necessary steps at
their own expense for these.

8. No part of the contents contained herein may be reprinted or reproduced without our prior
permission.

9. MS-DOS is a registered trademark of Microsoft Corporation.

Copyright 1993 Oki Electric Industry Co., Ltd.

Preface
This manual describes the operation and macroprocessor language of the MP macroprocessor.

MP operates on Microsoft MS-DOS version 2.11 or later. A development system with the
following hardware is needed to run MP.

■ Memory
At least 70 Kbytes of memory are needed to run MP.

■ One floppy disk drive
Operation is easier with two drives.

■ Monitor
■ Printer

This manual uses several symbols to make explanations easier to understand. These symbols and
their general meanings are shown below. Wherever the symbols are used with different meanings,
the alternative meanings will be explicitly indicated.

[] The contents within the brackets are items to be input as necessary.
. . . This indicates items that are to be input repeatedly as necessary.

i

Contents

1. Introduction 1

1.1 Functional Overview--- 1
1.1.1 Macro Functions --- 1
1.1.2 Macro Application Examples-- 2

1.2 Processor Overview -- 4
1.3 Macroprocessor Language --- 5
1.4 MP Output --- 5
1.5 Path and File Specifications -- 6
1.6 File Inclusion -- 6
1.7 Code Examples -- 6

2. MP Operation 7

2.1 Invoking MP--- 7
2.2 Source File Name --- 7
2.3 Options --- 7
2.4 Screen Display--- 11

3. Macroprocessor Language Format 11

3.1 Character Set Usable in Source Text --- 11
3.2 Macro Definitions, Calls, and Expansion -------------------------------------- 11
3.3 Symbols--- 11
3.4 Expression Format --- 11

3.4.1 Constants -- 11
3.4.2 Operators-- 11

3.4.2.1 Arithmetic operators-- 11
3.4.2.2 Logical operator --- 11
3.4.2.3 Bitwise logical operators ----------------------------------- 11
3.4.2.4 Special operators -- 11
3.4.2.5 Relational operators -- 11
3.4.2.6 Precedence -- 11

3.5 Balanced Text --- 11

ii

4. Simple Macro Examples 11

4.1 MACRO Macro Examples-- 11
4.2 DEFINE Macro Examples -- 11

5. Standard Macros 11

5.1 User-Defined Macros -- 11
5.1.1 MACRO --- 11
5.1.2 Calling User Macros--- 11
5.1.3 Examples of Defining and Calling User Macros ----------------- 11

5.2 Symbol Definition--- 11
5.2.1 DEFINE-- 11
5.2.2 SET --- 11
5.2.3 MATCH --- 11

5.3 Processing Control --- 11
5.3.1 Comments --- 11
5.3.2 Brackets-- 11
5.3.3 Escapes--- 11
5.3.4 METACHAR --- 11

5.4 String Comparisons -- 11
5.5 String Operations--- 11

5.5.1 EVAL--- 11
5.5.2 LEN--- 11
5.5.3 SUBSTR --- 11

5.6 Expansion Control-- 11
5.6.1 IF -- 11
5.6.2 IFDEF -- 11
5.6.3 IFUNDEF-- 11
5.6.4 WHILE -- 11
5.6.5 REPEAT--- 11
5.6.6 EXIT-- 11

5.7 Console I/O Control-- 11
5.7.1 IN-- 11
5.7.2 OUT -- 11
5.7.3 COLOR -- 11

5.8 File Include -- 11
5.8.1 INCLUDE --- 11
5.8.2 MACROLIB -- 11

5.9 Listing Control -- 11
5.9.1 GEN, GENONLY -- 11

iii

5.10 System Control -- 11
5.10.1 SYSTEM--- 11
5.10.2 EXIST -- 11
5.10.3 SOURCE -- 11
5.10.4 FDATE--- 11
5.10.5 FTIME --- 11
5.10.6 DATE--- 11
5.10.7 TIME--- 11

5.11 Purging Symbol Definitions -- 11
5.11.1 PURGE -- 11
5.11.2 ALLPURGE -- 11

6. Error Messages 11

6.1 Macro Error Messages -- 11
6.2 Fatal Error Messages -- 11

Appendix 11

A. Standard Macro Table -- 11
B. Option Table--- 11
C. Function Changes From Ver. 1.0X-- 11

1. Introduction

1

1. Introduction

1.1 Functional Overview

The MP macroprocessor is a preprocessor that analyzes macros coded in source text and executes
text expansion where appropriate.

MP recognizes only macroprocessor language when performing text expansion. Text portions
other than macroprocessor language are simply copied as source text.

The output files created by MP are called expanded files. These expanded files are normally used
as assembler source in the following step. Figure 1-1 shows development flow using MP.

Source text MP Expanded text Assembler

Figure 1-1. Development Flow Using MP

The MP macroprocessor provides a set of standard macros with numerous functions as tools for
defining user macro instructions. For example, if a frequently used sequence of instructions in a
program is defined as a macro, then only the macro needs to be coded, thereby reducing program
code. The MP macroprocessor provides native macro commands called standard macros, which
the user can use to define his own macros. In addition to simple symbol definition and text string
control, standard macros provide file include functions and text expansion control, as described
below.

With the INCLUDE standard macro, the contents of a different text file can be inserted at any
place in the source text. With the MACROLIB standard macro, user-defined macros can be
managed as libraries. By using the text expansion control macros, such as IF and IFDEF, macro
expansion control and repeated text generation is possible within source text. Generation of source
text based on a text module structure is easy with MP.

1.1.1 Macro Functions

The MP macroprocessor provides the macros shown in Table 1-1 as standard macros.

Table 1-1. MP Standard Macros

Category Macro Name Description

User macro definitions MACRO Defines user-defined macro symbols, parameters,
and contents.

Symbol definitions DEFINE
SET

Assigns character strings and values of hexadecimal
expressions to symbols.

MATCH
 (continued on next page)

1. Introduction

2

Table 1-1(Cont). MP Standard Macros

Category Macro Name Description

String comparisons EQS
NES

Compares specified strings in text and returns the
result as true (-1) or false (0).

LTS
LES
GTS
GES

String operations EVAL
LEN
SUBSTR

Returns the hexadecimal string expansion of an
expression’s value, the length of text, or a partial
string from some text.

Expansion control functions IF
IFDEF

Controls flow of macro expansion of text by
evaluating expressions or symbols.

IFUNDEF
WHILE
REPEAT
EXIT

File include functions INCLUDE
MACROLIB

Inserts specified file contents into source text. If
the inserted text contains INCLUDE and
MACROLIB, then the further specified contents
will be inserted. Nesting up to 13 levels is
possible.

Listing functions GEN
GENONLY

Specifies the output format of text expanded by a
call or macro expansion.

Other METACHAR
IN
OUT

1. Controls exception processing of macro
expansions of comments, brackets, and
escapes.

COLOR
SYSTEM
EXIST
SOURCE
FDATE
FTIME
DATE
TIME
PURGE
ALLPURGE

2. Controls console I/O, operating system, file
name, date, time, and symbol definition
purges.

1.1.2 Macro Application Examples

The following simplified examples describe how macros are used.

First consider a program that transfers a continuous block of data from some address to a different
data area. This program could be written in assembler source text as follows.

1. Introduction

3

 MOV X1,#0
 MOVB R2,#COUNT
ACT:
 MOVB A,FROM[X1]
 MOVB TO[X1],A
 INC X1
 DECB R2
 JC NE,ACT

The same program might be coded several times by changing the values of the symbols COUNT,
FROM, and TO in the above listing. If one creates a user-defined macro using the standard macro
MACRO, then coding of source text will be greatly simplified. An example of code of the above
source text using a macro is shown below.

@MACRO(SEND(FROM,TO,COUNT))LOCAL ACT(
 MOV X1,#0
 MOVB R2,#@COUNT
@ACT:
 MOVB A,@FROM[X1]
 MOVB @TO[X1],A
 INC X1
 DECB R2
 JC NE,@ACT
)

The use of the above macro within source text is known as calling the macro. To call a macro,
code as shown below.

@SEND(100,200,3)
@SEND(300,400,2)

The above example calls the user-defined macro SEND by assigning the values 100, 200, 3 and
300, 400, 2 to the parameters FROM, TO, and COUNT respectively. The first call transfers the
three data values from address 100 to follow address 200. The second call transfers the two data
values from address 300 to follow address 400. The MP macroprocessor analyzes the macro calls
coded in source text and performs text expansion, as shown below.

 MOV X1,#0
 MOVB R2,#3
ACT00:
 MOVB A,100[X1]
 MOVB 200[X1],A
 INC X1
 DECB R2
 JC NE,ACT00
 MOV X1,#0
 MOVB R2,#2
ACT01:
 MOVB A,300[X1]
 MOVB 400[X1],A
 INC X1
 DECB R2
 JC NE,ACT01

1. Introduction

4

1.2 Processor Overview

When MP is invoked, it first evaluates the invoking command. If the command line contains a
command format error, then MP will output a command error message and return to the operating
system. If there is no error, then MP accepts the invoking command and moves on to text
processing.

During text processing, MP checks for I/O errors related to specified file existence, memory
capacity and disk capacity, as well as syntax errors in macro definitions and macro calls.

If an I/O error is detected, then MP will assume it is a fatal error. After it outputs an error message
to the console, it will return to the operating system.

If a syntax error is detected, then MP will recognize it as a macro error. It will output an error
message to the console, but processing will continue. However, text at the location of detected
syntax errors will not be expanded. The original source text contents will be output instead.

When MP ends text processing with no command format errors or fatal errors, it outputs an
expanded file. In addition, an output file for error messages can be specified as an option when
MP is invoked.

Figure 1-2 shows the above process flow.

Invoke MP macroprocessor

MP performs normal text expansion on the source file.

Figure 1-2. Process Flow After Invoking MP

Please refer to Section 2, “MP Operation,” for further details about invoking MP. Refer to Section
7, “Error Messages,” regarding error messages.

No

Command format error?
Yes Output command error message and return

to system.

Start text processing No

I/O error?
Output fatal error message, suspend
processing, and return to system.

Yes

Yes Output macro error message. Do not
expand macro, but output the file as is and
then continue expansion processing.

Syntax error?

No

1. Introduction

5

1.3 Macroprocessor Language

The basic functions of MP are string substitutions. These functions can be used according to
certain predetermined methods. Macroprocessor language defines these methods. In other words,
macroprocessor language defines the formats for calling the functions of MP.

MP functions can be used by calling macros. MP provides several predefined macro functions,
known as standard macros.

In general, if a macro is not defined in advance, then it cannot be called. However, the standard
macros are already defined, so they can be used just by calling them. Standard macros cannot be
redefined within the text.

All macro calls are coded following an @ symbol (called the metacharacter). MP reads through
text searching for the metacharacter. When a metacharacter is encountered, it evaluates the
following character string as a macro, and replaces the macro call with a return value.

The metacharacter can be changed to a different character with the standard macro METACHAR.

1.4 MP Output

MP outputs three types of files. The output destinations for these files are predetermined, but they
can be changed when MP is invoked.

File Type Decription
Expanded file This file contains the text after macro expansion. Expanded text is

normally output to disk.

Symbol file This file is a listing of user macros. This file is created only when the
SPA or SPB option has been specified.

Error file This file lists the error messages generated during macro processing.
Error messages are normally output to the console. An output file can
be specified with the EP option.

If the path name is omitted for an output file specification, then the output file will be created in the
current directory. If only the path name is specified, the output file will be given the same name as
the source file, and it will be given the default extension appropriate for its type. Table 1-2 shows
the default extension for each output file.

Table 1-2. Output File Default Extensions

File Type Default File Extension

Expanded file .Q

Symbol file .S

Error file .E

1. Introduction

6

1.5 Path and File Specifications

Path names and file names can be specified on the invoking command line and in several parts of
the text. In the explanation below, the parts of specification for path name or file name will be
declared by convention as path specification and file specification respectively.

In general, a file name is indicated with the following format.

[drive name :][\][directory name \]...[directory name \] file name [.file extension]
path specification
file specification

The above example shows the ranges for path specification and file specification.

A path specification is specified as a drive name and/or directory path name. Note that directory
names must end with the backslash (\). Below are some examples of directory declarations.

A : \ (specifies the root directory of the A drive)
A : \USR\PART1\ (specifies the \USR\PART1 directory of the A drive)
\USR\PART1\ (specifies the \USR\PART1 directory of the current drive)

A file specification is specified in the order of drive name, path name, file name, and its extension.

1.6 File Inclusion

MP provides a function for incorporating the contents of at any position in the text while it is
running. This function can be easily used by calling a file include macro (INCLUDE or
MACROLIB).

File include macros can be nested up to 13 levels, allowing other files to be included within an
included file.

1.7 Code Examples

In order to explain the macroprocessor’s basic functions, this manual uses some macro code
examples that may not completely follow assembler syntax.

2. MP Operation

7

2. MP Operation
This section explains how to operate MP.

2.1 Invoking MP

MP is invoked by typing the following at the operating system prompt.

MP file specification [options]

The file specification specifies just one source file to be processed.

The options can be used to specify just the necessary options (explained later) in any order. When
multiple options are specified, they are delimited by spaces. Refer to Table 2-1, “Option Table,”
for further details on the options.

In the invoking command, “MP,” file specification and options are delimited by spaces.

If MP is invoked only with an invoking command, then that command line will be shown on the
console.

2.2 Source File Name

If the source file name is specified with an extension appended to a file name, then MP will
recognize that specification as the source file name. If the extension is not appended, then MP will
assume an extension “.ASM.” However, if the file name ends with a period (.), then MP will
assume a file name with no extension.

If a drive name and path name are not specified, then MP assumes that the file is in the current
directory.

Below are some examples of extension specifications and interpretations.

Specification Interpretation
TEXT.SRC TEXT.SRC
TEXT TEXT.ASM
TEXT. TEXT

2.3 Options

The processes performed by MP are already determined, but many of them can be optionally
selected. Selection of processes is role of options.

Abbreviated forms are available for several options in order to shorten expressions. The same
result is obtained no matter which form is used. For example, both of the following two options
give the same result.

2. MP Operation

8

ERRORPRINT(OUT.ERR)
EP(OUT.ERR)

In general, the same option cannot be used multiple times in a single command line. However, the
DEF option only can be used any number of times in a single command line.

Table 2-1. Option Table

Option Format Abbreviation Function

ERRORPRINT[(file specification)] EP Specifies output destination of error
messages.

EXT[(file specification)] - Specifies output destination of text after
macroexpansion.

SPA [(file specification)] - Specifies output destination of symbol
table contents.

SPB[(file specification)] - Specifies output destination of symbol
table contents.

INCLUDE(path specification) IC Specifies path name of include files.

MACROLIB(path specification) ML Specifies path name of include files.

GEN[(mark specification)] GE Specifies format of output text.

GENONLY GO Specifies output of expanded lines only as
output text.

DEFINE(symbol)(string) DEF Defines user symbols.

DL - Deletes white space generated by macro
expansion.

Note: ‘-’ indicates that no abbreviated form exists.

When MP is invoked, the following options are specified as defaults.

Option Function
ERRORPRINT Outputs to console.
EXT Outputs to a file with the source file name and the extension “.Q.”
GENONLY Outputs only expanded lines.

Each of the options is described below.

� ERRORPRINT[(file specification)] Abbreviated form: EP

This option specifies the output destination of error messages. Error messages are normally output
to the console, but they can be directed to a file or a printer by using this option.

If the file specification is omitted, then the error file name will be the source file name with its
extension replaced by “.E.”

2. MP Operation

9

� EXT[(file specification)] Abbreviated form: None

This option specifies the output destination of the expanded text. Expanded text is normally output
to a disk file given the source file name with its extension replaced by “.Q.” but it can be directed
to a different file or a printer by using this option.

If the file specification is omitted, then the expanded text file name will be the source file name
with its extension replaced by “.Q.”

� SPA[(file specification)] Abbreviated form: None
� SPB[(file specification)] Abbreviated form: None

These options specify the creation and output of a symbol file. A symbol file is normally not
created, but a listing can be generated and output to a file or printer by using these options.

If the file specification is omitted, then the symbol file name will be the source file name with its
extension replaced by “.S.”

There are two types of symbol lists, which can be selected using SPA and SPB respectively. The
difference between the two lists is that one includes user macro contents and the other does not.
User macro contents will be listed if SPA is specified, but will not be listed if SPB is specified.

Symbols are output in alphabetical order. Each symbol’s defined contents (string) is shown. If a
symbol is a macro name, then the string “======USER MACRO======” will be shown,
followed by its code format, local label, and macro body.

When SPA is specified, MP will create a listing in the format below.

MP Macro Processor, Ver. 1.10 Symbol List
Date : 1989-01-30 (Mon) 14:16:09

Symbol String

BaseVAL......... 100H
DebugFLG........ 1
GETP............ ======= USER MACRO =======
 Format : GETP (DX1 , DX2)
 Body :
 MOVB R0,#@DX1
 MOVB R1,#@DX2
SEND............ ======= USER MACRO =======
 Format : SEND (FROM , TO , COUNT)
 Label : ACT
 Body :
 MOV X1,#0
 MOVB R2,#@COUNT
 @ACT:
 MOVB A,@FROM[X1]
 MOVB @TO[X1] ,A
 INC X1
 DECB R2
 JC NE,@ACT

When SPB is specified, MP will create a listing in the format below.

2. MP Operation

10

MP Macro Processor, Ver. 1.13 Symbol List
Date: 1989-01-30 (Mon) 14:16:09

 Symbol String
 BaseVAL......... 100H
 DebugFLG........ 1
 GETP............ ======= USER MACRO =======
 SEND............ ======= USER MACRO =======

� INCLUDE[(path specification)] Abbreviated form: IC

This option is used to forcibly set the path name of files specified by INCLUDE macros within the
text. This option affects all INCLUDE macros within the text.

For example, assume the following text is in source file FILE.ASM.

@INCLUDE(A:\TOOL\PACK\RAM1.DAT) ; �

@INCLUDE(B:\MACDEF\RAM2.DAT) ; �

 MOV A,ER0
 MOV ERI,#3000H
 ADD A,ERI
 :
 :

Now assume that the MP macroprocessor is invoked with the following command line.

MP FILE.ASM IC(C:\ROOT\)

In this case, the include files specified in the source text will be taken as those below.

C:\ROOT\RAM1.DAT �

C:\ROOT\RAM2.DAT �

�� MACROLIB[(path specification)] Abbreviated form: ML

This option is used to forcibly set the path name of files that are specified by MACROLIB macros
within the text. This option affects all MACROLIB macros within the text.

For example, assume the following code in the text.

@MACROLIB(A:\TOOL\PACK\RAM1.DAT)

Now assume that ML(\ROOT\) is specified when MP is invoked. The include file will then be
handled as follows.

\ROOT\RAM1.DAT

�� GEN[(mark specification)] Abbreviated form: GE
�� GENONLY Abbreviated form: GO

These options specify the output format of expanded text.

2. MP Operation

11

GENONLY specifies that only expanded text is to be output.

GEN specifies that both expanded text and all macro definitions are to be output. The string given
as the mark specification is to be inserted before each macro definition. If the mark specification is
omitted, then “;++” will be the default mark. This allows the macro definitions to be processed as
comments when MP output is used as assembler source.

These options are effective until a GEN or GENONLY macro is called within the text. The default
option is GENONLY. Some expansion examples are shown below:

Text before expansion:

@MACRO(GETP(DX1,DX2))(
 MOVB R0,#@DX1
 MOVB R1,#@DX2
)

 MOV A,#50H
@GETP(10H,20H)

 RT

Text after expansion (when GENONLY is specified):

 MOV A,#50H
 MOVB R0,#10H
 MOVB R1,#20H

 RT

Text after expansion (when GEN is specified):

;++@MACRO(GETP(DX1,DX2))(
;++ MOVB R0,#@DX1
;++ MOVB R0,#@DX2
;++)

 MOV A,#50H
;++@GETP(10H,20H)
 MOVB R0,#10H
 MOVB R1,#20H

 RT

Text after expansion (when GEN(;) is specified):

;@MACRO(GETP(DX1,DX2))(
; MOVB R0,#@DX1
; MOVB R1,#@DX2
;)

 MOV A,#50H
;@GETP(10H,20H)
 MOVB R0,#10H
 MOVB R1,#20H

 RT

2. MP Operation

12

�� DL Abbreviated form: None

This option prevents any white space created by macro expansion (lines of spaces, tabs, and
carriage return codes only) from being output to the expanded file. White space that exists in the
original source file will be output as is.

Source text:

@MACRO(GETP(DX1,DX2))(
 MOVB R0,#@DX1
 MOVB R1,#@DX2
)

 MOV A,#50H
@GETP(10H,20H)

 RT

Expanded text (DL option specified):

 MOV A,#50H
 MOVB R0,#10H
 MOVB R1,#20H

 RT

Expanded text (DL option not specified):

 MOV A,#50H

 MOVB R0,#10H
 MOVB R1,#20H

 RT

Unless otherwise stated, expanded text shown in this manual is always the result obtained by
specifying the DL option.

�� DEFINE (symbol) (string) Abbreviated form: DEF

This option defines a symbol as having a particular string as its value. Defined symbols can be
referenced within the source text as user symbols. Examples of DEFINE option use are given
below.

The macro symbol VAR is called in the following source text. Assume VAR is not defined as a
macro within the text. If MP processes the text as is, then an undefined error will occur.

 MOV A,#@VAR

The symbol VAR is defined when MP is invoked by using the DEFINE option.

MP TEXT.ASM DEFINE(VAR)(10H)

2. MP Operation

13

As a result, VAR is evaluated as 10H. The text is expanded as follows.

 MOV A,#10H

Simple string replacement is not all that is possible. Text expansion can be controlled by
combining expansion control macros and the DEFINE option. By using the expansion control
macro IFDEF in the following text, expansion is controlled by whether or not the symbol SYM has
been defined.

@IFDEF(SYM)THEN(
 ADD A,ER0
)ELSE(
 MOV ER0,A
)FI

The symbol SYM is defined when MP is invoked by using the DEFINE option.

MP TEXT.ASM DEFINE(SYM)(1)

This will expand the text as follows.

 ADD A,ER0

Conversely, if the symbol SYM is not defined when MP is invoked, then the text will be expanded
as follows.

 MOV ER0,A

2.4 Screen Display

Between its start and end, MP displays several types of information on the console. These are
described here through an example.

The following figure is one example of MP’s screen display from start to finish.

A>MP \USR\MYDIR\MAIN EXT(\USR\) EP(LST)
MP Macro Processor, Ver.1.10 Jan 1989
Copyright (C) 1988,1989. OKI Electric Ind. Co.,Ltd.

� MAIN.ASM(137) : error 00 : undefined macro name : “ABCD”

� 1 Macro Errors Found
A>

When an error occurs, the error line and a message are displayed on the console. Number 1 at the
far left of the figure corresponds to such a line. It is displayed in the following format

MAIN.ASM(137) : error 00 : undefined macro name : “ABCD”

Line number Error number Error message Error object
File currently being processed

Note that if an error occurs in a macro that spans multiple lines, then the first line of that macro
will be displayed.

2. MP Operation

14

001 @SET(VAL,5)
002 @WHILE(@VAL)(Line number in message display
003 MOV A,@UNDEF_MACRO Line number actually causing the error
004 @SET(VAL,@VAL-1)
005)

Line number

Number 2 above indicates MP’s termination message. In this example it indicates that there was
one error. If there are no errors, the following message will be displayed.

Macro Error Not Found

3. Macroprocessor Language Format

15

3. Macroprocessor Language Format
This section explains the rules and source text syntax of macroprocessor language.

3.1 Character Set Usable in Source Text

All characters expressed with one byte can be used.

3.2 Macro Definitions, Calls, and Expansion

The creation of user-defined macros through the use of the standard macro MACRO is referred to
as “macro definition” by this manual. Coding a standard macro or previously defined user-defined
macro within the source text is referred to as a “macro call.” MP’s process of analyzing a called
macro and expanding the text is referred to as “macro expansion.”

MP does not make forward references. Accordingly, before a macro can be called it must have a
corresponding macro definition in the source text or it must be a standard macro provided by MP.

MP recognizes and expands both standard macros provided by MP and user-defined macros
provided by the user. The parameters and format of standard macros must follow pre-determined
rules. For details, refer to Section 5, “Standard Macros.”

User-defined macros are macros for which the user defines a user symbol, parameters, and a
coding format through the use of the standard macro MACRO. The user can define any symbols,
parameters, and coding format for a macro, but the syntax of each call to that macro must correctly
match the definition. A user-defined macro not previously defined in the source text cannot be
called.

Figure 3-1 shows the relation between macro definitions, macro calls, and macro expansion.

Code of source text

MP invoked
 (Macro expansion)

Figure 3-1. Concept of Macro Expansion Process

For specific examples of the process shown above, refer to Section 4, “Simple Macro Examples.”

User macro and symbol definition
Calls to standard and user macros

Source text after expansion (expanded text)

3. Macroprocessor Language Format

16

3.3 Symbols

MP defines symbols as follows.

Characters usable in symbols are those below.

A–Z a–z 0–9 ? _ (underscore)

However, in order to distinguish symbols from numbers, the first character of a symbol must not be
a digit.

Symbol length is unlimited, but only the first 31 characters are valid. Characters beyond 31 are
ignored.

The following items are all handled as symbols.

(1) Standard macro names
(2) Keywords used in some standard macros (LOCAL, THEN, ELSE, FI)
(3) User symbols
(4) User macro names
(5) User macro parameters
(6) User macro local labels
(7) Some operators (refer to section 3.4)

MP distinguishes between upper-case and lower-case letters in (3)-(6) above. For example,
‘TELEX’ and ‘telex’ are handled as separate symbols.

MP does not distinguish between upper-case and lower-case letters for the others. For example,
‘MACRO’ and ‘macro’ are handled as the same symbol.

Only standard macro names (1) cannot be used as user symbols, user macro names, parameters, or
local labels.

3.4 Expression Format

Several standard macros take expressions as parameters. These macros recognize and operate on
the character strings placed at those parameters as expressions. Non-expression parameters are all
evaluated as simple character strings.

MP handles numbers internally as signed 32-bit numbers

Expressions are constructed by combining constants and operators, but it is also possible to include
a macro call within an expression.

Any number of spaces, tabs, or carriage returns may be included between the constants and
operators in an expression. This white space does not have any affect on the calculation.

Expression format rules are described below.

3. Macroprocessor Language Format

17

3.4.1 Constants

MP handles strings that start with a digit 0–9 as constants. Constants can be expressed as binary,
octal, decimal, or hexadecimal numbers. In order to differentiate between these forms, a type
descriptor is appended to the number, as shown in the table below. The type descriptor may be
omitted only for decimal numbers.

If the first character of a hexadecimal number would be alphabetic (A-F), then it must be prefixed
with the digit 0 to distinguish it from a symbol. For example, the hexadecimal number AH would
be prefixed with 0 to be coded 0AH.

Constants may use lower-case alphabetic letters.

Radix Usable characters Type descriptor Code examples

2 0, 1 B 1010B,01101101B

8 0–7 O, Q 271O, 514Q

10 0–9 D 30D, 1263

16 0–9, A–F H 753H, 0C6E7H

3.4.2 Operators

Operators are of two types, those expressed with alphabetic characters and those expressed with
special characters. When using a operator expressed with alphabetic characters, it is delimited
from other characters by placing one or more spaces, tabs, or carriage return codes before and after
the operator.

3.4.2.1 Arithmetic operators

Operator Function

+ Addition or unary positive operator.

– Subtraction or unary negative operator.

* Multiplication.

/ Division.

% Modulo calculation (returns remainder of the left term divided by the right term).

3. Macroprocessor Language Format

18

�� Examples ��

Expressions that use these operators and their values are shown below.

Expression Value
1234H + 80H 12B4H
1234H – 80H 11B4H
1234H * 80H 1A00H
1234H / 80H 24H
1234H % 80H 34H

3.4.2.2 Logical operator

The results of these operations are always 0 (false) or –1 (true).

Operator Function

! Retruns –1 if right term is zero. Otherwise returns 0.

�� Examples ��

Expressions that use this operator and its value is shown below.

Expression Value
! 5588H 0

3.4.2.3 Bitwise logical operators

These operators perform operations on each bit of operational term.

Operator Function

~ Bit inversion of right term.

& Logical AND of left and right terms.

| Logical OR of left and right terms.

^ Exclusive OR of left and right terms.

<< Shifts left term to the left by the number of bits expressed by the right term.
Zeroes are shifted in from the right (least significant bit).

>> Shifts left term to the right by the number of bits expressed by the right term.
Zeroes are shifted in from the left (most significant bit).

3. Macroprocessor Language Format

19

�� Examples ��

Expressions that use these operators and their values are shown below.

Expression Value
1234H & 4321H 0220H
1234H | 4321H 5335H
1234H ^ 4321H 5115H
1234H << 1 2468H
1234H >> 1 091AH
~1234H 0EDCBH

3.4.2.4 Special operators

The results of these operations are always 1-byte values.

Operator Function

HIGH Returns high byte of the right term.

LOW Returns low byte of the right term.

�� Examples ��

Expressions that use these operators and their values are shown below.

Expression Value
HIGH 1234H 12H
LOW 1234H 34H

3.4.2.5 Relational operators

The results of these operations are always 0 (false) or -1 (true).

Operator Function

> Returns -1 if left term is greater than right term. Otherwise returns 0.

>= Returns -1 if left term is greater than or equal to right term. Otherwise returns 0.

< Returns -1 if left term is less than right term. Otherwise returns 0.

<= Returns -1 if left term is less than or equal to right term. Otherwise returns 0.

== Returns -1 if left term is equal to right term. Otherwise returns 0.

!= Returns -1 if left term is not equal to right term. Otherwise returns 0.

3. Macroprocessor Language Format

20

�� Examples ��

Expressions that use these operators and their values are shown below.

Expression Value
1234H > 1234H 0
1234H >= 1234H -1
1234H < 1234H 0
1234H <= 1234H -1
1234H == 1234H -1
1234H ! > 1234H 0

3.4.2.6 Precedence

Operators are not evaluated in the sequence in which they are coded. They are evaluated in
accordance with some predefined rules, known as precedence rules. The table below shows the
precedence of operators. The highest precedence is 1, with lower precedence following larger
numbers.

Operators on the same line have the same precedence. Operators are always evaluated in order
from highest to lowest precedence. Operators with the same precedence are evaluated in the order
that they are coded, starting from the left of the expression.

Precedence Operators

1 ()

2 !
~

 –(unary) HIGH LOW

3 * / %

4 + –

5 << >>

6 < <= > >=

7 == !=

8 &

9 ^

10 |

3. Macroprocessor Language Format

21

3.5 Balanced Text

Most standard macros require parameters when called. Parameters must be enclosed in left and
right parentheses (). Parentheses can also be placed between parentheses, but the left and right
parentheses must balance. In other words, a string that starts with a left parenthesis ‘(’ must close
with a corresponding right parenthesis ‘)’. Parentheses without meaning cannot be included within
a string. However, nesting of parentheses as described above is allowed.

A character string contained in balancing left and right parentheses is referred to as “balanced
text.” There is no limit on the number of characters contained within a balanced text. Null strings
are also permitted. Balanced text may also include any desired macro calls. Standard macros are
processed as balanced text for which all calls within have been expanded.

The parameter list, local list, and macro body of the MACRO macro, as well as expressions used as
macro parameters, occupy a special position within balanced text. Such text can also include any
desired macro calls.

The examples below show balanced and unbalanced text.

[Balanced text example]

@IF(@EQS(@OPERATION,SUB)) THEN(
 SUB A,ER0
)FI

[Unbalanced text example]

@IF(@EQS(@OPERATION,SUB THEN(
 SUB A,ER0
)FI

In the above text, the numbers of left and right parentheses do not balance. When MP encounters
unbalanced text, it outputs a macro error message to the console and does not perform text
expansion on that portion of text.

4. Simple Macro Examples

23

4. Simple Macro Examples

4.1 MACRO Macro Examples

The standard macro MACRO is used to create user-defined macros. The following examples
explain macro definitions, calls, and expansion. For details on user macro parameters and local
labels, refer to Section 5.1, “User-Defined Macros.”

Shown below is the simplest macro definition.

@MACRO(GETP)(
 MOVB R0,#10H
 MOVB R1,#20H
)

This example is the macro definition for the macro named GETP. This macro is called as follows.

@GETP

The resulting output text will be expanded as follows.

 MOVB R0,#10H
 MOVB R1,#20H

However, this macro always expands into the same contents, and cannot be used for other
purposes. It can be made more general purpose by using parameters in its definition, as shown
below.

@MACRO(GETP(ADR1,ADR2))(
 MOVB R0,#@ADR1
 MOVB R1,#@ADR2
)

The macro defined here is named GETP and has two parameters (ADR1, ADR2).

When the macro is called, the parameters will be replaced with the real arguments for that call.
When parameters are referenced in a macro body, a metacharacter must be attached before the first
character. In the above example, the parameters ADR1 and ADR2 are used within the definition of
the user macro GETP(ADR1,ADR2). Within the macro body inside the following parentheses,
these parameters are referenced by prefixing them with metacharacter (here @), such as @ADR1
and @ADR2.

A macro defined in this way is called as follows.

@GETP(10H,20H)

The resulting output text is expanded as follows.

 MOVB R0,#10H
 MOVB R1,#20H

Next, an example of a macro that uses local labels will be shown. Local labels are labels that are
valid only within their own macro body. In the example below, ACT is a local label. Local labels
must also be prefixed with the metacharacter when referenced.

4. Simple Macro Examples

24

@MACRO(SEND(FROM,TO,COUNT)) LOCAL ACT(
 MOV X1,#0
 MOVB R2,#@COUNT
@ACT:
 MOVB A,@FROM[X1]
 MOVB @TO[X1],A
 INC X1
 DECB R2
 JC NE,@ACT
)

This macro could be called as follows.

@SEND(100,200,3)
@SEND(300,400,2)

The resulting output text is expanded as follows. Local labels in the expanded macros are kept
unique by automatically appending two or four digits to them in accordance with their order of
reference.

 MOV X1,#0
 MOVB R2,#3
ACT00:
 MOVB A,100[X1]
 MOVB 200[X1],A
 INC X1
 DECB R2
 JC NE,ACT00
 MOV X1,#0
 MOVB R2,#2
ACT01:
 MOVB A,300[X1]
 MOVB 400[X1],A
 INC X1
 DECB R2
 JC NE,ACT01

4.2 DEFINE Macro Examples

Within the standard macro library, the DEFINE, SET, and MATCH macros have similar functions
to the MACRO macro. However, these macros simply assign strings to symbols, while symbols
defined with the MACRO macro can use parameters and local labels.

The most different point is that the MACRO macro only defines user macros. It does not perform
expansion of the macro body, which codes the macro’s functions, until the defined macro name is
called.

Conversely, the DEFINE, SET, and MATCH macros expand symbols to the text at the point where
the symbols are defined. Accordingly, the values at the time of macro definition are used wherever
the macro is to be called.

The following examples show a DEFINE macro definition and a MACRO macro definition, and
explain the differences.

4. Simple Macro Examples

25

[DEFINE definition example]

@DEFINE(VALUE)(1)
@DEFINE(CAT)(@VALUE)
@CAT
@DEFINE(VALUE)(2)
@CAT
@VALUE

In the above example, the symbol VALUE is defined as the string ‘1’ in the first line. The symbol
CAT is assigned the value of VALUE in the second line. Therefore, the value of CAT when called
in the third line becomes ‘1.’ Then the value of VALUE is redefined in the fourth line. However,
the value of CAT was already determined in the second line, so changing the value of VALUE to 2
does not affect the value of CAT. Therefore, the value of CAT when called in the fifth line
becomes ‘1.’ Of course the value of VALUE in the sixth line is 2.

Next is an example of a MACRO macro definition.

[MACRO definition example]

@DEFINE(VALUE)(1)
@MACRO(CAT)(@VALUE)
@CAT
@DEFINE(VALUE)(2)
@CAT
@VALUE

In this example, the second line of the DEFINE definition example is rewritten as a MACRO
definition. The defined user macro CAT is expanded when called, and a value is substituted for its
parameter. Therefore, when CAT is called in the fifth line, the macro body of the second line
(@VALUE) is expanded, and since VALUE was redefined in the fourth line, that new value will
be used. In this example, VALUE was redefined as the string ‘2,’ so that becomes the expanded
contents of the user macro call of CAT in the fifth line.

Thus, the result of expanding a user macro defined by MACRO can change depending on the status
at the time of the call. The contents of a user macro defined by DEFINE (or SET or MATCH) are
determined at the time of definition, so the expanded contents will always be the same unless it is
redefined.

Hereafter this manual refers to items defined with the MACRO macro as user-defined macros or
user macros, and items defined with the DEFINE macro as user-defined symbols or user symbols.
Both are strictly distinct.

5. Standard Macros

27

5. Standard Macros
This section explains MP’s standard macros in detail. Standard macros are classified as shown in
Table 5-1.

Table 5-1. Standard Macro Types

Type Macro name

User macro definition MACRO

Symbol definition DEFINE, SET, MATCH

Process control Comment, Bracket, Escape, METACHAR

String comparison EQS, NES, LTS, LES, GTS, GES

String operation EVAL, LEN, SUBSTR

Expansion control IF, IFDEF, IFUNDEF, WHILE, REPEAT, EXIT

Console I/O control IN, OUT, COLOR

File include INCLUDE, MACROLIB

Listing control GEN, GENONLY

System control SYSTEM, EXIST, SOURCE, FDATE, FTIME, DATE, TIME

Symbol definition purging PURGE, ALLPURGE

Each of the following sections split their descriptions into the items below.

�� Format �� Format for calling the standard macro.
�� Function �� The macro’s function and purpose.
�� Examples �� Specific example of the macro’s use.

However, Section 5.1 “User-Defined Macros” explains not only how user macros are defined with
the MACRO macro, but also how user macros are called.

5.1 User-Defined Macros

5.1.1 MACRO

�� Format ��
@MACRO (macro_name [parameter_list]) [local_list] (macro_body)

�� Function ��

MACRO is provided for the user to create macros with proprietary functions. Macros defined with
MACRO are called user macros. The MACRO call itself is expanded to a null string.

5. Standard Macros

28

The macro_name is the name that will identify the defined macro. It is used when the macro is
called.

The macro_body encodes the functions of the macro. It is the value returned by a call to the
macro. The macro body must be balanced text enclosed within parentheses.

The simplest macro definition consists of only a macro name and a macro body. However, these
alone do not allow macros to be used effectively. By adding parameter_lists and local_lists,
macros with more complex functions can be defined.

Note: Where confusion is possible in the explanation below, parameter symbols coded in user
macro definitions are referred to as “dummy parameters,” and parameters passed when
macros are called are referred to as “real parameters.”

The parameter_list lists the symbols that are used as parameters (dummy parameters) in the macro
body. When the macro is called, these parameters accept the arguments that are passed (real
parameters). All parameters used within the macro body must be listed here. If a parameter is not
used, then it should be omitted from the parameter list. Parameter list syntax is as follows.

delimiter symbol [[delimiter symbol] ...] delimiter

Any single character other than those shown below can be a delimiter. However, if parentheses are
used, then left and right parentheses must balance.

Characters not allowed as delimiters:

A–Z, a–z, 0–9, _ (underscore), ?, currently valid metacharacter

To reference a parameter within the macro body, prefix it with the metacharacter.

The rules for specifying a parameter list in macro definitions and calls are described through the
use of some simple examples below. First, some macro definitions are shown.

@MACRO(UPRG1(P1,P2,P3))(..... �

 MOV A,#@P1+@P2+@P3
)

@MACRO(UPRG2(P1,P2,P3))(..... �

 MOV A,#@P1+@P2+@P3
)

@MACRO(UPRG3 P1,P2,P3)(..... �

 MOV A,#@P1+@P2+@P3
)

Example � is a macro definition that uses parentheses and commas as delimiters. Example � is a
macro definition that uses parentheses and spaces as delimiters. Example � is a macro definition
that uses spaces for all delimiters. The space to the right of parameter P3 could be omitted.

The format of the parameter list for a macro call must exactly match that of the definition.
Accordingly, calls corresponding to the above three definition examples are performed as follows.

5. Standard Macros

29

@UPRG1(10H,20H,30H)
@UPRG2(10H 20H 30H)
@UPRG3 10H 20H 30H

These macro calls will be expanded as follows.

 MOV A,#10H+20H+30H
 MOV A,#10H+20H+30H
 MOV A,#10H+20H+30H

The local_list lists the symbols that are used as local labels in the macro body. It follows the
keyword ‘LOCAL.’ If a local list is not needed, then it can be omitted. Local list syntax is as
follows. The delta symbol(∆) can be spaces, tabs, or carriage return codes.

LOCAL ∆ symbol [∆ symbol...]

The programmer may want some symbols to be expanded into different symbols each time the
macro is expanded. For example, such symbols include labels that are valid only within the macro
body. Symbols used as label definitions must be expanded into different symbols each time their
macro is expanded. Otherwise a double definition error will occur during assembly. If these
symbols are declared as local labels in the macro definition, then they will generate unique symbols
each time the macro is called.

Local labels are created by the following procedure. MP has an internal counter for local labels.
Each time a macro that includes local labels is called, the counter is incremented by one. The
counter starts at 0 and counts to FFFFH. After FFFFH it returns to 0 and repeats its counting. The
value of this counter, expressed in hexadecimal, is appended to the local labels. If the counter
value is 0–FFH, then a 2–digit hexadecimal expression will be appended. For greater values, a 4–
digit hexadecimal expression will be appended. In both cases, when the value itself does not fill all
the digits then the leftmost digits will be filled with zeroes.

Symbols used in parameter lists and local lists:

� There is no limit to the number of symbols. However, the parameters and local labels in a
user macro must all be different symbols.

� Symbols in parameter lists and local lists may be the same as user macro names or general
symbol names. These list symbols are valid only within the macro body.

� The contents of parameters and local labels cannot be modified within the macro body. If a
same name is redefined with DEFINE, then it will be handled not as a parameter or local
label, but as a symbol definition.

If a user macro name or user symbol exists with the same name as a dummy parameter or
local label, then it will be interpreted as the dummy parameter or local label during user macro
expansion.

Below is an example of a macro that uses local labels. In this example ‘LOOP’ and ‘LEND’ are
declared as local labels.

5. Standard Macros

30

@MACRO(TCMP)LOCAL LOOP LEND(
@LOOP:
 CAL getTime
 DECB R2
 JC NE,@LEND
 CAL cmpTime
 DECB R2
 JC NE,@LEND
 J @LOOP
@LEND:
)

Assume the macro is called as follows.

@TCMP
@TCMP

As a result, the macros are expanded as follows. Each time the macro is expanded, ‘LOOP’ and
‘LEND’ are generated as different symbols.

LOOP00:
 CAL getTime
 DECB R2
 JC NE,LEND01
 CAL cmpTime
 DECB R2
 JC NE,LEND01
 J LOOP00
LEND01:
LOOP02:
 CAL getTime
 DECB R2
 JC NE,LEND03
 CAL cmpTime
 DECB R2
 JC NE,LEND03
 J LOOP02
LEND03:

Local labels are used to generate symbols that are valid locally. “Local” means that a symbol
exists only in the expansion level that includes that symbol. In other words, the symbol cannot be
directly referenced from higher or lower levels.

A macro body is first expanded when a currently defined user macro is called. Thus, even if an
error occurs in the coding of a macro body, the actual error will be generated not when the macro is
defined but when it is called.

MACRO can be called again within a macro body. In effect, one can create a user macro that
defines user macros. In such cases, the inner macro will be defined at the point that the outer
macro is called. The parameters and local labels of the outer macro are invalid in the inner macro
body.

Another user macro can be called from within a macro body. A macro can even call itself
(recursive call). However, MP does not control infinite loops, so exercise such macro nesting with
caution.

5. Standard Macros

31

5.1.2 Calling User Macros

�� Format ��

@macro_name [real_parameter_list]

A user macro must be defined prior to being called. Also, the format of the parameter list when the
macro is called (delimiters, parameter count) must be identical to the format when the macro was
defined. However, a real parameter may be a null string.

If spaces, tabs, or carriage return codes were the delimiters during definition, then spaces, tabs, and
carriage return codes between real parameters are ignored. If the delimiters during definition were
not spaces, tabs, or carriage return codes, then all spaces, tabs, or carriage return codes before or
after the delimiters will be handled as parts of real parameters.

When a user macro is called and its macro body is expanded, the real parameters will replace their
corresponding dummy parameters. Also during expansion 2-digit or 4-digit numbers (hexadecimal
expressions) will be appended to local labels. The numbers appended to local labels will run from
00 to FFFFH following the order of macro calls. As explained in the section on local lists, MP
does not provide this counter for each macro, but rather MP has a single internal counter. Thus,
the same number will not be appended to the same local label within a single expanded file.
However, if the counter value exceeds FFFFH, then the counter value will return to 00.

Even if the metacharacter is different during a user macro’s definition and call, the user macro will
be valid. If the METACHAR macro is called within a user macro, then the newly defined
metacharacter will be valid only within that user macro.

5.1.3 Examples of Defining and Calling User Macros

�� Example 1 ��

Before expansion:

@MACRO(GETP)(
 MOVB R0,#10H
 MOVB R1,#20H
)
@GETP

After expansion:

 MOVB R0,#10H
 MOVB R1,#20H

5. Standard Macros

32

�� Example 2 ��

This example uses brackets [] and commas ‘,’ as parameter delimiters.

Before expansion:

@MACRO(GETP[ADR1, ADR2])(
 MOVB R0,#@ADR1
 MOVB R1,#@ADR2
)
@GETP[10H,20H]

After expansion:

 MOVB R0,#10H
 MOVB R1,#20H

�� Example 3 ��

This example uses space ‘,’ as parameter delimiters.

Before expansion:

@MACRO(GETP ADR1 ADR2)(
 MOVB R0,#@ADR1
 MOVB R1,#@ADR2
)
@GETP 10H 20H

After expansion:

 MOVB R0,#10H
 MOVB R1,#20H

�� Example 4 ��

This example specifies parameter delimiters only between some parameters.

Before expansion:

@MACRO(GETP ADR1,ADR2)(
 MOVB R0,#@ADR1
 MOVB R1,#@ADR2
)
@GETP 10H,20H

After expansion:

 MOVB R0,#10H
 MOVB R1,#20H

In this example, if white space follows the macro call’s real parameter delimiter ‘,’ then the second
parameter will be taken as a null string.

5. Standard Macros

33

�� Example 5 ��

This example uses local labels.

Before expansion:

@MACRO(SEND(FROM,TO,COUNT))LOCAL ACT(
 MOV X1,#0
 MOVB R2,#@COUNT
@ACT:
 MOVB A,@FROM[X1]
 MOVB @TO[X1],A
 INC X1
 DECB R2
 JC NE,@ACT
)
@SEND(100,200,3)
@SEND(300,400,2)

After expansion:

 MOV X1,#0
 MOVB R2,#3
ACT00:
 MOVB A,100[X1]
 MOVB 200[X1],A
 INC X1
 DECB R2
 JC NE,ACT00
 MOV X1,#0
 MOVB R2,#2
ACT01:
 MOVB A,300[X1]
 MOVB 400[X1],A
 INC X1
 DECB R2
 JC NE,ACT01

�� Example 6 ��

This example shows locality of parameters and local labels.

Before expansion:

@SET(ADR,100H)
@DEFINE(LABEL)(EXAMPLE_TEXT)
@MACRO(TEST<ADR,REDEF>)LOCAL LABEL(
 IN_LABEL = @LABEL
 IN_ADR = @ADR
 @DEFINE(REDEF) (NEW_TEXT)
 IN_REDEF = @REDEF
)
@TEST<200H,0FFFFH>
 OUT_LABEL = @LABEL
 OUT_ADR = @ADR
 OUT_REDEF = @REDEF

5. Standard Macros

34

After expansion:

 IN_LABEL = LABEL00
 IN_ADR = 200H
 IN_REDEF = 0FFFFH
 OUT_LABEL = EXAMPLE_TEXT
 OUT_ADR = 100H
 OUT_REDEF = NEW_TEXT

In this example, the user symbols ADR and LABEL have the same names as the parameter ADR
and local label LABEL. The latter meanings are valid within the user macro. The values of the
user symbols (ADR, LABEL) are passed without regard to the macro definition.

Also, a DEFINE macro is used within the user macro body. Even though it is meant to redefine a
parameter (REDEF), REDEF is not a parameter so it will define REDEF as a user symbol from
outside the macro.

�� Example 7 ��

This example shows a user macro called from within a macro. In this example, GETP and SEND
are called from within SEND2. The parameters passed to SEND2 are further passed as parameters
to these macros.

Before expansion:

@MACRO(SEND2 DX1 DX2 DX3)(
 @GETP @DX1 @DX2 @’defined in EX.3’
 ;
 @SEND(@DX1,@DX2,@DX3) @’defined in EX.5’
)
@SEND2 100 200 3

After expansion:

 MOVB R0,#100
 MOVB R1,#200
 ;
 MOV X1,#0
 MOVB R2,#3
ACT00:
 MOVB A,100[X1]
 MOVB 200[X1],A
 INC X1
 DECB R2
 JC NE,ACT00

�� Example 8 ��

This is an example of a recursive macro call. In this example, the RECTON macro will call itself
until the parameter CNT is 0. Note that strings, not numbers, are passed as parameters. Any
problems this causes can be solved by using the EVAL macro.

5. Standard Macros

35

Before expansion:

@MACRO(RECTON(SRC,DST,CNT))(
 ;
 MOVB A,@SRC ; CNT=@CNT
 ADCB A,@DST
 MOVB @DST,A
 @IF(@CNT>0)THEN(
 @RECTON(@SRC+2,@DST+2,@CNT-1)
)FI
)
@RECTON(20H,40H,3)

After expansion:

 ;
 MOVB A,20H ; CNT=3
 ADCB A,40H
 MOVB 40H,A
 ;
 MOVB A,20H+2 ; CNT=3-1
 ADCB A,40H+2
 MOVB 40H+2,A
 ;
 MOVB A,20H+2+2 ; CNT=3-1-1
 ADCB A,40H+2+2
 MOVB 40H+2+2,A
 ;
 MOVB A,20H+2+2+2 ; CNT=3-1-1-1
 ADCB A,40H+2+2+2
 MOVB 40H+2+2+2,A

�� Example 9 ��

This is an example of self-redefinition. The macro redefines itself from within itself.

Before expansion:

@MACRO(SUB1)(
SUB: MOVB P0, #PORT0
 MOVB P1, #PORT1
 DECB R0
 RT
 ;
 @MACRO(SUB1)(
 CAL SUB
)
)
@SUB1
@SUB1

After expansion:
SUB: MOVB P0, #PORT0
 MOVB P1, #PORT1
 DECB R0
 RT
 ;
 CAL SUB

5. Standard Macros

36

�� Example 10 ��

This example uses double expansion of macros and delimiters.

Before expansion:

@MACRO(ADD[P1+P2=P3])(
 @SET(@P1,@@P1+@P3)
)
@SET(CNT,10H)
CNT = @CNT
@ADD[CNT+=30H]
CNT = @CNT

After expansion:

CNT = 10H
CNT = 40H

In this example, the parameter P2 is not actually used. Thus, when the macro is called, it does not
matter what is passed. This example passes a null string.

The ‘@@P1’ in the macro body is expanded as follows.

@@P1 → @CNT → 10H

Therefore, the final form of the SET macro is as follows.

@SET(CNT,10H+30H)

By using MP’s multiple expansion of macros in this way, user symbols can be redefined by passing
them as parameters.

5.2 Symbol Definition

5.2.1 DEFINE

�� Format ��

@DEFINE (symbol) (balanced_text)
or

@DEF (symbol) (balanced_text)

�� Function ��

DEFINE assigns a character string expressed as balanced text to a symbol. The DEFINE call itself
expands to a null string.

5. Standard Macros

37

�� Example 1 ��

Before expansion:

@DEFINE(BYTELIST)(10H,20H,30H)
 DB @BYTELIST

After expansion:

 DB 10H,20H,30H

�� Example 2 ��

Before expansion:

@SET(CAT,10H)
@DEFINE(SYM)(@CAT)
@SET(CAT,20H)
 MOVB R0,#@SYM
@DEFINE(SYM)(@CAT)
 MOVB R0,#@SYM

After expansion:

 MOVB R0,#10H
 MOVB R0,#20H

5.2.2 SET

�� Format ��

@SET (symbol, expression)

�� Function ��

SET assigns the value of an expression to a symbol. Symbols defined with SET can be redefined
with another SET call or DEFINE call, and they can be redefined as user macros with the MACRO
call.

�� Example 1 ��

Before expansion:

@SET(AA,1101B+10B)
@AA
@SET(BB,@AA << 2)
@BB
@SET(CC,(@AA+@BB)/2)
@CC

After expansion:

0FH
3CH
25H

5. Standard Macros

38

�� Example 2 ��

Before expansion:

@SET(COUNTER,3)
@WHILE(@COUNTER > 0)(
 DB @COUNTER
 @SET(COUNTER,@COUNTER-1)
)

After expansion:

 DB 3H
 DB 2H
 DB 1H

5.2.3 MATCH

�� Format ��

@MATCH (symbol [[delimiter symbol]...]) (balanced_text)

�� Function ��

MATCH accepts balanced text as a character string, and assigns substrings as delimited by the
delimiter to the symbols in order. The MATCH call itself expands to a null string.

The rules for delimiters are exactly the same as those for MACRO macro parameter delimiters.

If the number of symbols is fewer than the substrings, then the entire remainder of the string will be
assigned to the final symbol.

�� Example 1 ��

Before expansion:

@MATCH(AA|BB&CC)(DOG|CAT&PIG,MOUSE)
@AA
@BB
@CC

After expansion:

DOG
CAT
PIG,MOUSE

In this example, ‘|’ and ‘&’ are used as delimiters. For each delimiter found in the text, the
corresponding symbol is defined.

5. Standard Macros

39

�� Example 2 ��

Before expansion:

@MATCH(W,NEXT)(1,2,3,4)
@REPEAT(4)(
 DB @W
 @MATCH(W,NEXT)(@NEXT)
)

After expansion:

 DB 1
 DB 2
 DB 3
 DB 4

In this example ‘,’ is used as a delimiter. Because the number of symbols in (1) is fewer than the
substrings, the assignments will be W= “1” and NEXT= “2,3,4.” By using the repeat macro,
NEXT can be changed to NEXT= “3,4” then NEXT= “4” and then NEXT=null string.

5.3 Processing Control

5.3.1 Comments

�� Format ��

@’text’
or

@’text end-of-line

�� Function ��

By using comment macros, comments can be coded anywhere within the source text. A comment
macro begins with the metacharacter followed by a single quotation mark (‘). It ends at the next
single quotation mark or line feed character (0AH) encountered. When MP encounters a comment
macro, it removes all characters from the metacharacter to the final mark.

Even if a macro call is coded within comment text, it will not be handled as a macro call.

There is no limit to the number of characters in comment text.

5. Standard Macros

40

�� Example ��

Before expansion:

@DEFINE(MODE)(RUN) @’ MODE SET
@’************************
@’ MODE SEL
@’************************
@IF(@EQS(@MODE,RUN))THEN(
 MOV STAT,#1 @’ RUN STATUS’
 CAL subRUN
)ELSE(
 MOV STAT,#0 @’ STOP STATUS’
 CAL subSTOP
)FI

After expansion:

 MOV STAT,#1
 CAL subRUN

5.3.2 Brackets

�� Format ��

@(balanced_text)

�� Function ��

The bracket macro removes from macro expansion processing all text from the left parenthesis to
the matching right parenthesis. However, escape macros and comment macros will still be
effective.

�� Example ��

Before expansion:

@DEFINE(STYP)(@(@@@@@))
; SPEED @STYP
@SUBSTR(@(1,2,3,4,5),3,5)

After expansion:

; SPEED @@@@@
2,3,4

5.3.3 Escapes

�� Format ��

@n

5. Standard Macros

41

�� Function ��

The escape macro is called by placing a decimal digit (n=1–9) after a metacharacter. When an
escape macro is called, the following n characters will not be evaluated. However, escape macros
are still effective.

With the escape macro, metacharacters can be inserted as text, commas can be added to text, and a
single parenthesis can be placed in a character string that requires balanced parentheses.

�� Example ��

Before expansion:

@DEFINE(HEADER)(@3))@ DATA @3@(()
;@HEADER

@MACRO(UM1(P1,P2,P3))(
; P1=<@P1> : P2=<@P2> : P3=<@P3>
)
@UM1(12,34,56,78)
@UM1(12,34@1,56,78)

After expansion:

;))@ DATA @((

; P1=<12> : P2=<34> : P3=<56,78>
; P1=<12> : P2=<34,56> : P3=<78>

5.3.4 METACHAR

�� Format ��

@METACHAR (balanced_text)

�� Function ��

METACHAR allows the metacharacter to be redefined. The first character of the balanced text
will be utilized as the new metacharacter. The balanced text may have any number of characters,
but it must not be a null string. The METACHAR call itself expands to a null string.

When the metacharacter is redefined with METACHAR, the character previously defined as the
metacharacter will no longer be handled as a metacharacter. The default metacharacter is ‘@.’

�� Example ��

The following example defines ‘%’ as the new metacharacter.

@METACHAR(%)

The following example defines ‘&’ as the new metacharacter.

@METACHAR(& NEW META.)

5. Standard Macros

42

5.4 String Comparisons

�� Format ��

@EQS (balanced_text_1, balanced_text_2)
@NES (balanced_text_1, balanced_text_2)
@LTS (balanced_text_1, balanced_text_2)
@LES (balanced_text_1, balanced_text_2)
@GTS (balanced_text_1, balanced_text_2)
@GES (balanced_text_1, balanced_text_2)

�� Function ��

These standard macros compare the two balanced texts delimited by the comma, and depending on
the result, they return a string that indicates a logical value. If the result is true, the macro will
expand to ‘-1.’ If the result is false, the macro will expand to ‘00.’ Spaces, tabs, and carriage
return codes within the texts are also compared.

The comparison of each macro is given below.

EQS True if both texts are equal.
NES True if both texts are not equal.
LTS True if value of first text is less than value of second text.
LES True if value of first text is less than or equal to value of second text.
GTS True if value of first text is greater than value of second text.
GES True if value of first text is greater than or equal to value of second text.

�� Example 1 ��

Before expansion:

@LES(ABCD,ABCD)
@LES(abcd,ABCD)
@LES(ABCD,abcd)

After expansion:

-1
00
-1

5. Standard Macros

43

�� Example 2 ��

Before expansion:

@DEFINE(OPERATION)(MUL)
@IF(@EQS(@OPERATION,ADD))THEN(
 ADD A,ER0
)ELSE(
 @IF(@EQS(@OPERATION,SUB))THEN(
 SUB A,ER0
)ELSE(
 MOV ER0,A
 @IF(@EQS(@OPERATION,MUL))THEN(
 MUL
)ELSE(
 DIV
)FI
)FI
)FI

After expansion:

 MOV ER0,A
 MUL

5.5 String Operations

5.5.1 EVAL

�� Format ��

@EVAL (expression)

�� Function ��

EVAL returns a string expressing a hexadecimal number. The hexadecimal number is the value
obtained by analyzing the expression. The operators described in Section 3.4.2, “Expressions,”
can be used within the expression.

The return value is the string expressing the hexadecimal number suffixed with an ‘H.’ If the first
character would be an alphabetic letter (A-F), then it will be prefixed with the digit 0 in order to
distinguish it from a symbol.

�� Example ��

Before expansion:

 MOV A,#@EVAL(1+1)
COUNT1 EQU @EVAL(33H + 15H + 0F00H)
 ADD A,#@EVAL(10H-((13+6) * 2)+7)

@SET(NUM1,44)
@SET(NUM2,25H)
 AND A,#@EVAL(@NUM1 <= @NUM2)
 AND A,#@EVAL(@NUM1 > @NUM2)

5. Standard Macros

44

After expansion:

 MOV A,#2H
COUNT1 EQU 0F48H
 ADD A,#-0FH
 AND A,#0H
 AND A,#-1H

5.5.2 LEN

�� Format ��

@LEN (balanced_text)

�� Function ��

LEN returns a string expressing a hexadecimal number. The hexadecimal number is the number of
bytes that make up the length of the balanced text.

The return value is the string expressing the hexadecimal number suffixed with an ‘H.’ If the first
character would be an alphabetic letter (A-F), then it will be prefixed with the digit 0 in order to
distinguish it from a symbol.

�� Example ��

Before expansion:

@DEFINE(STR1)(Cross)
@DEFINE(STR2)(Assembler)
 DB @LEN(123456)
 DB @LEN(1,2,3)
 DB @LEN()
 DB @LEN(@STR1),’@STR1’
 DB @LEN(@STR2),’@STR2’
 DB @LEN(@STR1 @STR2),’@STR1 @STR2’

After expansion:

 DB 6H
 DB 5H
 DB 0H
 DB 5H,’Cross’
 DB 9H,’Assembler’
 DB 0FH,’Cross Assembler’

5.5.3 SUBSTR

�� Format ��

@SUBSTR(balanced_text, expression_1, expression_2)

5. Standard Macros

45

�� Function ��

SUBSTR returns a specified substring within the text.

Expression 1 specifies the start character position of the substring. Expression 2 specifies the
number of characters included in the substring.

If expression 1 is zero or less, or if its value is greater than argument string’s length, then SUBSTR
will expand to a null string. If expression 2 is zero or less, SUBSTR will expand to a null string.
If its value is greater than the remaining length of the string, then SUBSTR will return all
characters from the start character to the end of the string.

�� Example ��

Before expansion:

@DEFINE(FILE)(A:\USR\PROG.SRC)
 DB ’@SUBSTR(ABCDEFG,8,1)’
 DB ’@SUBSTR(ABCDEFG,3,0)’
 DB ’@SUBSTR(ABCDEFG,5,1)’
 DB ’@SUBSTR(ABCDEFG,5,100)’
 DB ’@SUBSTR(123(45)6789,4,4)’
 DB ’@SUBSTR(@FILE,8,@LEN(@FILE)-7)’

After expansion:

 DB ’’
 DB ’’
 DB ’E’
 DB ’EFG’
 DB ’(45)’
 DB ’PROG.SRC’

5.6 Expansion Control

5.6.1 IF

�� Format ��

@IF (expression)THEN (balanced_text_1)[ELSE(balanced_text_2)]FI

�� Function ��

The IF macro evaluates its expression, and expands the text depending on the result.

IF first evaluates the expression. If its value is true (non-zero), then the IF call will expand
balanced text 1. If the expression value is false (zero) and an ELSE clause is provided, then the IF
call will expand balanced text 2. If the expression value is false but no ELSE clause is provided,
then the IF call will return a null string.

An IF call is terminated with FI. IF and FI must balance.

5. Standard Macros

46

IF calls can be nested. During nesting, an ELSE clause will refer to the newest IF that is still open
(not terminated with FI), and an FI will terminate the newest IF that is still open.

�� Example ��

Before expansion:

@DEFINE(OPERATION)(MUL)
@IF(@EQS(@OPERATION,ADD))THEN(
 ADD A,ER0
)ELSE(
 @IF(@EQS(@OPERATION,SUB))THEN(
 SUB A,ER0
)ELSE(
 MOV ER0,A
 @IF(@EQS(@OPERATION,MUL))THEN(
 MUL
)ELSE(
 DIV
)FI
)FI
)FI

After expansion:

 MOV ER0,A
 MUL

5.6.2 IFDEF

�� Format ��

@IFDEF (symbol)THEN (balanced_text_1)[ELSE(balanced_text_2)]FI

�� Function ��

The IFDEF macro evaluates its symbol, and expands the text depending on the result.

If the symbol is currently valid as a user macro or user symbol, then the IFDEF macro will expand
balanced text 1. If the symbol is undefined and an ELSE clause is provided, then the IFDEF macro
will expand balanced text 2. If the symbol is undefined but no ELSE clause is provided, then the
IFDEF macro will return a null string.

�� Example ��

Before expansion:

@DEFINE(SYM)()
@IFDEF(SYM)THEN(
 ADD A,ER0
)ELSE(
 MOV ER0,A
)FI

5. Standard Macros

47

After expansion:

 ADD A,ER0

5.6.3 IFUNDEF

�� Format ��

@IFUNDEF (symbol)THEN (balanced_text_1)[ELSE(balanced_text_2)]FI

�� Function ��

The IFUNDEF macro evaluates its symbol, and expands the text depending on the result.

If the symbol is not currently valid as a user macro or user symbol, then the IFUNDEF macro will
expand balanced text 1. If the symbol is valid and an ELSE clause is provided, then the IFUNDEF
macro will expand balanced text 2. If the symbol is valid but no ELSE clause is provided, then the
IFUNDEF macro will return a null string.

�� Example ��

Before expansion:

@DEFINE(SYM)()
@IFUNDEF(SYM)THEN(
 ADD A,ER0
)ELSE(
 MOV ER0,A
)FI

After expansion:

 MOV ER0,A

5.6.4 WHILE

�� Format ��

@WHILE (expression) (balanced_text)

�� Function ��

The WHILE macro evaluates its expression, and expands the text depending on the result.

WHILE first evaluates the expression. If its value is true (non-zero), then the WHILE call will
expand the balanced text. If not, then it will not expand the balanced text. If the balanced text was
expanded, then the expression is re-evaluated. If its value is true, then the WHILE call will again
expand the balanced text. This operation is repeated until the value of the expression becomes
false (zero). Expressions use the operators described in Section 3.4.2, “Expressions.”

5. Standard Macros

48

Macro processing continues until the expression becomes false, so the balanced text must modify
the expression. If it does not, then the WHILE macro cannot terminate.

Expansion can be forcibly terminated with the EXIT macro.

If the balanced text is expanded more than 65535 times, then MP will assume it is in an infinite
loop and will forcibly terminate the WHILE macro.

�� Example ��

Before expansion:

@SET(COUNT,3)
@WHILE(@COUNT > 0)(
 DW @COUNT
 @SET(COUNT,@COUNT-1)
)

After expansion:

 DW 3H
 DW 2H
 DW 1H

5.6.5 REPEAT

�� Format ��

@REPEAT (expression) (balanced_text)

�� Function ��

The REPEAT macro expands the balanced text the specified number of times.

The expression gives the number of times. It is evaluated only one time at the start of the macro
call. Expressions use the operators described in Section 3.4.2, “Expressions.”

Expansion can be forcibly terminated with the EXIT macro.

�� Example ��

Before expansion:

@REPEAT(3)(
 NOP
)
@SET(COUNT,0FFFBH)
@REPEAT(0FFFFH - @COUNT)(
 DW @COUNT
)

5. Standard Macros

49

After expansion:

 NOP
 NOP
 NOP
 DW 0FFFBH
 DW 0FFFBH
 DW 0FFFBH
 DW 0FFFBH

5.6.6 EXIT

�� Format ��

@EXIT

�� Function ��

EXIT forcibly terminates expansion of the most recently called REPEAT, WHILE, or user macro.
Generally it is used to prevent infinite loops (for example, a WHILE expression that will never
become false or a user macro that recycles endlessly). Multiple EXIT macros can be placed within
the same macro.

If an EXIT macro is placed anywhere other than the macro body of a WHILE, REPEAT, or user
macro, then MP will recognize it as a syntax error.

�� Example ��

Before expansion:

@SET(COUNT,0FFF0H)
@WHILE(@COUNT < 0FFFFH)(
 @COUNT
 @SET(COUNT,@COUNT+1)
 @IF(@COUNT > 0FFF3H)THEN(
 @EXIT
)FI
)
@SET(COUNT,0FFF0H)
@REPEAT(10)(
 @COUNT
 @SET(COUNT,@COUNT+1)
 @IF(@COUNT > 0FFF3H)THEN(
 @EXIT
)FI
)

5. Standard Macros

50

After expansion:

0FFF0H
0FFF1H
0FFF2H
0FFF3H
0FFF0H
0FFF1H
0FFF2H
0FFF3H

5.7 Console I/O Control

While MP is running, characters can be entered from and output to the console. During output, the
color of the characters can be specified.

5.7.1 IN

�� Format ��

@IN

�� Function ��

The IN macro outputs a ‘>’ to the console as an input prompt, and then returns one line typed at the
console (including the carriage return code CR (0DH) and LF (0AH)).

Up to 128 characters can be input. All characters beyond this will be ignored. The carriage return
code counts as one character.

�� Example ��

This example assumes that ‘MODEL-1’ is input from the console in response to the IN macro
prompt.

Before expansion:

; ***********************
@OUT(INPUT MODEL-1)
@DEFINE(DATA)(@IN)
; LENGTH = @LEN(@DATA)
; INPUT = @SUBSTR(@DATA,1,@LEN(@DATA)-1)
; ***********************

After expansion:

; ***********************
; LENGTH = 8H
; INPUT = MODEL-1
; ***********************

5. Standard Macros

51

5.7.2 OUT

�� Format ��

@OUT (balanced_text)

�� Function ��

The OUT macro outputs the text to the console. The OUT call itself is expanded to a null string.

�� Example 1 ��

Before expansion:

@DEFINE(CR)(
)
@DEFINE(TYPE)(MODEL-3)
@OUT(** COMPILE INFO.

)
@OUT(** TARGET : @TYPE@CR)

After expansion (the following will be output to the console):

** COMPILE INFO.

** TARGET : MODEL-3

�� Example 2 ��

@SET(COUNT,3)
@WHILE(@COUNT>0)(
 DB @COUNT

 @SET(COUNT,@COUNT) �

 @OUT(COUNT = @COUNT) �

)

In this example, at � @COUNT is written instead of @COUNT-1, which will cause the WHILE
macro to enter an infinite loop. By inserting an OUT macro at �, one can understand the
abnormal operation by viewing the screen.

By using the OUT macro to evaluate macro expansion during operation, one can raise development
efficiency.

5.7.3 COLOR

�� Format ��

@COLOR (balanced_text)

�� Function ��

The COLOR macro specifies the color of characters when output to the console. The first
character of the balanced text is used to specify the color. That specified character is a decimal
digit

5. Standard Macros

52

corresponding to the following colors.

Specified Character Color
1 Blue
2 Red
3 Violet
4 Green
5 Cyan
6 Yellow
7 White

The COLOR call itself expands to a null string.

�� Example ��

Before expansion:

@COLOR(2)
@OUT(
***** Displayed in red *****)

@OUT(@COLOR(5)
***** Displayed in cyan *****)

After expansion (the following will be displayed to the console):

***** Displayed in red *****
***** Displayed in cyan *****

5.8 File Include

While MP is running, contents of other files can be inserted anywhere in the source text. The
inserted contents are handled as if they had been at that location from the beginning.

There is no limit to the number of included files. However, when other files are included within
included files, the depth of inclusion nesting is limited to 13 levels.

5.8.1 INCLUDE

�� Format ��

@INCLUDE (file_specification)

�� Function ��

INCLUDE inserts the contents of the specified file at the current location.

If a path is specified in the file specification, then MP will search for the file in that path. If no
path is specified, then MP will search the current directory.

5. Standard Macros

53

In addition, if a path is specified with the IC option when MP is invoked, then this path will be
used. If a path is then specified in the file specification, then it will be ignored. For example,
assume the following text.

@INCLUDE(B:\USER\SUB.ASM)

Also assume that MP is invoked with the following.

MP MAIN.ASM IC(C:\INC\)

Then despite the text specification, the referenced path will be C:\INC\ instead of B:\USER\.

5.8.2 MACROLIB

�� Format ��

@MACROLIB (file specification)

�� Function ��

MACROLIB extracts the macro definitions of the specified file and incorporates them in MP’s
symbol table. Unlike INCLUDE, MACROLIB disregards all other parts of the file (expansions
and other strings). By using MACROLIB, one can execute a series of user macro definitions in
with one macro, and easily manage them as a group.

The MACROLIB macro itself expands to a null string.

If a path is specified in the file specification, then MP will search for the file in that path. If no
path is specified, then MP will search the current directory.

In addition, if a path is specified with the ML option when MP is invoked, then this path will be
used. If a path is then specified in the file specification, then it will be ignored. For example,
assume the following text.

@MACROLIB(B:\USER\SUB.ASM)

Also assume that MP is invoked with the following.

MP MAIN.ASM ML(C:\INC\)

Then despite the text specification, the referenced path will be C:\INC\ instead of B:\USER\.

INCLUDE and MACROLIB macros must be directly coded at the locations where their expansion
results will be in the output file. In other words, file contents incorporated with INCLUDE or
MACROLIB cannot be passed directly to symbols, such as parameters.

For example, the following example is valid.

@IF(1)THEN(
 @INCLUDE(LIB.H)
)FI

However, the example below assigns the expansion results to SYM, so it is invalid.

@DEFINE(SYM)(@INCLUDE(LIB.H))

5. Standard Macros

54

5.9 Listing Control

5.9.1 GEN, GENONLY

�� Format ��

@GEN
@GENONLY

�� Function ��

These macros specify the output format of expanded text.

GENONLY specifies that only expanded text is to be output.

GEN specifies that both expanded text and all macro definitions are to be output. The mark
specified with the GEN option when MP was invoked will be inserted at the start of the definition
line. The default mark is “;++.”

These specifications are effective until the next GEN or GENONLY macro is called within the
text.

GEN and GENONLY themselves expand to null strings.

�� Example ��

Before expansion:

@GEN
@MACRO(GETP(DX1,DX2))(
 MOVB R0,#@DX1
 MOVB R1,#@DX2
)
 MOV A,#50H
@GETP(10,20)

 RT
;-----------------------
@GENONLY
@MACRO(GETP(DX1,DX2))(
 MOVB R0,#@DX1
 MOVB R1,#@DX2
)
 MOV A,#50H
@GETP(30H,40H)

 RT

5. Standard Macros

55

After expansion:

;++@MACRO(GETP(DX1,DX2))(
;++ MOVB R0,#@DX1
;++ MOVB R1,#@DX2
;++)
 MOV A,#50H
;++@GETP(10H,20H)
 MOVB R0,#10H
 MOVB R1,#20H

 RT
;----------------------------
;++@GENONLY
 MOV A,#50H
 MOVB R0,#30H
 MOVB R1,#40H

 RT

5.10 System Control

5.10.1 SYSTEM

�� Format ��

@SYSTEM (balanced text)

�� Function ��

SYSTEM executes the command specified by the text (including internal commands).

The SYSTEM call itself expands to a null string.

�� Example ��

Before expansion:

@SYSTEM(DIR/W)

After expansion:

The DIR command is executed, and the directory is displayed on the console.

5.10.2 EXIST

�� Format ��

@EXIST (file specification)

�� Function ��

EXIST determines whether or not the specified file exists, and returns a logical value depending on

5. Standard Macros

56

the result. If the file exists, EXIST will expand to true (‘-1’). If it does not exist, EXIST will
expand to false (‘00’).

�� Example ��

Before expansion:

@DEFINE(CR)(
)
@OUT(@CR***** INCLUDE FILE SELECT ***** @CR)

@WHILE(1)(
 @COLOR(7)
 @OUT(Enter File Name:)
 @DEFINE(WORK)(@IN)
 @DEFINE(NAME)(@SUBSTR(@WORK,1,@LEN(@WORK)-1))
 @IF(@EXIST(@NAME))THEN(
 @COLOR(5)
 @OUT(”@NAME” FILE EXIST.@CR)
 @EXIT
)
 ELSE(
 @COLOR(2)
 @OUT(”@NAME” FILE NOT FOUND.@CR)
)FI
)
@INCLUDE(@NAME)

After expansion:

The file specified by console input will be included.

5.10.3 SOURCE

�� Format ��

@SOURCE

�� Function ��

SOURCE expands to the name of the source file that was specified when MP was invoked.

�� Example ��

Command line invoking MP:

MP PRG.SRC

Before expansion:

 DB ’@SOURCE’

After expansion:

 DB ’PRG.SRC’

5. Standard Macros

57

5.10.4 FDATE

�� Format ��

@FDATE

�� Function ��

FDATE expands to an 8-character string that indicates the date of the source file that was specified
when MP was invoked.

Only the lower two digits of the year are returned. The date display format is as follows.

xx-xx-xx (year-month-date)

�� Example ��

Before expansion:

 DB ’@FDATE’

ter expansion:

 DB ’87-10-21’

5.10.5 FTIME

�� Format ��

@FTIME

�� Function ��

FTIME expands to an 5-character string that indicates the time of the source file that was specified
when MP was invoked. The time display format is as follows.

xx:xx (hour:minute)

�� Example ��

Before expansion:

@FTIME

After expansion:

12:16

5. Standard Macros

58

5.10.6 DATE

�� Format ��

@DATE

�� Function ��

DATE expands to an 8-character string that indicates the current date of the operating system.

Only the lower two digits of the year are returned. The date display format is as follows.

xx-xx-xx (year-month-date)

�� Example ��

Before expansion:

 DB ’@DATE’

After expansion:

 DB ’87-10-21’

5.10.7 TIME

�� Format ��

@TIME

�� Function ��

TIME expands to an 5-character string that indicates the current time of the operating system. The
time display format is as follows.

xx:xx (hour:minute)

�� Example ��

Before expansion:

@TIME

After expansion:

12:16

5. Standard Macros

59

5.11 Purging Symbol Definitions

5.11.1 PURGE

�� Format ��

@PURGE (symbol [, symbol...])

�� Function ��

PURGE purges the record of the specified symbols. The symbols must be currently defined user
symbols or user macro names.

When two or more symbols are specified, delimit them with commas (,).

The PURGE call itself expands to a null string.

�� Example ��

Before expansion:

@DEFINE(SYM)(TEXT)
@IFDEF(SYM)THEN(
 SYM IS DEFINED
)ELSE(
 SYM IS UNDEFINED
)FI
;
@PURGE(SYM)
@IFDEF(SYM)THEN(
 SYM IS DEFINED
)ELSE(
 SYM IS UNDEFINED
)FI

After expansion:

 SYM IS DEFINED
;
 SYM IS UNDEFINED

5.11.2 ALLPURGE

�� Format ��

@ALLPURGE

�� Function ��

ALLPURGE purges all currently defined user symbols or user macro names. The ALLPURGE
call itself expands to a null string.

5. Standard Macros

60

�� Example ��

Before expansion:

@DEFINE(SYM1)(TEXT1)
@DEFINE(SYM2)(TEXT2)
@DEFINE(SYM3)(TEXT3)
@DEFINE(SYM4)(TEXT4)
@ALLPURGE
;
@IFUNDEF(SYM1)THEN(SYM1 IS UNDEFINED)FI
@IFUNDEF(SYM2)THEN(SYM2 IS UNDEFINED)FI
@IFUNDEF(SYM3)THEN(SYM3 IS UNDEFINED)FI
@IFUNDEF(SYM4)THEN(SYM4 IS UNDEFINED)FI

After expansion:

;
SYM1 IS UNDEFINED
SYM2 IS UNDEFINED
SYM3 IS UNDEFINED
SYM4 IS UNDEFINED

6. Error Messages

61

6. Error Messages
Errors fall into two categories, macro errors and fatal errors, depending on their characteristics.

Macro errors allow processing to continue. Mainly syntax errors are classified as macro errors.
When a macro error occurs, MP displays a message on the console and continues processing.

Fatal errors do not allow processing to continue. Mainly I/O errors are classified as fatal errors.
When a fatal error occurs, MP displays a message on the console and immediately suspends
processing.

6.1 Macro Error Messages

Macro error messages are displayed in the following format.

file_name (line_number) : error error_number : message

If there is an error on the command line, then the following message will be output.

command error error_number : message

The meaning of each item is given below.

file_name Name of the source file that generated the error.
line_number Line number in the source file that generated the error.
error_number A number indicating the type of error.
message Brief message describing the error.

The following list of messages is given in order of error numbers.

name Name of the macro that generated the error.
character Character that caused the error.

No. Message

00 undefined macro name : name

An undefined macro name was called, or a PURGE macro specified an undefined
symbol.

01 bad macro specification

The characters following a metacharacter were not recognized as a macro name.

02 bad macro position : name

A command option was used within the source text, or a standard macro was used as a
command option.

6. Error Messages

62

03 missing balanced text

A problem exists with the balanced text of a standard macro. Text may be missing, or
parentheses within the text may not balance.

04 missing “THEN” in “IF”

The keyword THEN has been left out of an IF, IFDEF, or IFUNDEF macro.

05 missing “FI” in “IF”

The keyword FI has been left out of an IF, IFDEF, or IFUNDEF macro.

06 too long expanded line

The number of characters in one line of output text exceeds 4096 characters. All further
characters beyond 4096 will be ignored.

07 bad symbol or symbol list format

A macro name, parameter list, or local list coded in a MACRO macro, or a symbol
coded in a MATCH, SET, DEFINE, IFDEF, IFUNDEF, or PURGE macro contains an
error.

08 bad COLOR macro character : character

The character specifying color for the COLOR macro is not ‘1’–‘7.’

09 bracket macro not closed

No right bracket was found for a bracket macro.

10 bad filename or path name

The file specification or path specification for an EXT, ERRORPRINT, SPA, SPB,
INCLUDE, or MACROLIB option was incorrect, or the file specification for an
INCLUDE, MACROLIB, or EXIST macro was incorrect.

11 ERRORPRINT already specified

The ERRORPRINT option has already been specified.

12 EXT already specified

The EXT option has already been specified.

13 SPA/SPB already specified

The SPA or SPB option has already been specified.

14 INCLUDE or MACROLIB already specified

The INCLUDE or MACROLIB option has already been specified.

15 INCLUDE/MACROLIB bad position

An INCLUDE or MACROLIB macro is coded at an incorrect location.

6. Error Messages

63

16 INCLUDE/MACROLIB nesting too deep

Nesting for INCLUDE or MACROLIB macros exceeds 13 levels.

17 illegal attempt to define macro : name

A standard macro name would be used as a user macro name, user symbol, parameter, or
local label.

18 redefined parameter or label in this macro : name

A parameter or local label with the same name would be used in the same user macro.

19 illegal expression

An expression is coded incorrectly.

20 divided by zero

A division by 0 is coded within an expression.

21 value overflow

The calculated result of an expression exceeds 0FFFFH.

22 illegal EXIT macro

An EXIT macro was not coded in a WHILE, REPEAT, or user macro.

23 missing delimiter :character

A delimiter character could not be found in a user macro call.

24 illegal meta_character : character

An inappropriate character was specified as the metacharacter with the METACHAR
macro.

25 non stop loop in WHILE

The number of loops of a WHILE macro exceeded 0FFFF times.

6. Error Messages

64

6.2 Fatal Error Messages

Fatal error messages are displayed in the following format.

fatal error error_number : message

The meaning of each item is given below.

error_number A number indicating the type of error.
message Brief message describing the error.

The following list of messages is given in order of error numbers.

filename Name of the file that generated the error.

No. Message

01 file not found : filename

The source file or include file could not be found.

02 can not open file : filename

The expanded file, symbol file, or error file could not be opened.

03 not enough memory

There is not enough memory to continue processing.

04 file seek error

An error occurred during a file seek.

05 file close error : filename

The file could not be closed. Disk capacity could be insufficient.

06 internal error

A hardware problem or an MP internal error occurred.

Appendix

65

Appendix
A. Standard Macro Table

@MACRO(macro_name [parameter_list])[local_list](macro body)
@DEFINE(symbol)(balanced_text)
@SET(symbol, expression)
@MATCH(symbol[,symbol...])(balanced_text)
@’text’ or end-of-line
@(balanced_text)
@n
@METACHAR(balanced_text)
@EQS(balanced_text_1, balanced_text_2)
@NES(balanced_text_1, balanced_text_2)
@GTS(balanced_text_1, balanced_text_2)
@GES(balanced_text_1, balanced_text_2)
@LTS(balanced_text_1, balanced_text_2)
@LES(balanced_text_1, balanced_text_2)
@EVAL(expression)
@LEN(balanced_text)
@SUBSTR(balanced_text, expression_1, expression_2)
@IF(expression)THEN(balanced_text)[ELSE(balanced_text)]FI
@IFDEF(symbol)THEN(balanced_text)[ELSE(balanced_text)]FI
@IFUNDEF(symbol)THEN(balanced_text)[ELSE(balanced_text)]FI
@WHILE(expression)(balanced_text)
@REPEAT(expression)(balanced_text)
@EXIT
@IN
@OUT(balanced_text)
@COLOR(balanced_text)
@INCLUDE(file_specification)
@MACROLIB(file_specification)
@GEN
@GENONLY
@SYSTEM(balanced_text)
@EXIST(file_specification)
@SOURCE
@FDATE
@FTIME
@DATE
@TIME
@PURGE[symbol[,symbol...]]
@ALLPURGE

Appendix

66

B. Option Table

The table below shows the options that can be used on the invoking command line.

Option Format Abbreviated Function
Form

ERRORPRINT[(file_specification)] EP Specifies output destination of error messages.

EXT[(file_specification)] — Specifies output destination of text after macro
expansion.

SPA[(file_specification)] — Specifies output of symbol table contents.

SPB[(file_specification)] — Specifies output of symbol table contents.

INCLUDE(path_specification) IC Specifies path name of include files.

MACROLIB(path_specification) ML Specifies path name of include files.

GEN[(mark_specification)] GE Specifies the format of output text.

GENONLY GO Specifies only expanded lines as output text.

DEFINE(symbol)(string) DEF Defines a user symbol.

DL — Eliminates white space created by macro
expansion.

Note: ‘—’ indicates that no abbreviated form exists.

The following options are specified as defaults when MP is invoked.

Option Function

ERRORPRINT Output to console.

EXT Output to a file with the source file name and extension .Q.

GENONLY Output expanded lines only.

Appendix

67

C. Function Changes From Ver. 1.0X

1. Invoke time options

� The DL option has been added. White space created by macro expansion is eliminated when
the DL option is specified.

� The source line mark when GEN is specified has been changed. Also, the mark can be
specified when MP is invoked.

� The file specification may be omitted with the EXT and ERRORPRINT options.

2. Standard macros

� The PURGE and ALLPURGE macros have been added.

� The bracket macro has been added.

� The IFDEF and IFUNDEF macros have been added.

� The number of user macro parameters and local labels is unlimited.

� Any character can be used as the user macro parameter delimiter.

� The INCLUDE and MACROLIB macros are not affected by the system configuration.

� The final character (carriage return code) of the IN macro counts as one character.

� The number of characters output by the OUT macro is unlimited.

� The coding location of all macros except EXIT, INCLUDE, and MACROLIB is unrestricted.

3. General coding

� The number of characters in standard macro text or user macro real parameters is unlimited.

� Multiple expansion of macros (@@macro_name) is now possible.

4. Output files and screen output

� The symbol file format has been updated.

� The error message output format has been updated.

� Macro error line numbers display the number of the first line of the macro that generated the
error.

� In Version 1.00 a buzzer sounded when MP terminated if there had been format errors, and
the termination message was displayed in red. These functions have been removed.

	1.Introduction
	1.1 Functional Overview
	1.1.1 Macro Functions
	1.1.2 Macro Application Examples

	1.2 Processor Overview
	1.3 Macroprocessor Language
	1.4 MP Output
	1.5 Path and File Specifications
	1.6 File Inclusion
	1.7 Code Examples

	2. MP Operation
	2.1 Invoking MP
	2.2 Source File Name
	2.3 Options
	2.4 Screen Display

	3. Macroprocessor Language Format
	3.1 Character Set Usable in Source Text
	3.2 Macro Definitions, Calls, and Expansion
	3.3 Symbols
	3.4 Expression Format
	3.4.1 Constants
	3.4.2 Operators
	3.4.2.1 Arithmetic operators
	3.4.2.2 Logical operator
	3.4.2.3 Bitwise logical operators
	3.4.2.4 Special operators
	3.4.2.5 Relational operators
	3.2.4.6 Pecedence

	3.5 Balanced Text

	4. Simple Macro Examples
	4.1 MACRO Macro Examples
	4.2 DEFINE Macro Examples

	5. Standard Macros
	5.1 User-Defined Macros
	5.1.1 MACRO
	5.1.2 Calling User Macros
	5.1.3 Examples of Defining and Calling User Macros

	5.2 Symbol Definition
	5.2.1 DEFINE
	5.2.2 SET
	5.2.3 MATCH

	5.3 Processing Control
	5.3.1 Comments
	5.3.2 Brackets
	5.3.3 Escapes
	5.3.4 METACHAR

	5.4 String Comparisons
	5.5 String Operations
	5.5.1 EVAL
	5.5.2 LEN
	5.5.3 SUBSTR

	5.6 Expansion Control
	5.6.1 IF
	5.6.2 IFDEF
	5.6.3 IFUNDEF
	5.6.4 WHILE
	5.6.5 REPEAT
	5.6.6 EXIT

	5.7 Console I/O Control
	5.7.1 IN
	5.7.2 OUT
	5.7.3 COLOR

	5.8 File Include
	5.8.1 INCLUDE
	5.8.2 MACROLIB

	5.9 Listing Control
	5.9.1 GEN, GENONLY

	5.10 System Control
	5.10.1 SYSTEM
	5.10.2 EXIST
	5.10.3 SOURCE
	5.10.4 FDATE
	5.10.5 FTIME
	5.10.6 DATE
	5.10.7 TIME

	5.11 Purging Symbol Definitions
	5.11.1 PURGE
	5.11.2 ALLPURGE

	6. Error Messages
	6.1 Macro Error Messages
	6.2 Fatal Error Messages

	Appendix
	A. standard Macro Table
	B. Option Table
	C. Function Changes From Ver.1.0X

