MSM7524

OKI Semiconductor

DTMF Transceiver

GENERAL DESCRIPTION

The MSM7524 is the single chip DTMF transceiver –generator/receiver– with the call progress tone generator/detector and the special tone –1300 Hz in the first version, possible to be modified– detector.

Each function block can be controlled by an external MCU via 4-bit processor interface. The chip operates with +5 V single supply with low power consumption, and is suitable for the telephone terminal equipment.

FEATURES

- Power supply voltage : +5 V ±10%
- Low power consumption
 Operating mode : 8 mA Typ.
 Power down mode : 10 μA Typ.
- 4-bit processor interface
- Dynamic range of DTMF receiver : 40 dB
- Low signal distortion output from DTMF generator
- Call progress tone detector : 330 to 640 Hz
- Call progress tone generator : 350/400/440/480 Hz
- Special tone detector: 1300 Hz ±20 Hz (for FAX)
- 3.58 MHz crystal oscillator circuit on chip
- Package :

32-pin plastic SSOP (SSOP32-P-430-1.00–K) (Product name : MSM7524GS-K)

BLOCK DIAGRAM

*C. P. T : Call Progress Tone

PIN CONFIGURATION (TOP VIEW)

32-Pin Plastic SSOP

PIN DESCRIPTION

Pin No.	Name	I/O	Description
1	GS1	0	Output and two input pins of the on-chip operational amplifier (1).
2	PBI-	I	These pins are used to implement the pre-amplifier for DTMF tone
3	PBI+	I	receiving. Refer to Fig. 1.
			(A) (B) (CPI) + (CPI
			 • R1, R2, R3 ≥ 50 kΩ, C1 = 2.2 μF
			• Voltage Gain; 1 + R2/R3(A)
			R2/R3(B)
			Figure 1 Receive Gain Adjustment
			Voltage gain should be less than 10(20 dB).
			DTMF receiver's detect and non-detect amplitude are specified as
			the receive signal level at GS1.
4	00	0	On-chip signal ground.
4	SG	0	The potential is approximately half of VDD.
5	CPAO	0	Output and inverting input pins of the on-chip operational amplifie
6	CPA-		(II). The non-inverting input is internally connected to SG. When
0	ULX.	-	not using this amplifier, these pins should be wired to each other.
			Call progress tone (CPT) output. Tone amplitude is approximately
			0 dBm on CPTO, but the transmit signal level can be adjusted by
			using the on-chip operational amplifier (II). Refer to Fig. 2.
			Make/Break of CPT transmitting is controlled through the
			processor interface.
			PBTO/CPTOGENERATOR
7	CPTO	0	
			N5 ≥ ↓ 4 PBA0/CPA0 SG
			• R4, R5, ≥ 20 kΩ
			• Voltage Gain; $R5/R4 \le 10(20 \text{ dB})$
			Figure 2 Transmit Gain Adjustment

Pin No.	Name	I/O	Description
0	10		Analog ground, 0 V.
8	AG	-	This pin should be common with DG (pin 23) at the system ground point.
9	V _{DD}	_	Power supply, +5 V.
			Power down control.
10	PON		When digital "1" is applied to $\overline{\text{PON}}$, the whole circuitry on chip falls
10	PUN		into the power down mode.
			This pin is pulled-up to digit "1" internaly.
			X1 and X2 are connected to a 3.579545 MHz crystal to generate a
11	X1		crystal clock for the chip.
			- If required to use an external clock, X1 should be left open and X2
12	X2	0	should be connected to the external clock source via a capacitor
			of 100 pF.
13	CLKO	0	3.579545 MHz clock output.
			External processor interface clock input.
			During "WRITE" mode, the data on D4 to D1 pins are written into the
			internal register at the falling edge of SCLK. During "READ" mode,
14	SCLK	1	the output data from the internal register appears on D4 to D1 pins
			at the rising edge of SCLK.
			SCLK is not required to be a periodic clock pulse stream. SCLK is
			internally pulled-down to digital "0".
			Chip select.
15	CS	1	When $\overline{\text{CS}}$ is on digital "0", "READ" and "WRITE" operations become
			possible. \overline{CS} is internally pulled-down.
			Address data input.
			When digital "1" is applied to ADO, data writing into the control
10			register and data reading out from the status register become possible.
16	ADO		When digital "0" is applied to, data writing into the DTMF tone transmit
			register and data reading out from the DTMF tone receive register
			become possible. AD0 is internally pulled-down.
			"READ" and "WRITE" control signal input.
17	R/W		"READ" or "WRITE" operation becomes possible during digital "1" or "0",
17	R/W		respectively.
			R/\overline{W} is internally pulled-down to digital "0".
18	D4	I/0	
19	D3	I/0	4-bit micro-processor interface bus.
20	D2	I/O	All pins are internally pulled-down.
21	D1	I/0	

Pin No.	Name	I/O	Description
22	СР	0	Call progress tone detect. When the tone is detected, CP shows digital "1" state. Detected call progress tone frequency and amplitude range are specified as follows. Frequency; 330 to 640 Hz Amplitude; 0 to -40 dBm (at GS2)
23	DG	_	Digital ground, 0 V. This pin should be common with AG (pin 8) at the system ground point.
24	PBTO	0	DTMF tone output. The signal amplitude of the low-group and the high-group tones are -6.5 dBm and -5.5 dBm at PBTO, respectively, but, the transmit signal amplitude can be adjusted by applying the on-chip operational amplifier (III). Refer to Fig. 2. Make/Break of DTMF tone transmitting is controlled through the processor interface.
25	PBA-	I	Inverting input and output pins of the on-chip operational amplifier (III).
26	PBAO	0	The non-inverting input is internally connected to SG. When not using this amplifier, these pins should be wired to each other.
27	FX	0	Special tone detect.The MSM7524 first version provides this function for 1300 Hz tone which is well-known for FAX auto-receipt.When the tone is detected, FX shows digital "1" state.Detected tone frequency and amplitude range are specified as follows.Frequency: 1280 to 1320 Hz Amplitude: 0 to -34 dBm (at GS3)When CP is on digital "1" (call progress tone is detected), FX is forced to be on digital "0" state regardless of the special tone existence.

Pin No.	Name	I/O	Description
28	FXI-	1	Special tone input and gain adjustment. FXI- and GS3 are connected to the inverting input and the output of the on-chip operational amplifiers (IV). The inverting input of the amplifier (IV) is internally connected to SG. When not using the special tone detect function, FXI- and GS3 should be wired to each other. Regarding the gain adjustment, refer to Fig. 3.
29	GS3	0	• R2, R3, \geq 50 k Ω , C1 = 2.2 μ F • Voltage Gain; R3/R2 \leq 10 (20 dB) Figure 3 Receive Gain Adjustment for FX
30	CPI+	I	Two input and output pins of the on-chip operational amplifier (V). These pins are useful to implement the pre-amplifier for Call
31	CPI-	I	 Progress Tone receiving. Refer to Fig. 1. Voltage gain should be less than 10 (20 dB).
32	GS2	0	Detect and non-detect amplitude are specified as the receive signal level at GS2.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V _{DD}	Ta = 25°C With respect to	-0.3 to +7	V
Input Voltage	V _{IN}	AG or DG	0.3 to VDD + 0.3	V
Storage Temperature	T _{STG}	—	-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

	Parame	eter	Symbol	Condition Min. Typ. Max.		Max.	Unit	
Powe	er Supply Volta	age	V _{DD}	_	— +4.5 +5.0 +5.5		V	
Opera	ating Tempera	ture	T _{op}	—	— — — +85		°C	
Input	Clock Freque	ncy	f _{CLK}	External Clock	nal Clock –0.1 – +0.1		%	
Duna	aa Canaaitar	V _{DD}	C _{VA}	Between V _{DD} and AG	0.1 + 10	—		μF
Бура	ss Capacitor	SG	C _{SA}	Between SG and AG	1	—		μF
Digita	al Input Rise T	ïme	t _{lr}	CS, ADO, R/W,	—		50	ns
Digita	al Input Fall Ti	me	t _{lf}	D4 to D1, PON, SCLK	—	_	50	ns
	Frequency D	eviation		+25°C ±5°C	-100	_	+100	ppm
ы П	Temperature	Characteristics		At –25°C to 85°C	-50		+50	ppm
Crystal	Equivalent S	eries					50	
ō	Resistance			_		_	50	Ω
	Load Capaci	tance	_	—	—	16		pF

ELECTRICAL CHARACTERISTICS

DC and **Digital Inerface Characteristics**

			(V _E	_D = +5 V :	±10%, Ta	= −25°C	to 85°C)
Parameter	Symbol		Condition	Min.	Тур.	Max.	Unit
Dower Supply Voltage	I _{DD1}	0	Operating Mode		8.0	11.0	mA
Power Supply Voltage	I _{DD2}	Pov	ver Down Mode		10	100	μA
Input Voltago	VIH			2.2		V _{DD}	V
Input Voltage	V _{IL}			0.0		0.8	V
	I _{IH}	V _I =	SCLK, CS , AD0, R/ W , D1 to D4	-10	_	+80	μΑ μΑ
Innut Lookogo Queront		5V	PON	-10		+10	
Input Leakage Current	I _{IL}	V _I = 0V	SCLK, CS , AD0, R/ W , D1 to D4	-10		+10	
			PON	-80		+10	
Output Voltage	V _{OH}		I _{OH} = -0.4 mA	2.4	—	V _{DD}	V
Output Voltage	V _{OL}		I _{OL} = 1.6 mA	0.0	0.2	0.4	V
Analog Output Offset Voltage	V _{OFF}	(CPAO, PBAO	-100		+100	mV
Analog Input Resistance	R _{IN}		CPI+, CPI-, PBI+, PBI-, FXI-, PBA-, CPA-		10	_	MΩ
Analog Output Resistance	R _{OUT}		PBTO, PBAO, TO, CPAO, GS1, GS2, GS3	20		_	MΩ

ANALOG INTERFACE CHARACTERISTICS

DTMF Generator

DTMF Generator			(V _E	_{DD} = +5 V =	±10%, Ta	= -25°C	to 85°C)
Parameter	Symbol		Condition	Min.	Тур.	Max.	Unit
DTME Topo Tropomit Amplitudo	V _{PBTL}		Low Group Tone	-8.5	-6.5	-4.5	dBm
DTMF Tone Transmit Amplitude	V _{PBTH}		High Group Tone	-7.5	-5.5	-3.5	dBm
Tone Transmit Amplitude Ratio	V _{PBDF}		V _{PBTH} -V _{PBTL}	0.0	1.0	2.0	dB
	f	at	To Nominal	_	_	±1.5	%
Tone Frequency Accuracy	t _{DPB}	at PBTO	Rrequency				70
Total Harmonia Distortion	TUD		Total Harmonics			-23	40
Total Harmonic Distortion	THD _{PB}		- Fundamental	_		-23	dB
			4 to 8 kHz	_	_	P-20	dB
Out-of-Band Spurious *	V _{SPS}		8 to 12 kHz			P-60	dB
			12 kHz to		_	P-60	dB

*P: Inband energy

Call Progress Tone (CPT) Generator

 $(V_{DD} = +5 V \pm 10\%, Ta = -25^{\circ}C to 85^{\circ}C)$

			· -	-			,
Parameter	Symbol		Condition	Min.	Тур.	Max.	Unit
Tone Amplitude	V _{CPT}		—	-2.0	0	2.0	dBm
	f _{CPT0}		CPT2 = 0, CPT1 = 0	380	400	420	Hz
Tono Tronomit Amplitudo Dotio	f _{CPT1} at		CPT2 = 0, CPT1 = 1	330	350	370	Hz
Tone Transmit Amplitude Ratio	f _{CPT2}	- CPTO	CPT2 = 1, CPT1 = 0	420	440	460	Hz
	f _{CPT3}		CPT2 = 1, CPT1 = 1	460	480	500	Hz
Tone Harmonic Distortion	THD _{CPT}	_	Total Harmonics – Fundamental	_		-23	dB

$(V_{DD} = +5 V \pm 10\%, Ta = -25^{\circ}C \text{ to } 8$							
Parameter	Symbol	Cond	dition	Min.	Тур.	Max.	Unit
Detect Amplitude	V _{DETCP}	fin: 330 t	o 640 Hz,	-40		0	dBm
Non-detect Amplitude	V _{REJCP}	at (GS2			-60	dBm
Hysteresis of Detect Amplitude	V _{HYSCP}				4.0		dB
Detect Frequency	f _{DETCP}	—		330		640	Hz
Time to Detect	t _{DETCP}		Detect	70			ms
Time to Reject	t _{REJCP}		Non-detect			35	ms
Detect Delay Time	t _{DELCP}	Dofor to	Eig 1	35	50	70	ms
Detect Hold Time	t _{HOLCP}		Refer to Fig. 4.		50		ms
Non-detect Frequency	f			700		_	Hz
	f _{REJCP}			—		270	

Call Progress Tone (CPT) Detector

Figure 4 CPT Detect Timing

Special Tone (ex. F-tone for FAX auto-receipt) Detector

$(V_{DD} = +5 V \pm 10\%, Ta = -25^{\circ}C tc$							
Parameter	Symbol	Condition		Min.	Тур.	Max.	Unit
Detect Amplitude	V _{DETFX}	f _{IN} : 1,300	Hz ±20 Hz,	-34	—	0	dBm
Non-detect Amplitude	V _{REJFX}	at (GS3	_	—	-60	dBm
Hysteresis of Detect Amplitude	V _{HYSFX}	-	_		4.0	—	dB
Detect Frequency	f _{DETFX}	_		1,280		1,320	Hz
Time to Detect	t _{DETFX}		Detect	70	_	_	ms
Time to Reject	t _{REJFX}		Non-detect		_	35	ms
Detect Delay Time	t _{DELFX}	Dofort	- Fig. F	35	50	70	ms
Detect Hold Time	t _{HOLFX}	Refer to Fig. 5.		_	50	_	ms
Non datast Frequency	f			1360		_	U-7
Non-detect Frequency	f _{REJFX}			_	_	1240	Hz

Figure 5 Special Tone Detect Timing

DTMF Receiver

		(V _C)D = +5 V :	±10%, Ta	= −25°C	to 85°C)
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Detect Amplitude	V _{DETDT}	f _{IN} : Nominal	-40		0	dBm
Non-detect Amplitude	V _{REJDT}	Frequency ±1.5%, at GS1			-60	dBm
Detect Frequency	f _{DETDT}	To Nominal Frequency			±1.5	%
Non-detect Frequency	f _{REJDT}	- To Nominal Frequency	±3.8		—	%
Level Twist	V _{TWIST}	V _{High Group} -V _{Low Group}	-6.0		+6.0	dB
Noise to Signal Ratio (N/S)	V _{N/S}	N : 0.3 to 3.4 kHz		-12		dB
Dial Tone Rejection Ratio	V _{REJ}	350 to 480 Hz	22		—	dB
Signal Repetition Time	t _{CYCDT}		120		—	
Time to Detect	t _{DETDT}	Detect	49		—	
Time to Reject	t _{REJFDT}	Non-detect			24	
Interdigit Pause	t _{PAUDT}		30			ms
Acceptable Drop Out	t _{BRKDT}	Defer to Fig. C			2	1
Detect Delay Time	t _{DELDT}	Refer to Fig. 6.	24	41	49]
Detect Hold Time	t _{HOLDT}		21	28	35]

Figure 6 DTMF Receiver Timing

(V _{DD} = +5 V ±10%, Ta = −25°C to 85°C)							
Pa	arameter	Symbol	Condition	Min.	Тур.	Max.	Unit
SCLK Period		t _{CYC}	Refer to Fig. 7.	1	_		
SCLK Pulse	Width	t _{HI}	Digital "1"	400	_		
SOLK PUISE	wiulii	t _{LO}	Digital "0"	400	_	_	
AD0	Setup Time	t _{AS}	$AD0 \rightarrow SCL$.K 80	—	—	
ADU	Hold Time	t _{AH}	$SCLK \to AE$	00 10			
CS	Setup Time	t _{CS}	$\overline{\text{CS}} \rightarrow \text{SCLK}$	K 80		_	
65	Hold Time	t _{CH}	$SCLK \rightarrow \overline{CS}$	5 10	_	_	ns
R/W	Setup Time	t _{RWS}	$R/\overline{W} \rightarrow SCL$	_K 80	_	—	
R/W	Hold Time	t _{RWH}	$SCLK \rightarrow R/$	W 10		—	
D4 to D1	Setup Time	t _{DWS}	D4 to D1 \rightarrow	SCLK 80	—		
(Write)	Hold Time	t _{DWH}	$SCLK \rightarrow D4$	to D1 10	—		
D4 to D1	Delay Time	t _{DRD}	$SCLK \rightarrow D4$	to D1 —	_	150	
(Read)	Hold Time	t _{DRH}	D4 to D1 \rightarrow	SCLK 10	_	_	

Processor Interface Characteristics

PROCESSOR INTERFACE

Internal Register Address and Function

Table-1

AD0	R/W	READ/WRITE	Registers			
0	0	WRITE	DTMF Tone Transmit Data			
0	1	READ	DTMF Tone Receive Data			
1	0	WRITE	Control Data			
1	1	READ	Status Data			

DTMF Tone Transmit/Receive Data Registers

D4	D3	D2	D1	Digit	Low-Group Tone (Hz)	High-Group Tone (Hz)
0	0	0	1	1		1209
0	0	1	0	2	697	1336
0	0	1	1	3		1477
0	1	0	0	4		1209
0	1	0	1	5	770	1336
0	1	1	0	6		1477
0	1	1	1	7		1209
1	0	0	0	8	852	1336
1	0	0	1	9		1477
1	0	1	0	0		1336
1	0	1	1	*	941	1209
1	1	0	0	#		1477
1	1	0	1	A	697	
1	1	1	0	В	770	1633
1	1	1	1	С	852] 1033
0	0	0	0	D	941	

Table-2

Control Data Register A

D4	D4 D3		D1
RSEL	_	CPEN	MFC

Table-3-2

Bit	Name	Function
		Control data register select.
		"0": Register A is selected.
D4	RSEL	"1": Register B is selected on the next Write cycle to the Control Register address.
		Subsequent Write cycles to the Control Register are directed back to Control
		Register A.
D3	—	Not used. Set to digital "0" or "1".
		Call Progress Tone (CP)/Special tone (FX) detect control.
D2	CPEN	"0": Disable CP and FX. Both CP and FX are held on digital "0".
		"1" : Enable CP and FX.
		DTMF Tone Transmit Make/Break control.
D1	MFC	"0" : Disable. PBTO outputs only DC potential at SG.
		"1" : Enable. DTMF tone is generated via PBTO.

Control Data Register B

Table-4-1

D4	D3	D2	D1
CPT2	CPT1	CPTC	—

Table-4-2

Bit	Name	Function								
		Call Progress tone	e frequency s	select.						
D4		CPT2		Frequency (Hz)	_					
	CPT2	0	0	400	_					
D3	CPT1	0	1	350	_					
		1	0	440	_					
		1	1	480	_					
D2	CPTC	"0" : Disable. CP1	Call Progress tone Transmit/Make/Break control. "0" : Disable. CPTO outputs only DC potential at SG. "1" : Enable. Call Progress tone is generated via CPTO.							
D1	MFC	Not used. Set to digital "0" or "1".								

Note) All control data on Registers A and B should be cleared by software and/or PON control. Power-down control by PON makes all logic status and control data to be cleared.

Status Data Register

Table-5-1

D4	D4 D3		D1
SP	SPFLG	CPFLG	AFLG

Table-5-2

Bit	Name	Function
		Signal Present for DTMF tone receive.
D4	SP	"0" : Valid data is in the receive data register.
		"1": Data is invalid.
		Flag for valid DTMF tone receive.
D3	SPFLG	SPFLG is reset to digital "0" after an external processor reads out the status register data.
		Flag for valid Call Progress tone detect.
D2	CPFLG	CPFLG is reset to digital "0" after an external processor reads out the status register data.
	AFLG	AFLG is set to digital "1" when SPFLG and/or CPFLG is set to digital "1".
D1		After an external processor reads out the status register data, AFLG is reset to digital "0".

PROCESSOR CONTROL

Table-6

An example of the micro-processor control for each mode is shown in Table-6.

Mode	Processor Control	cs	AD0	R/W	D4	D3	D2	D1	Valid Register
Power	① Clear CRA. (CRB is selected next.)	0	1	0	1	0	0	0	CRA
ON	(Clear CRB. (CRA is selected next.)	0	1	0	0	0	0	0	CRB
	\forall 3 Next mode is selected.	0	1	0	Х	Х	Х	Х	CRA
	① Observe STR. ① (Non detect state)	0	1	1	1	0	0	0	STR
DTMF	② Observe STR. (Detect state)	0	1	1	0	1	0	1	STR
Tone Receive	③ Observe STR. ③ (Detect state or After read STR)	0	1	1	0	0	0	0	STR
	④ Read RR.	0	0	1	Х	Х	Х	Х	RR
	 ↓ ⑤ Observe STR. (For next tone) 	0	1	1	1	0	0	0	STR
	1 CPT detect enable.	0	1	0	0	—	1	0	CRA
СРТ	② Observe STR. (Non detect state)	0	1	1	1	0	0	0	STR
Detect	(Detect state)	0	1	1	1	0	1	1	STR
	 Observe STR*. (Detect state or After read STR) 	0	1	1	1	0	0	0	STR
	1 DTMF tone data.	0	0	0	Х	Х	Х	Х	TR
DTMF	② DTMF tone transmit "Make".	0	1	0	0		0	1	CRA
Tone Transmit	↓ 3 DTMF tone transmit "Break".	0	1	0	0		0	0	CRA
	1 Select CRB. Transmit	0	1	0	1	—	0	0	CRA
СРТ	CPT "Make"	0	1	0	х	х	1	_	CRB
Transmit	③ Select CRB. Transmit	0	1	0	1	_	0	0	CRA
	↓ (4) CPT "Break" "Break"	0	1	0	Х	Х	0		CRB

* CP is still held on digital "1" while CPT is detected.

- Note) CPT : Call Progress Tone
 - CRA: Control Resister A
 - CRB : Control Register B
 - STR : Status Register
- TR : DTMF Tone Transmit Register
- RR: DTMF Tone Receive Register
- X : Expected Data
- : Digital " 0" or "1"

APPLICATION CIRCUIT

R1 to R6 \geq 50 k Ω , C1, C2, C3 = 0.22 μ F, C4, C5 = 1 μ F, C6 = 10 μ F

DTMF Tone : R1/R2 *R1 = R2 = 50 k Ω , Receive Range : -40 to 0 dBm Receive Gain *R3 = R4 = 50 k Ω , Detect Range : -40 to 0 dBm Gain Special Tone : R5/R6 *R5 = 100 k Ω , Detect Range : -40 to 6 dBm Detect Gain R6 = 50 k Ω

Note) The decoupling capacitors (C4, C5, C6) should be connected close to the device.

PACKAGE DIMENSIONS

(Unit : mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).