OKI

nX-8/500S Core

Instruction Manual

CMOS 16-bit microcontroller

SECOND EDITION
ISSUE DATE: JUNE, 1999

NOTICE

1.

The information contained herein can change without notice owing to
product and/or technical improvements. Please make sure before using the
product that the information you are referring to is up-to-date.

The outline of action and examples of application circuits described herein
have been chosen as an explanation of the standard action and performance
of the product. When you actually plan to use the product, please ensure
that the outside conditions are reflected in the actual circuit and assembly
designs.

NO RESPONSIBILITY IS ASSUMED BY US FOR ANY CON-
SEQUENCE RESULTING FROM ANY WRONG OR IMPROPER
USE OR OPERATION, ETC. OF THE PRODUCT.

Neither indemnity against nor license of a third party’s industrial and
intellectual property right, etc. is granted by us in connection with the use
of the product and/or the information and drawings contained herein. No
responsibility is assumed by us for any infringement of a third party’s right
which may result from the use thereof.

The products described herein fall within the category of strategical goods,
etc. under the Foreign Exchange and Foreign Trade Control Law.
Accordingly, before exporting the product you are required under the Law
to file the application for the export license by your local Government.

No part of the contents contained herein may be reprinted or reproduced
without our prior permission.

Copyright 1999 OKI ELECTRIC INDUSTRY CO., LTD.

Table of Contents

Table of Contents
Chapter 0. Preface

Chapter 1. Architecture

1-1. Overview 1
1-1-1. Overview Of OLMS-66K Series And nX-8/500S Core 1
1-2. CPU Resources And Programming Model 2
1-2-1. Register 2
1-2-1-1. Accumulator (A) 3
1-2-1-2. Control Register (CR) 4
1-2-1-2-1. Program Status Word (PSW) 4
1-2-1-2-1-1. How Instructions Change PSW Flags 6

1-2-1-2-2. Program Counter (PC) 8
1-2-1-2-3. Local Register Base (LRB) 8
1-2-1-2-4. System Stack Pointer (SSP) 9

1-2-1-3. Pointing Registers (PR) 10
1-2-1-3-1. Addressing With Pointing Registers 11

1-2-1-4. Local Registers (ER) 13
1-2-1-4-1. Addressing With Local Registers 14

1-2-1-5. Segment Registers 16
1-2-1-5-1. Code Segment Register (CSR) 16
1-2-1-5-2. Table Segment Register (TSR) 16
1-2-1-5-3. Data Segment Register (DSR) 17

1-2-1-6. ROM Window Control Register (ROMWIN) 17
1-2-1-7. Special Function Registers (SFR) 17
1-2-2. Memory Space 18
1-2-2-1. Program Memory Space 18
1-2-2-1-1. Vector Table Area 19
1-2-2-1-1-1. Reset Vector Area 19

1-2-2-1-1-2. Interrupt Vector Area 20

1-2-2-1-1-3. VCAL Table Area 20

1-2-2-1-1-4. Vector Table Coding Syntax 21

1-2-2-1-2. ACAL Area 22
1-2-2-1-3. ROM Window Area In Program Memory Space = ------------------ 22
1-2-2-1-4. Internal And External Program Memory Areas = ----------=------=- 23

nX-8/5008S Instruction Manual 1

Table of Contents

1-2-2-2. Data Memory Space 24
1-2-2-2-1. SFR Area 25

1-2-2-2-2. Extended SFR Area 25

1-2-2-2-3. Fixed Page 26

1-2-2-2-3-1. Area Available For Pointing Registers 26

1-2-2-2-3-2. Fixed Page SBA Area 26

1-2-2-2-4. Current Page 27

1-2-2-2-4-1. Current Page SBA Area 27

1-2-2-2-5. Area Available For Local Registers 28

1-2-2-2-6. ROM Window Area In Data Memory Space 28

1-2-2-2-7. Common Area 29

1-2-2-2-8. Other Memory 29

1-2-2-2-8-1. EEPROM Area 29

1-2-2-2-8-2. Dual Port RAM Area 29

1-2-2-2-9. Internal And External Data Memory Areas 29

1-3. Data Types 30
1-4. Address Allocation 32
1-5. Word Boundaries 33
1-6. ROM Window Function 34
1-7. Memory Models 35
1-8. Data Descriptor (DD) 36
1-8-1. Description And Use Of DD 36
1-8-2. Instructions That Change DD 38
1-8-2-1. Instructions That Change DD As Part Of Their Function =~ ----------------- 38

1-8-2-2. Other Instructions That Change DD 38

1-8-3. Instruction Affected By DD 39
1-8-4. Pre-Fetched Instructions And DD 40

1-9. Changing The Stack 42
1-10. Instruction Code Format 43
1-10-1. Native Instructions And Composite Instructions 43
1-11. Microcontrollers That Use The nX-8/500S Core 45

2 nX-8/500S Instruction Manual

Table of Contents

Chapter 2. Addressing Modes

2-1. Addressing Mode Types 1
2-2. RAM Addressing 2
A Accumulator Addressing 3
PSW,LRB,SSP Control Register Addressing 4
X1,X2,DP,USP Pointing Register Addressing 5
ERN,Rn Local Register Addressing 6

sfr Dadr SFR Page Addressing 7

fix Dadr Fixed Page Addressing 8

off Dadr Current Page Addressing 9

dir Dadr Direct Data Addressing 10
[DP],[X1] DP/X1 Indirect Addressing 11

[DP+] DP Indirect Addressing With Post-Increment -----------------—- 12

[DP-] DP Indirect Addressing With Post-Decrement = --------------=----- 13
n7[DP],n7[USP] DP/USP With Indirect Addressing With 7-Bit Displacement ---- 14
D16[X1],D16[X2] X1/X2 Indirect Addressing With 16-Bit Base 15
[X1+A],[X1+R0] X1 Indirect Addressing With 8-Bit Register Displacement ---- 16

sbafix Badr Fixed Page SBA Area Addressing 17

sbaoff Badr Current Page SBA Area Addressing 18

2-3. ROM Addressing 19
2-3-1. Immediate Addressing 19
2-3-2. Table Data Addressing 19
2-3-3. Program Code Addressing 19
#N16#N8 Word/Byte Immediate Addressing 20

Tadr Direct Table Addressing 21

[*4 RAM Addressing Indirect Table Addressing 22

T16[*4 RAM Addressing Indirect Addressing With 16-Bit Base ~ ------ 23

Cadr Near Code Addressing 24

Fadr Far Code Addressing 25

radr Relative Code Addressing 26
Cadrll ACAL Code Addressing 27

Vadr VCAL Code Addressing 28

[*4 RAM Addressing Indirect Code Addressing 29

2-4. ROM Window Addressing 30

nX-8/5008S Instruction Manual 3

Table of Contents

Chapter 3.

Instruction Details

nX-8/500S Instruction Set Listed By Function
Symbols Used In Operand Expressions Of Instructions

Symbols Used In Instruction Code Expressions Of Instructions

General Example for Instruction Details

ACAL
ADC
ADC
ADCB
ADCB
ADD
ADD
ADDB
ADDB
AND
AND
ANDB
ANDB

BAND
BANDN
BOR
BORN
BRK
BXOR

CAL

CAL

CLR
CLR
CLRB
CLRB
CMP
CMP

Cadril
A,obj
objl,0bj2
A,obj
objl,0bj2
A,obj
objl,0bj2
A,obj
objl,0bj2
A,obj
obj1,0bj2
A,obj
obj1,0bj2

C,obj.bit
C,0bj.bit
C,obj.bit
C,obj.bit

C,0bj.bit

Cadr

[obj]

A

obj

A

obj

A,obj
objl,0bj2

1
6
7
8
Special Area Call A-1
Word Addition With Carry A-2
Word Addition With Carry A-3
Byte Addition With Carry A-4
Byte Addition With Carry A-5
Word Addition A-6
Word Addition A-7
Byte Addition A-8
Byte Addition A-9
Word Logical AND A-10
Word Logical AND A-11
Byte Logical AND A-12
Byte Logical AND A-13
Bit Logical AND B-1
Bit Complement and Bit Logical AND B-2
Bit Logical OR B-3
Bit Complement and Bit Logical OR B-4
Break (System Reset) B-5
Bit Logical Exclusive OR B-6
64K-Byte Space (Within Current
Physical Code Segment) Direct Call =~ ------------------- C-1
64K-Byte Space (Within Current
Physical Code Segment) Indirect Call =~ ----------------- c-2
Word Clear C-3
Word Clear C-4
Byte Clear C-5
Byte Clear Cc-6
Word Comparison C-7
Word Comparison C-8

nX-8/500S Instruction Manual

Table of Contents

CMPB A,obj Byte Comparison Cc-9
CMPB objl,0bj2 Byte Comparison C-10
CMPC A,[obj] Word ROM Comparison (Indirect) C-11
CMPC A, T16[obj] Word ROM Comparison (Indirect With 16-Bit Base) ------ c-12
CMPC A, Tadr Word ROM Comparison (Direct) C-13
CMPCB A,[obj] Byte ROM Comparison (Indirect) C-14
CMPCB AT16[obj] Byte ROM Comparison (Indirect With 16-Bit Base) ------- C-15
CMPCB A Tadr Byte ROM Comparison (Direct) C-16
CPL C Complement Carry C-17
D
DEC A Word Decrement D-1
DEC obj Word Decrement D-2
DECB A Byte Decrement D-3
DECB obj Byte Decrement D-4
DI Disable Interrupts D-5
DIV obj Word Division D-6
DIVB obj Byte Division D-7
DIVQ obj Word Quick Division D-8
DJINZ obj,radr Loop D-9
E
El Enable Interrupts E-1
EXTND Byte to Word Sign Extend E-2
F
FCAL Fadr 24-Bit Space (16M Bytes: Entire Program Area) Direct Call F-1
FILL A Word Fill F-2
FILL obj Word Fill F-3
FILLB A Byte Fill F-4
FILLB obj Byte Fill F-5
FJ Fadr 24-Bit Space (16M Bytes: Entire Program Area) Direct Jump F-6
FRT Return From Far Subroutine F-7
I
INC A Word Increment I-1
INC obj Word Increment -2
INCB A Byte Increment -3
INCB obj Byte Increment -4

nX-8/5008S Instruction Manual 5

Table of Contents

JBR
JBRS
JBS
JBSR
Jcond
JRNZ

LB
LC
LC
LC
LCB
LCB
LCB

MAC
MB
MB
MBR
MBR
MOV
MOVB
MUL
MULB

NEG
NEGB
NOP

OR
OR
ORB
ORB

Cadr
[obj]

obj.bit,radr
obj.bit,radr
obj.bit,radr
obj.bit,radr
radr
DP,radr

A,obj
A,obj
A,[obj]

A, T16[obj]
A, Tadr
A[obj]

A, T16[obj]
A, Tadr

C, obj.bit
obj.bit ,C
C, obj
obj, C
obj1, obj2
obj1, obj2
obj

obj

A
A

A, obj
objl, obj2
A, obj
objl, obj2

64K-Byte Space (Within Current

Physical Code Segment) Direct Jump
64K-Byte Space (Within Current

Physical Code Segment) Indirect Jump
Bit Test and Jump

Bit Test and Jump
Bit Test and Jump

(With Bit Set)

Bit Test and Jump
Conditional Jump

(With Bit Reset)

Loop

Word Load

Byte Load
Word ROM Load (Indirect)

Word ROM Load (Indirect With 16-Bit Base)
Word ROM Load (Direct)

Byte ROM Load (Indirect)
Byte ROM Load (Indirect With 16-Bit Base)
Byte ROM Load (Direct)

Multiply-Addition Calculation

Move Bit
Move Bit

Move Bit (Register Indirect Bit Specification)
Move Bit (Register Indirect Bit Specification)
Word Move

Byte Move

Word Multiplication

Byte Multiplication

Word Negate Sign

Byte Negate Sign

No Operation

Word Logical OR

Word Logical OR
Byte Logical OR

Byte Logical OR

J-11
J-12

L-1
L-2
L-3

L-5
L-6
L-7
L-8

M-10
M-11

nX-8/500S Instruction Manual

Table of Contents

P
POPS register_list Pop Off System Stack p-1
PUSHS register_list Push On System Stack p-2
R
RB obj.bit Reset Bit (Bit Position Direct Specification) = ---------------- R-1
RBR obj Reset Bit (Register Indirect Bit Specification) = -------------- R-2
RC Reset Carry R-3
RDD Reset DD R-4
ROL A Word Left Rotate (With Carry) R-5
ROL obj Word Left Rotate (With Carry) R-6
ROLB A Byte Left Rotate (With Carry) R-7
ROLB obj Byte Left Rotate (With Carry) R-8
ROR A Word Right Rotate (With Carry) R-9
ROR obj Word Right Rotate (With Carry) R-10
RORB A Byte Right Rotate (With Carry) R-11
RORB obj Byte Right Rotate (With Carry) R-12
RT Return From Subroutine R-13
RTI Return From Interrupt R-14
S
SB obj.bit Set Bit (Bit Position Direct Specification) — ------------=-=----- S-1
SBC A, obj Word Subtraction With Carry S-2
SBC objl, obj2 Word Subtraction With Carry S-3
SBCB A, obj Byte Subtraction With Carry S-4
SBCB objl, obj2 Byte Subtraction With Carry S-5
SBR obj Set Bit (Register Indirect Bit Specification) — ----------------- S-6
SC Set Carry S-7
SCAL Cadr 64K-Byte Space (Within Current
Physical Code Segment) Direct Call =~ --------=-=--=-=--- S-8

nX-8/5008S Instruction Manual 7

Table of Contents

SDD Set DD S-9
SJ radr Short Jump S-10
SLL A Word Left Shift (With Carry) S-11
SLL obj Word Left Shift (With Carry) S-12
SLLB A Byte Left Shift (With Carry) S-13
SLLB obj Byte Left Shift (With Carry) S-14
SOR A Word Square S-15
SQRB A Byte Square S-16
SRA A Word Arithmetic Right Shift (With Carry) — -------------m-m---- S-17
SRA obj Word Arithmetic Right Shift (With Carry) — --—-------m-mrmeom- S-18
SRAB A Byte Arithmetic Right Shift (With Carry) S-19
SRAB obj Byte Arithmetic Right Shift (With Carry) S-20
SRL A Word Right Shift (With Carry) S-21
SRL objWord Right Shift (With Carry) S-22
SRLB A Byte Right Shift (With Carry) S-23
SRLB obj Byte Right Shift (With Carry) S-24
ST A,obj Word Store S-25
STB A,obj Byte Store S-26
SUB A, obj Word Subtraction S-27
SuUB objl, obj2 Word Subtraction S-28
SUBB A,obj Byte Subtraction S-29
SUBB objl, obj2 Byte Subtraction S-30
SWAP High/Low Byte Swap S-31
T
TBR obj Test Bit (Register Indirect Bit Specification) — ---------------- T-1
TINZ A, radr Word Test & Jump (Jump If Non-Zero) T-2
TINZ obj, radr Word Test & Jump (Jump If Non-Zero) T-3
TJINZB A, radr Byte Test & Jump (Jump If Non-Zero) T-4
TINZB obj, radr Byte Test & Jump (Jump If Non-Zero) T-5
TJZ A, radr Word Test & Jump (Jump If Zero) T-6
TJZ obj, radr Word Test & Jump (Jump If Zero) T-7
TJZB A, radr Byte Test & Jump (Jump If Zero) T-8
TJZB obj, radr Byte Test & Jump (Jump If Zero) T-9
\Y
VCAL Vadr Vector Call V-1

8 nX-8/500S Instruction Manual

Table of Contents

XCHG A, obj
XCHGB A, obj
XOR A, obj
XOR objl, obj2
XORB A, obj
XORB obj1, obj2

Word Exchange

Byte Exchange

X-1

Word Logical Exclusive OR
Word Logical Exclusive OR
Byte Logical Exclusive OR
Byte Logical Exclusive OR

X-2
X-3

X-5

X-6

nX-8/5008S Instruction Manual

Chapter 0. Preface

This chapter explains the configuration and usage of this manual.

Chapter 0 Preface

Preface

This manual describes the instruction set of the nX-8/500S core. The nX-8/500S core is used as the CPU
core of Oki Electric's original CMOS 8/16-bit single-chip microcontrollers. As one of the OLMS-66K
Series cores, the nX-8/500S core is higher end than nX-8/200 and nX-8/400. The first device to use the
nX-8/500S core is the MSM66556/589.

The explanations in this manual presume the basic architecture of the nX-8/500S core. The basic
architecture incorporates the maximum functionality of the nX-8/500S core. In this basic architecture
data memory space and code memory space each have a capacity of 16M bytes (82BGgsegnents),

and the architecture provides instructions for manipulating these spaces. Depending on the device you
actually use, the actual capacity and instruction set may be subsets of the basic architecture. Refer to the
user's manual of your device for information on any such limitations.

The following manuals are for products related to the nX-8/500S core. Please read them as well.

BMSM665xx User's Manual
The MSM665xx User's Manual describes the hardware of your target device.

BMAC66K Assembler Package User's Manual
The MAC66K Assembler Package User's Manual explains assembly language syntax
and the use of the relocatable assembler, linker, librarian, and object converter.

EMacroprocessor MP User's Manual
The Macroprocessor MP User's Manual explains macroprocessing language syntax and
the use of the general-purpose macroprocessor.

BEASEG65xx User's Manual
The EASE665xx User's Manual describes the EASE665xx emulator and SID665xx

debugger.
This manual consists of three chapters.

Chapter 1 describes the basic architecture of the nX-8/500S core.
This chapter explains how programs make use of major resources, such as registers and
memory. It then describes particular features and restrictions of programming. This
chapter provides the basic knowledge needed to understand Chapter 2 and Chapter 3.

Chapter 2 describes addressing modes.
This chapter explains the coding syntax to access register and memory resources. It
also explains the operation of these accesses in detail.

Chapter 3 describes the functions of each instruction.
This chapter explains the functions and detailed operation of instructions, and provides
instruction codes. It presents instructions in alphabetic order, so it can be used for
reference.

Chapter 0 Preface

This manual uses the following terminology.

mValues
Numeric expressions and address expressions are basically the same as those used with

RAS66K. Refer to the manual for the assembler package for details.

ERanges
A-B represents a range of values that includes A and B. A-B is used in some places

where it clearly will not be confused with subtraction.

BAddresses
Complete address expressions for the nX-8/500S are coded using a physical segment

number (#0 to #255) and an offset within the segment (0 to OFFFFH), as shown below.

physical_segment_number : offset_within_segment

EExamples
0:0 Offset address 0 in physical segment #0.
OFFH:OFFFFH Offset address 65535 in physical segment #255.
CSR:1000H Address 1000H in the code segment indicated by CSR.
TSR:1000H Address 1000H in the table segment indicated by TSR.
DSR:1000H Address 1000H in the data segment indicated by DSR.

However, the offset within a segment is sometimes coded alone as an address where
there is no chance for confusion. In particular, an address and an offset within a
segment are the same thing when programming for a device that does not access multiple
segments or when a program exists entirely within one segment.

Physical segments and logical segments
For the nX-8/500S, blocks of 64K bytes in memory space are called physical segments,
but this manual often simply calls them segments. Blocks allocated to memory by a
program are also called segments, but these are specifically logical segments.

Chapter 1. Architecture

This chapter explains the basic architecture of the nX-8/500S. The basic
architecture is the major functional specification of the nX-8/500S. Any
microcontroller utilizing this core will have the same functions or a subset of them.

Chapter 1 Architecture
Overview

1-1. Overview
1-1-1. Overview Of OLMS-66K Series And nX-8/500S Core

The OLMS-66K Series of devices are single-chip microcontrollers that integrate Oki Electric's
original 16-bit CPU as their core with various peripheral circuits. Currently the OLMS-66K
Series provides the target cores listed below. This series has expanded with improvements in
processing efficiency in thePU cores while program compatibility has besintained.

The nX-8/500S core maintains upward compatibility at the basic assembler level with the nX-
8/200 and nX-8/400 cores, but adds instructions and speeds up frequently used instructions. At
the same time is extends the accessible memory space and adds addressing modes.

Core Device Description

nX-8/100 MSM66101 Reduced instruction version of nX-8/200.
nX-8/200 MSM66201/207 Reduced instruction version of nX-8/300.
nX-8/300 MSM66301 First core of OLMS-66K series.

nX-8/400 MSM66417 High-speed version of nX-8/200.

nX-8/500S MSM66556/589 Basic assembly language level upward compatibility with
nX-8/200 to nX-8/400.

The nX-8/500S centers its processing around its accumulator and register set. It provides nearly
identical functions for byte data processing and word data processing. A flag (the data
descriptor) determines which type of data is being calculated in the accumulator. Thus the same
instruction codes provide functions that are the same for byte data and word data calculations, but
are switched by the state of the data descriptor flag.

Instruction codes are configured in 8-bit units, with lengths of 1 to 6 bytes. Highly efficient
programs can be coded by making use of both native instructions for frequent types of processing,
and composite instructions for a wide variety of addressing modes.

Memory of the nX-8/500S is split into program memory space and data memory space. Each
space can be 16M bytes, configured as 256 physical segments of 64K bytes each. Segments are
specified by three segment registers. Code memory also has a vector type area for resets,
interrupts, and 1-byte calls, and an ACAL area for 2-byte calls. Segments of data memory are
configured as 256 pages of 256 bytes each. More efficient addressing is provided for the SFR
page, in which peripheral function control registers are located, and the fixed page and current

page.

nX-8/500S Instruction Manual Chapter1 1

Chapter 1 Architecture
CPU Resources And Programming Model

1-2. CPU Resources And Programming Model

This section describe registers and memory configurations and their roles as CPU resources used in
programming.

1-2-1. Registers

The nX-8/500S utilizes processing methods centered around an accumulator and register sets.
The register sets includes a local register set for storing mainly data and a pointing register set for
mainly storing addresses. In addition to these, the nX-8/500S has registers for controlling
program flow and registers for controlling memory, which together make up the programming
model for registers. This section lists the registers used in programs and then describes the
functions of each in detail.

m Accumulator

15 8 7 0
Needed for calculations. A(ACQ)| |

m Control registers (CR)

This register group controls program flow and stores its current state.

Program Status Word PSwW L 81 g
Program Counter PC

Local Register Base LRB

System Stack Pointer SSP

m Pointing registers (PR)

There are eight pointing register sets, each with four 16-bit registers X1, X2, DP, and USP. The
pointing register sets store memory addresses for indirect addressing. They also provide the
same functions for word calculations as extended local registers, so they can be used as data
registers too.

. 15 8 7 0
Index Register 1 X1

Index Register 2 X2

Data Pointer DP

User Stack Pointer USP

m Local registers (ER)
There are 256 local register sets, each with eight 8-bit registers. Each two adjacent 8-bit
registers comprise an extended local register (ERn) for processing word data. This data register
group is used for storage and calculations of byte and word data.

Extended local register #0 ERO = R1 o RO :
Extended local register #1 ER1 R3 R2
Extended local register #2 ER2 R5 R4
Extended local register #3 ERS3 R7 R6

2 Chapter 1 nX-8/500S Instruction Manual

Chapter 1 Architecture
CPU Resources And Programming Model

m Segment registers

These three 8-bit registers each select a physical segment that contains program code, read-only
data, and read/write data respectively. For devices with limited memory capacity, the number of
bits implemented in the actual registers may be correspondingly limited. Some devices do not
even implement segment registers.

7 0
Code Segment Register Csli
Table Segment Register TSF
Data Segment Register DSH

m ROM window control register

This 8-bit register is used to open a ROM window.
7 43 0

ROMWIN [|

1-2-1-1. Accumulator (A)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A AH | AL |

The accumulator is a 16-bit register around which calculations are centered. It can process
words and bytes data. The low byte of the accumulator (AL) can also specify a bit in a bit array.
The accumulator is normally accessed by accumulator addressing. However, because it is
allocated as a word register in SFR space, it can also be manipulated with SFR addressing (sfr
ACC). The accumulator's value immediately after a reset is 0. After an interrupt, the
accumulator's value is automatically pushed on the stack. When an RTI instruction is executed,
that value is popped from the stack and stored back in A.

m Examplas Accumulator usage

L AWORD_VAR ; Word instruction (A-WORD_VAR)
LB A,BYTE_VAR ; Byte instruction (AL-BYTE_VAR)
MB C,A3 ; Bit instruction (C-A.3)

SBR BIT_ARRAY ; Bit array instruction (AL is bit specifier)
MOV ACC,BASE[X2] ;SFR addressing (ACC(BASE+X2))

nX-8/500S Instruction Manual Chapter1 3

Chapter 1 Architecture
CPU Resources And Programming Model

1-2-1-2. Control Registers (CR)
The control register group controls program flow and stores its current state. Each 16-bit
register has a specific function. The information stored in these registers is often collectively
called the program context.

1-2-1-2-1. Program Status Word (PSW)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PSW [c | z]wrc|op| s | mp| ov] mie[mas] F1 [ecei|scro] Fo | sced scal sceb
PSWH PSWL

The PSW is configured as flags and fields that store and specify program status. The flag states
can be tested with conditional branch instructions. The PSW is allocated as a word register in
the SFR area, so it can also be accessed with SFR addressing (sfr APSW). After an interrupt,
PSW contents are automatically pushed on the stack. When an RTI instruction is executed,
those contents are popped from the stack and stored back in the PSW.

The high byte of the program status word (PSWH) consists of five flags that store the states of
CPU calculation results, one flag that indicates the data type in the accumulator, and two flags
that control interrupts.

The low byte of the program status word (PSWL) consists of a flag for multiply-accumulate
calculations, a field that specifies the size of the common area, a field that selects the pointing
register set, and two flags that are for the user.

The operation of each flag and field is described below.

C Carry flag (bit 15)
The carry flag stores the carry or borrow from unsigned calculations. It is set to 1 when the
most significant bit in a arithmetic or comparison instruction generated a carry or borrow. It is
reset to O in all other cases. The most significant bit is bit 15 for word calculations and bit 7 for
byte calculations. The carry flag is also used as a bit accumulator for bit moves and bit logical
operations. The SC and RC instructions are provided to set and reset the carry flag.

Z Zero flag (bit 14)
The zero flag indicates if the result of a calculation was 0. It is set to 1 when the execution result
of any calculation instruction (such as arithmetic, logical, comparison, and accumulator data
move instructions) or the object bit of any bit manipulation is zero. It is reset to 0 in all other
cases.

HC Half-Carry flag (bit 13)
The half-carry flag is provided for implementing decimal arithmetic. It is setto 1 when bit 3 in a
arithmetic or comparison instruction generated a carry or borrow. It is reset to 0 in all other
cases.

4 Chapter 1 nX-8/500S Instruction Manual

Chapter 1 Architecture
CPU Resources And Programming Model

DD

MIP

ov

MIE

MAB

F1,FO

BCB

1-0

Data Descriptor (bit 12)

The data descriptor indicates the type of data in the accumulator (A). It is a flag that determines
the type of calculation for which the accumulator (A) will be used. It indicates word data when

1, and byte data when 0. The SDD and RDD instructions are provided to set and reset the data
descriptor.

Sign flag (bit 11)

The sign flag indicates the sign of calculation results. It is set to 1 when the sign bit (most
significant bit) of the execution result of an arithmetic, comparison, or logical calculation was 1.
Itis reset to O in all other cases. The most significant bit is bit 15 for word calculations and bit 7
for byte calculations.

Mask Interrupt Priority flag (bit 10)
The mask interrupt priority flag controls the priority function of maskable interrupts. It enables
the priority function when 1, and disables the priority function when 0.

Overflow flag (bit 9)

The overflow flag stores the carry or borrow from signed calculations. It is set to 1 when the
result of a arithmetic or comparison instruction exceeds the range that can be expressed with 2's
complement numbers. It is reset to O in all other cases. The ran827i87 to +32767 for

word data, ane128 to +127 for byte data.

Mask Interrupt Enable flag (bit 8)

The mask interrupt enable flag controls whether all maskable interrupts are enabled or disabled.
It enables interrupts when 1, and disables interrupts when 0. The EI and DI instructions are
provided to set and reset MIE.

Multiply-Accumulate Register Bank flag (bit 7)
The multiply-accumulate register bank flag specifies the bank of registers used for multiply-
accumulate calculations (MAC instruction).

User flags 1, 0 (bit 6, bit 3)
The user flags are available for the user in programs. Programs can be written such that these
flags are automatically updated in the PSW after interrupts.

Bank Common Base (bit 5 to 4)
The bank common base specifies the last address of the area that is common between segments.
The table below shows the relation between these bits and the selected common area.

No. BCB Common Area Range
Value
1 0

0 0 O 0 to O3FFH

1 0 1 0 to 1FFFH

2 1 0 0 to 3FFFH

3 1 1 0 to 7FFFH

nX-8/500S Instruction Manual Chapter1 5

Chapter 1 Architecture
CPU Resources And Programming Model

SCB,, System Control Base (bit 2 to 0)
The system control base selects the pointing register set. The table below shows the relation
between these bits and the selected pointing register set.

z
o

SCB Value Addresses of Pointm
0 Register Set
0200H to 0207H
0208H to 020FH
0210H to 0217H
0218H to 021FH
0220H to 0227H
0228H to 022FH
0230H to 0237H
0238H to 023FH

~N~NoUh~WNREO
PR RRPROOOO|IN
PP OORRLOO|R
PORORORO

1-2-1-2-1-1. How Instructions Change PSW Flags

The next page lists the instructions that change PSW flags when executed. However, the list
basically excludes instructions that directly write to PSW or PSWH (such as instructions with sfr
addressing). The table shows the flag name where the flag changes. It shows 1 where the flag
is set and O where the flag is reset. It is blank where the flag does not change.

6 Chapter 1 nX-8/500S Instruction Manual

Chapter 1 Architecture
CPU Resources And Programming Model

m How instructions change PSW flags

Instruction Mnemonics Flag Changed
Type c| z | s |ov]|Hc|DD
Move
L,LB Z DD
CLR, CLRB (if destination is A)
LC, LCB Z
Increment/Decrement
| INC, INCB, DEC, DECB | | z | s |ov|Hc|
Multiplication
| MUL, MULB, SQR, SQRB | | z | | | |
Division
DIV, DIVB C Z
DIVQ C Z oV
Arithmetic/Comparison
NEG, ADD, ADC, SUB, SBC
NEGB, ADDB, ADCB, SUBB, SBCB C z S OV | HC
CMP, CMPB, CMPC, CMPCB
Logical
AND, OR, XOR 7 s
ANDB, ORB, XORB
Sign Extend
| EXTND | | | s | | | 1
Bit Manipulation/Bit Test
| SB, RB, SBR, RBR, TBR | | z | | | |
DD Manipulation
| SDD, RDD | | | | | | DD
Carry Manipulation
[sc.Re el [[[|
Bit Move To Carry
| MB, MBR (if destinationisC) | C | | | | |
Logical With Carry
BAND, BOR, BXOR C
BANDN, BORN
Rotate/Shift With Carry
ROL, ROR, SLL, SRL, SRA C
ROLB, RORB, SLLB, SRLB, SRAB
Return From Interrupt
| RTI | c| z]| s |ov]Hc| DD
Pop Data To PSW
| POP (if operand is PSW or CR) | C | Z | S | ov | HC | DD
Reset
| BRK ol o] o] o] o] o

nX-8/500S Instruction Manual Chapter1 7

Chapter 1 Architecture
CPU Resources And Programming Model

1-2-1-2-2. Program Counter (PC)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L [T [T [1 [[[[T [[T]

The PC is a 16-bit counter that stores the address of the program code to be executed next. It
increments immediately after the program code is fetched from program memory. Repetition of
this operation causes the flow of program execution. Branch instructions set the PC to new
addresses of program code.

The PC exists as an independent register, and is not allocated in SFR space. The PC is
overwritten by execution of branch instructions, but you do not need to be especially aware of the
PC.

Immediately after a reset, the PC value will become the contents of the reset vector. After an
interrupt, the address at which execution is to resume will be automatically pushed on the stack.
That value will be popped back into the PC when an RTI instruction is executed.

1-2-1-2-3. Local Register Base (LRB)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LRB | LRBH [LRBL |

The LRB is a 16-bit register. Its high 8 bits and low 8 bits have independent functions.

The high 8 bits of the LRB (LRBH) specify the location of the current page. The current page is
one of the 256 pages in the data segment specified by DSR. A single page is a 256-byte space
that starts at a page boundary. The starting address of the current page is given B$QRBH
Current page addressing (off Dadr) and current page SBA area addressing (sbaoff Badr) are
provided for accessing the 256 bytes of the current page specified by LRBH.

The low 8 bits of the LRB (LRBL) specify the location of the local register set. The local
register set is allocated in 8-bit units within the 2K bytes between offset 200H and 9FFH of
physical segment #0 (0:200H to 0:9FFH). The starting address of the local register is given by
LRBLx8+200H. Local registers are allocated in order RO, R1, R2, ..., R7 from this starting
address. Local register addressing (Rn, ERn) is provided for accessing the local registers
specified by LRBL.

LRB is allocated as a word register in SFR space, so it can be manipulated using SFR addressing.
The value of LRB is undefined after reset, so its value should be set soon after program execution
begins. If local register addressing or current page addressing is used before this, then an
undefined memory address will be accessed. After an interrupt, the LRB's value is
automatically pushed on the stack. When an RTI instruction is executed, that value is popped
from the stack and stored back in LRB.

g8 Chapter 1 nX-8/500S Instruction Manual

Chapter 1 Architecture
CPU Resources And Programming Model

1-2-1-2-4. System Stack Pointer (SSP)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S o I N N (N N N I

The SSP is a 16-bit register that stores the top stack address of the hardware stack. The
hardware stack is a pushdown stack for pushing and popping registers upon execution of interrupt

process transfers/returns, calls/returns, and PUSHS/POPS instructions. The SSP stores the top
(lowest) address of this stack. The SSP is automatically decremented and incremented during

execution processing.

Data is normally pushed on and popped off the stack in word units. When a word value is
pushed on the stack, the word data is written to the stack address specified by SSP, and then SSP
is decremented by 2. When a word value is popped off the stack, SSP is incremented by 2, and
then the word data is read from the stack address specified by SSP. Reads and writes to the
memory of this word data are affected by word boundaries, so even if the SSP value is odd, the
word data handled will be at the next lower even address. Pushing and popping the stack
through SSP is always performed in accordance with these rules.

The hardware stack pointed to by SSP is always allocated in data segment #0 (0:0 to 0:0FFFFH).
To access the stack with RAM addressing other than that of stack manipulation instructions, the
DSR must be set to 0.

SSP is allocated as a word register in SFR space, so it can also be manipulated with SFR
addressing. Immediately after reset, the value of SSP is OFFFFH, the last address of memory.
If there is no memory up to address OFFFFH, then the actual value for SSP must be set soon after
program execution begins. If instructions that manipulate the stack are executed before then,

program operation will not be predictable.

nX-8/500S Instruction Manual Chapter1 9

Chapter 1 Architecture

CPU Resources And Programming Model

1-2-1-3. Pointing Registers (PR)

There are eight pointing register sets, each with four 16-bit registers X1, X2, DP, and USP. The

pointing register sets store memory addresses for indirect addressing.

They also provide the

same functions for word calculations as extended local registers, so they can be used as data

registers too.

15 8 7
Index Register 1 X1
Index Register 2 X2
Data Pointer DP
User Stack Pointer USP x8 sets

The pointing register sets are allocated in the 64 bytes starting from address 200H in the fixed

page of data memory space.

They are allocated in order #0, #1,..., #7 from low address to high.

Within each pointing register set, X1, X2, DP, and USP are allocated to memory in that order
from low address to high.

m Pointing register sets in data memory

Data Memory Space

ooooh 1 15
0200H 200H X1
0240H
AN X2 PR set#0
\ DP
\
\ UsP
\
\ 208H X1
\
\ X2
\ PR set#l
\ DP
\
\ UsP O
\
\\ D D
\\\ D D
N O O
\
‘\ 0 a0
‘gssH X1 O
\\ X2 PR set#7
\\ DP
K uspP
240H
OFFFFH
PSW | | |
SCB

The pointing register set to be used is selected by the SCB field in the PSW. The following
table shows the relation between SCB field values and the pointing register set selected.
Immediately after reset, pointing register set #0 will be selected. The initial values of all

pointing registers are undefined.

10 Chapter 1 nX-8/500S Instruction Manual

Chapter 1 Architecture
CPU Resources And Programming Model

m SCB field and pointing register set addresses

No. SCB Value
0

Pointing Register
Set Addresses

~NoOoUh~WNREO
PR RRPROOOO|IN
PP OORRLOO|R
PORORORO

0200H to 0207H
0208H to 020FH
0210H to 0217H
0218H to 021FH
0220H to 0227H
0228H to 022FH
0230H to 0237H
0238H to 023FH

The pointing register sets overlap the first eight local register sets (RO, R1, ..., R7), which also
start from address 200H. To ensure proper program execution, set SCB and LRBL
appropriately, such that the pointing registers and local registers do not overlap.

1-2-1-3-1. Addressing With Pointing Registers

Pointing register addressing modes are provided to access the contents of pointing registers.

m Exampla Pointing register addressing

L A X1

ADD AX2

CMP DP,#1234H
ST A,USP

A-X1

A A+X2
; DP-1234H
i A USP

Index register 1 (X1) is used for indirect addressing ([X1]) where X1 itself specifies an address,
indirect addressing with 16-bit base (D16[X1]) where an optional address within 64K bytes
specifies a base address with X1 specifying an offset, and indirect addressing with 8-bit register
displacement ([X1+A], [X1+R0]) where X1 specifies a base address anywhere in 64K bytes with
an 8-bit register specifying an offset.

m Exampla X1 indirect addressing

L A[X1]
ADD A,1234[X1]
SUB A[X1+A]
AND A,[X1+R0]

; X1 indirect addressing

; X1 indirect addressing with 16-bit base

; X1 indirect addressing with AL register displacement
; X1 indirect addressing with RO register displacement

nX-8/5008S Instruction Manual

Chapter 1

11

Chapter 1 Architecture
CPU Resources And Programming Model

Index register 2 (X2) is used for indirect addressing with 16-bit base (D16[X2]) where an optional
address within 64K bytes specifies a base address with X2 specifying an offset.

BEExampldl X2 indirect addressing

ADD A,1234H[X2] ; X2 indirect addressing with 16-bit base
The data pointer (DP) is used for indirect addressing ([DP]) where DP itself specifies an address,
indirect addressing with post-increment/decrement ([DP+],[DP-]) where DP is automatically
incremented or decremented after the data access, and indirect addressing with 7-bit displacement

(n7[DP]) where DP specifies a base address anywhere in 64K bytes with an@®ffset+63.

EExampldlDP indirect addressing

L A,[DP] ; DP indirect addressing

ADD A,[DP+] ; DP indirect addressing with post-increment
SUB A,[DP-] ; DP indirect addressing with post-decrement
ADD A,-12[DP] ; DP indirect addressing with 7-bit displacement

The user stack pointer (USP) is used for indirect addressing with 7-bit displacement (n7[USP])
where USP specifies a base address anywhere in 64K bytes with an@®ffset-63.

B ExampldlUSP indirect addressing
L A,-12[USP] ; USP indirect addressing with 7-bit displacement

Like other byte objects, the low bytes of X1, X2, DP, and USP can be used as loop counter that
specify 1 to 256 loops.

B ExampldliLoop counter usage

DJNZ X1L,LOOP ; X1 low byte (X1L) is loop counter
DIJNZ X2L,LOOP ; X2 low byte (X2L) is loop counter
DJNZ DPL,LOOP ; DP low byte (DPL) is loop counter

DJNZ USPL,LOOP ; USP low byte (USPL) is loop counter

12 Chapter 1 nX-8/500S Instruction Manual

Chapter 1 Architecture
CPU Resources And Programming Model

1-2-1-4. Local Registers (ER)

There are 256 local register sets, each with eight 8-bit registers. Each two adjacent 8-bit
registers comprise an extended local register (ERn) for processing word data. This data register
group is used for storage and calculations of byte and word data.

: 15 8 7 0
Extended local register #0 ER(R1 RO
Extended local register #1 ER: R3 R2
Extended local register #2 ER: R5 R4
Extended local register #3 ER: R7 R6 x256 sets

The local register sets are allocated in the 2048 bytes starting from address 200H in the fixed page
of data memory space. They are allocated in order #0, #1,..., #255 from low address to high.

Within each local register set, RO to R7 are allocated to memory in that order from low address to

high.

M Local register sets in data memory

Data Memory Space

ooooH ™ — 15 87 d
0200H 200H R1 RO
R3 R2 LR set#0
R5 R4
R7 R6
0AOOH N 208H R1 RO
N R3 R2
\ LR set#l
N R5 R4
\
\\ R7 R6 |
N O]
\
AN O]
\
AN 0 O
\
\\ 0 O
. 9F8H R1 RO 0
\\
X R3 R2 LR set#255
\\ R5 R4
AN R7 R6
0AOOH
OFFFFH
LRB | | |
LRBL

The local register set to be used is selected by the low byte of LRB (LRBL). The starting
address of the local register set selected is given by XRB+ 200H. Immediately after reset,

the value of LRBL is undefined, so there is no way to tell which local register set is selected.
The initial values of all local registers are undefined.

nX-8/500S Instruction Manual Chapter1 13

Chapter 1 Architecture
CPU Resources And Programming Model

BLRBL value and local register set addresses

LRBL Value Local RegistefSet Addresses
0200H to 0207H
0208H to 020FH
0210H to 0217H
0218H to 021FH
O
O
O
09FOHo 09F7H
09F8Hto 09FFH

WN P Oz
OOd o
w N k- O
NODOO

D

254
255

N
[¢)]
a1

The first eight local register sets overlap the pointing register sets (X1, X2, DP, USP), which also
start from address 200H. To ensure proper program execution, set LRBL and SCB

appropriately, such that the local registers and pointing registers do not overlap.

1-2-1-4-1. Addressing With Local Registers

A byte-oriented local register addressing mode and word-oriented extended local register

addressing mode are provided to access the contents of local registers.

B ExampldllLocal register addressing

LB ARO ;AL —RO
ADDB AR3 : AL — AL+R3
CMPB R6#12 . R6-12
STB AR7? . A-R7

B ExampldllExtended local register addressing

L A,ERO ; A—ERO
ADD AER1 i A-A+ER1
CMP ER2#1234H ; ER2-1234H
ST A,ER3 ; A-ER3

For INCB and DECB instructions, RO to R3 give more efficient instruction codes than R4 to R7.

B ExampldlINCB/DECB instructions

INCB RO ; 1-byte instruction
DECB R3 ; 1-byte instruction
INCB R4 ; 2-byte instruction
DECB RY7 ; 2-byte instruction

14 Chapter 1 nX-8/500S Instruction Manual

Chapter 1 Architecture
CPU Resources And Programming Model

For DJNZ instructions, R4 and R5 give more efficient instruction codes for jumps in the range -
128 to -1.

B ExampldllLoop instructions

LOOP:
DJNZ R4,LOOP ; 2-byte instruction
DJNZ RO,LOOP ; 3-byte instruction
DJNZ R5,NEXT ; 3-byte instruction
NEXT:

For multiplication and division instructions, ERO, ER1, and R1 are used to store products,
dividends, quotients, and remainders.

B ExampldlMultiplication and division instruction

MUL obj ; <A,ER0>— Axobj
DIV obj : <A,ERO>— A+ obj
; ER1- <A,ER0> mod obj
MULB obj i A — Axobj
DIVB obj ; A A+ obj
; R1— A mod obj

RO is used as a 1-byte unsigned displacement for addressing with X1 as a base.
EExampldliX1 indirect addressing with RO register displacement

MOV A,[X1+R0] : A (X1+R0)
INCB [X1+RO] ; (X1+R0) (X1+R0)+1

nX-8/500S Instruction Manual Chapter1 15

Chapter 1 Architecture
CPU Resources And Programming Model

1-2-1-5. Segment Registers

These 8-bit registers each select one of the 256 physical segments. CSR and TSR point to
program memory space. CSR and TSR do not exist in devices with just one segment in program
memory space. DSR points to data memory space. DSR does not exist in devices with just
one segment in data memory space.

1-2-1-5-1. Code Segment Registers (CSR)

csRo | [[[[] |

The CSR specifies which segment in program memory space contains the program code that is
currently executing. It exists as an independent 8-bit register, so it is not allocated in SFR space.
Writes to the CSR are performed by interrupts and by FJ, FCAL, FRT, and RTI instructions.
The CSR cannot be written to by other methods.

A single segment has offset addresses 0 to OFFFFH. Address calculations to determine the
addressing of objects are performed with 16-bit offset addresses; overflows and underflows are
ignored. Therefore, addressing alone will not change the CSR. Similarly, the CSR will not be
changed if the PC overflows. Thus, program execution cannot proceed across code segment
boundaries by any method other than those mentioned in the previous paragraph. Immediately
after reset the CSR value will be 0.

When an interrupt occurs under the medium or large memory model, the current CSR will be
automatically pushed on the stack along with the PC. The popped value will be restored to the
CSR upon execution of an RTI instruction. (Refer to memory models.)

1-2-1-5-2. Table Segment Registers (TSR)

LEI2 S A N A N A

The TSR specifies which segment in program memory space contains table data. It is an 8-bit
register allocated in SFR space, so it can be written by instructions that have SFR addressing.
Data in the table segment is accessed using ROM reference instructions (LC, LCB, CMPC,

CMPCB). RAM addressing of the table segment can also be performed by using the ROM

window function.

A single segment has offset addresses 0 to OFFFFH. Address calculations to determine the
addressing of objects are performed with 16-bit offset addresses; overflows and underflows are
ignored. Therefore, addressing alone will not change the TSR. Immediately after reset the
TSR value will be 0.

16 Chapter 1 nX-8/500S Instruction Manual

Chapter 1 Architecture
CPU Resources And Programming Model

1-2-1-5-3. Data Segment Registers (DSR)

psR [| [| [| [| |

The DSR specifies which segment in data memory space contains data. It is an 8-bit register
allocated in SFR space, so it can be written by instructions that have SFR addressing. Data in
the data segment is accessed using RAM addressing. The ROM window function opens a
window in this data segment through which the table segment can be accessed.

A single segment has offset addresses 0 to OFFFFH. Address calculations to determine the
addressing of objects are performed with 16-bit offset addresses; overflows and underflows are
ignored. Therefore, addressing alone will not change the DSR. Immediately after reset the
DSR value will be 0.

1-2-1-6. ROM Window Control Register (ROMWIN)

ROMWIN I N N

ROMWIN has the function of opening a ROM window. It is an 8-bit register allocated in SFR
space. The lower 4 bits specify the starting address of the ROM window, and the upper 4 bits
specify the ending address. The starting address will be RONMWBO0H, and the ending
address will be ROMWINx1000H + OFFFH. For example, if 71H is written to ROMWIN,
then the ROM window will be 1000H to 7FFFH. If the value written to the lower 4 bits is O,
then the ROM window function will not operate.

ROMWIN may be written only once after reset. Second and later writes will be ignored.
Immediately after reset, the value of ROMWIN will be 0, so the ROM window function will not
operate. To use the ROM window function, it is recommended that you open the ROM window
soon after reset.

1-2-1-7. Special Function Registers (SFR)
Special function registers are a register group for controlling peripheral functions. They are

allocated to addresses 0 to 1FFH in data memory space. In other words, nX-8/500S utilizes the
concept of memory-mapped I/0. Refer to the section on data memory space for detalils.

nX-8/500S Instruction Manual Chapter1 17

Chapter 1 Architecture
CPU Resources And Programming Model

1-2-2. Memory Space

The memory of nX-8/500S is split into program space and data space. The configurations of
each of these spaces are described below.

1-2-2-1. Program Memory Space

Program memory space of nX-8/500S has a total capacity of 16M bytes, configured as 256
segments of 64K bytes each. Program memory space contains executable instruction code
(program code) and read-only data (table data).

The program code being executed is specified as 24 bits: CSR determines the high 8 bits, and PC
determines the low 16 bits (CSR:PC). The segment selected by CSR is called the code segment.
When instruction execution increments the PC or when relative jumps add displacements to the
PC, overflows and underflows are ignored. This means that the CSR will not change.

The segment selected by TSR is called the table segment. The table segment can be accessed
using table data addressing with the four instructions LC, LCB, CMPC, and CMPCB. RAM
addressing can also access the table segment through use of the ROM window function.

A single segment has offset addresses 0 to OFFFFH. Address calculations to determine the

addressing of objects are performed with 16-bit offset addresses; overflows and underflows are
ignored. Therefore, addressing alone will not change the TSR.

BOverview of program memory space

#0 #1 #m #n #255
0000H
Vector ared
1000H
ACAL area
1800H
i .
ROM code belg X000H <——
. executed
Window
area
VFFF
OFFFFH
| 0 to 255| | 0 to 255| 0 to 65535 | | y| xl
TSR CSR PC ROMWIN

18 Chapter 1 nX-8/500S Instruction Manual

Chapter 1 Architecture
CPU Resources And Programming Model

1-2-2-1-1. Vector Table Area

The 74 bytes from address 0 to 49H in segment #0 (0:0 to 0:49H) in program memory space are a
vector table area for storing program process entry addresses (vectors) used after resets and
interrupts. The 32 bytes from address 4AH to 69H (0:4AH to 0:69H) are a vector table area for
storing program process entry addresses used when VCAL instructions are executed.

Each vector is a data word located at an even address. When control transfers to a program
process, the CSR value is reset to 0 by hardware, selecting segment #0. Therefore entry
addresses of program processes exist only in segment #0.

Program Memory Space

0000H

Reset Vector Area

0008H

Interrupt Vector Area

004AH

VCAL Vector Area

Vector Table Area

006AH

1-2-2-1-1-1. Reset Vector Area

The first four entries in the vector table are assigned as reset vectors corresponding to the sources
of resets. Vector addresses and reset sources are as follows.

Vector Address

Reset Source

0000H
0002H
0004H
0006H

Reset pin (RES) input

System reset instruction (BRK) execution
Watchdog timer (WDT)
Op-code trap (OPTRP)

nX-8/5008S Instruction Manual

Chapter1 19

Chapter 1 Architecture
CPU Resources And Programming Model

1-2-2-1-1-2. Interrupt Vector Area

Interrupt sources differ depending on the peripheral functions of each device. The interrupt
vector area is assigned one non-maskable interrupt (NMI) and a maximum 32 maskable

interrupts.
Vector Address Interrupt Source
0008H NMI pin input
000AH Maskable interrupt #1
000CH Maskable interrupt #2
0 0
0 0
0 0
0048H Maskable interrupt #32

1-2-2-1-1-3. VCAL Table Area

The VCAL table area is a vector area for the 16 VCAL instructions (1-byte call instructions).
Vector addresses and their corresponding VCAL instructions are as follows.

Vector Address VCAL Instruction
004AH VCAL 4AH
004CH VCAL 4CH
004EH VCAL 4EH
0050H VCAL 50H
0052H VCAL 52H
0054H VCAL 54H
0056H VCAL 56H
0058H VCAL 58H
005AH VCAL 5AH
005CH VCAL 5CH
005EH VCAL 5EH
0060H VCAL 60H
0062H VCAL 62H
0064H VCAL 64H
0066H VCAL 66H
0068H VCAL 68H

20 Chapter 1 nX-8/500S Instruction Manual

Chapter 1 Architecture
CPU Resources And Programming Model

1-2-2-1-1-4. Vector Table Coding Syntax

With the assembler, program process entry addresses are coded as labels in the operands of DW
directives. An example program that defines the vector area is shown below. If the vector area
other than the reset vector for reset pin (RES) input is not used for vectors, then it can be used for
ordinary program code.

:Reset Vector Table

CSEG AT 0000H

DW START : Power on reset

DW BRK_RESET : BRK instruction

DW WDT_RESET ; Watch dog timer overflow
DW OPTRP_RESET ; Opecode trap

;Interrupt Vector Table

DW NMI_ENTRY ; Non-maskable interrupt
DW INTO_ENTRY ; Maskable interrupt #1
O
O
O
DW INTN_ENTRY ; Maskable interrupt #n

:Vcal Vector Table

CSEG AT 004AH

VSUBO: DW SUBO : VCAL subroutine #0
VSUB1: DW SUB1 : VCAL subroutine #1
0
0
0
VSUB15: DW SUB15 : VCAL subroutine #15

; Start of main procedure

EXTRN DATA:_3SSP ; Stack pointer initial address
START:

MOV SSP.#_$$SSP ; Set system stack pointer
N

O

nX-8/500S Instruction Manual Chapter1 21

Chapter 1 Architecture
CPU Resources And Programming Model

1-2-2-1-2 ACAL Area
The 2K bytes at addresses 1000H to 17FFH of each segment in program memory space
(CSR:1000H to CSR:17FFH) are the ACAL area for placing the entry points of subroutines
called by ACAL instructions. ACAL instructions are 2-byte instructions, so they are more
efficient that 3-byte CAL instructions. An ACAL area exists in each physical segment.

BACAL area in program memory space

#0 #1 #2 ____ #255

0000H
1000H — 1 T T = T T N T
8ooH — T 1T T T]

OFFFFH _

1-2-2-1-3. ROM Window Area In Program Memory Space

The ROM window area is allows data in the table segment specified by TSR to be accessed using
RAM addressing (ROM window addressing). It is a program memory area that can be seen
through a window opened in a data segment. Table data at the same address value can be read
through the window, which can only be opened in areas that are not mapped to internal data
memory. The range of the ROM window area is set with the ROM window function control
register (ROMWIN).

BROM window area in program memory space

#255
0000H -
ROMWIN
[y _[x > x000H ~~ T~ ~T -~~~ T -~ T~~~ 7T
I I I ' ' ROM
I I I I I _
I I I I 1O I OO Window
I I I I | Area
I I I I I
L SVYWFFH T Tt T T~ T17—°T
OFFFFH - e
TSR

22 Chapter 1 nX-8/500S Instruction Manual

Chapter 1 Architecture
CPU Resources And Programming Model

1-2-2-1-4. Internal And External Program Memory Areas

There are no logical differences in programming when using internal and external program
memory areas. Use the linker to place program code in internal program memory areas, which

are implemented in the target device, and in external program memory areas, which are mounted
in the target system.

Internal program memory size depends on the device. Refer to the user's manual of the target
device for details.

nX-8/500S Instruction Manual Chapter1 23

Chapter 1 Architecture
CPU Resources And Programming Model

1-2-2-2. Data Memory Space

Data memory space of nX-8/500S has a total capacity of 16M bytes, configured as 256 segments of
64K bytes each. Data memory space normally contains memory that is readable and writable.

The segment selected by DSR is called the data segment. The data segment can be accessed using
RAM addressing. RAM addressing can also access the table segment through use of the ROM
window function.

A single segment has offset addresses 0 to OFFFFH. Address calculations to determine the
addressing of objects are performed with 16-bit offset addresses; overflows and underflows are
ignored. Therefore, addressing alone will not change the DSR.

The nX-8/500S provides several special areas in data memory space to raise coding efficiency.
These areas include special pages, such as the SFR, fixed, and current page, which allow addresses to
be specified as one-byte offsets within the page. There is also an SBA area, which provides very
efficient code for the instructions SB, RB, JBS, and JBR. If the programmer defines variables with
consideration to the location of data, then the assembler will select the optimal addressing for data
accesses.

Applications that use multiple data segments may need to exchange data between segments. To
enable this exchange, nX-8/500S has a common area starting from address 0 in data memory. The
SFR area, extended SFR area, and fixed page area always reside in the common area.

Local registers and pointing registers are located in data memory space. These registers can also be

accessed with address specifications.

B Overview of data memory space

#0 #1 —————— W™ #56
0000H SFRAf€a Common Area

0100H Extended SFR Area —_—
0200H — BC Common

FixedPageArea B
0300H — “Rarge
0 0 to O3FFH
__________ o w1l 0to 1FFFH
Currentpage 2 0 to 3FFFH
ecification 3 0 to 7FFFH

ROM— T T T T T T T T T X000H&«———+
Window
aea ¢ | | A 0 0] I yFFFH
OFFFFH
T T T T I
| 0 to 255| | 0 to 255| __ 0t065535 | X
LRBH DSR Offset Calculation ROMWIN
Result

24 Chapter 1 nX-8/500S Instruction Manual

Chapter 1 Architecture
CPU Resources And Programming Model

1-2-2-2-1. SFR Area

The nX-8/500S maps special function registers (SFR) for controlling peripheral functions to
memory (memory-mapped 1/O). The SFR area is the area to which SFR are assigned. It
covers addresses 0 to OFFH (page 0) in data memory space. This area resides in the common
area, so it can always be accessed regardless of the value of DSR. The SFR area can be read
and written with ordinary RAM addressing, and it also allows SFR addressing for better coding
efficiency.

Special function registers include word registers, byte registers, bit registers, and combinations
thereof. They also include read/write registers, read-only registers, and write-only registers.
Many important special-purpose registers, such as the accumulator (A) and program status word
(PSW), are also assigned to the SFR area. There are addresses in the SFR area to which no SFR
is assigned, but the results of reading or writing these addresses are not guaranteed.

For details on the SFR and SFR functions in your target device, refer to the user's manual of that
device.

1-2-2-2-2. Extended SFR Area

The 256 bytes at addresses 100H to 1FFH (page 1) in data memory space are called the extended
SFR area. Like the SFR area, the extended SFR area is assigned SFR registers for controlling
peripheral functions. Except that it cannot be used with SFR addressing, it is identical to the
SFR area described above.

B SFR area and extended SFR area

Data Memory Space

0000H Page 0 /:\
SFR Area \
|
0100H Page 1 |
Extended SFR Area \
0200H Page 2 | Common Area
|
Fixed Page Area i BC Common
0300H I B
Page 3 | Rarge
U | 0 0to 03FFH
O ! 1 0 to 1FFFH
I V... 2 0 to 3FFFH
0 3 0 to 7FFFH

nX-8/500S Instruction Manual Chapter1 25

Chapter 1 Architecture
CPU Resources And Programming Model

1-2-2-2-3. Fixed Page

The 256 bytes at addresses 200H to 2FFH (page 2) in data memory space are called the fixed
page. The fixed page is for efficient fixed page addressing (fix Dadr). The fixed page can also

be read and written with ordinary RAM addressing. Along with the SFR area and extended SFR
area, the fixed page area resides in the common area, so it can be accessed regardless of the value
of DSR.

1-2-2-2-3-1. Area Available For Pointing Registers
The 64 bytes starting from address 200H in the fixed page area are allocated eight pointing
register sets. The pointing register area can also be used as ordinary memory when it is not

being used as pointing registers.

The pointing register sets overlap the first eight local register sets, which also start at address
200H.

1-2-2-2-3-2. Fixed Page SBA Area
The 64 bytes at addresses 2C0OH to 2FFH in the fixed page area are called the fixed page SBA
area. As for the current page SBA area, the four instructions SB, RB, JBS, and JBR have

efficient instruction codes for accessing the 512 bits in the fixed page SFR area.

BFixed Page Configuration

Data Memory Space

0000H | Page O
SFR Area
0100H | Page 1
Extended SFR Area
0200H | Pge 2 | ~ ~ ~ 77 ~0200H X1 Y
Fixed Pae Area X2
9 PR Set #0 DP
0300H | Page 3 \ USP
N g X1 Area allowed for
O \ O) L | pointing register
0 \ 0 N~ USP ~ | sets
0 \ 0 o (8x8=64 bytes)
\
O AN X2
N PR Set #7 DP
N uspP R
N 0240H
\ a ~_
\ ~ ~N
\\
. 02COH N
\\
\
R ixed SBA
A Area for efficient Fixed page area
\ —
\ access by SB, RB, (64 bytes=512 bits)
AN JBS, JBR instructiong
\\
\ —_—— e
0300H

26 Chapter 1 nX-8/500S Instruction Manual

Chapter 1 Architecture
CPU Resources And Programming Model

1-2-2-2-4. Current Page

Each segment of data memory space is divided into 256 pages. Each page is 256 bytes starting
from a 256-byte boundary (xxO0H). Addresses for one page in the current data segment can be
specified as 1-byte offsets within the page. This page is called the current page. The location

of the current page in the data segment is specified by the high byte of the local register base

(LRBH).

The nX-8/500S provides current page addressing (off Dadr or Dadr) and current page SBA area
addressing (sbaoff Badror Badr) for the 256 bytes of the current page.

1-2-2-2-4-1. Current Page SBA Area
The 64 bytes at addresses xxCOH to xxFFH in the current page are called the current page SBA
area. As for the fixed page SBA area, the four instructions SB, RB, JBS, and JBR have efficient
instruction codes for accessing the 512 bits in the current page SFR area.

B Current Page Configuration

Current Data Segment

0000H | pageo | SFRArea
0100H Page 1 Extended SFR Area e
0200H Page 2 Fixed Area It xxX00H
0300H Page 3)
D ///
O
D ///
D ///
O -
Current Page
|0 to 255 | Page n (256 byted
LRBH O N
\
a N
O
0 R
\\
a AN
\
0
D XBFH |
0 N xXCOH
0 A Area for efficient Current Page
access by SB, RB, SBA Area
O . |3Bs, IBR (64 bytes
Page 253 \\\ instructions YXFFH = K12 hit)
Page 254 240H yyOOH
OFFFFH| Page 255

|0t0255|

DSR

nX-8/5008S Instruction Manual

Chapter 1 27

Chapter 1 Architecture
CPU Resources And Programming Model

1-2-2-2-5. Area Available For Local Registers

The 256 local register sets are allocated to the 2,048 bytes starting from address 200H in data
segment #0. Any one set can be used as local registers by setting LRBL. The local register
area can also be used as ordinary memory when it is not used as local registers.

The first eight local register sets overlap the pointing register sets, which also start at address
200H.

BLocal register area in data memory space

H
0000 Page 0 SFR Areq
0100H Extended
Pagel oSrrAea |l P00 o
0200H 5 e 2 Fixed Area ERO
0400H Page 4 ER2
0500H P 5 O ER3
0600H age O R ERO] Area available for
Page 6 0o - ~ local registers
0700H Page 7] ER3 (8x256=2K hrtes
ERO
0800H Page 8
0900H LR Set #255 ER1
Page 9 ER2
H [—----
OROOH [e ER3 o
NANOH

1-2-2-2-6. ROM Window Area In Data Memory Space

For accessing data in the table segment specified by TSR using RAM addressing (ROM window
addressing), an area exists as a window opened in the data segment. By opening a window in an
area not mapped to internal data memory, a program can read table data at the same address
values. The range of the ROM window area is set by the ROM window control register
(ROMWIN).

BROM window area in data memory space

#0 #1 iz # #255
0000H - -
ROMWIN P A At T S S A
X
L] | oM
| | | I I O Window
I I I I I Area
I I I | |
L SYFFRHE T Tt Tt T T
NFFFFH o L
DSR

28

Chapter 1 nX-8/500S Instruction Manual

Chapter 1 Architecture
CPU Resources And Programming Model

1-2-2-2-7. Common Area

The nX-8/500S provides a common area in data memory space for exchanging data between
segments. The common area is common to all segments. It is located in low memory of each
segment starting from offset address 0. The range of the common area is set by the value in the
BCB field of the PSW. The relation between the BCB value and the common area selected is as
shown below.

No. \%I:Ee Common Area Range
1 0

0 0 O 0 to O3FFH

1 0 1 0 to 1IFFFH

2 1 0 0 to 3FFFH

3 1 1 0 to 7FFFH

The common area always includes the SFR area, extended SFR area, and fixed page, so they can be
accessed regardless of the value of DSR.

1-2-2-2-8. Other Memory
1-2-2-2-8-1. EEPROM Area

Internal EEPROM may be allocated to addresses 4000H to 6000H of data segment #0. Refer to the
user's manual of a target device that has EEPROM for its programming control functions.

1-2-2-2-8-2. Dual Port RAM Area

Internal dual port RAM may be allocated to addresses 6000H to 8000H of data segment #0.
Refer to the user's manual of a target device that has dual port RAM for its control functions.

1-2-2-2-9. Internal And External Data Memory Areas

There is no logical difference between programming for internal data memory and external data
memory. Use the linker to optimally assign data to internal data memory areas of the target
device and external data memory areas mounted in the target system.

The size of internal data memory differs depending on the device. Refer to the user's manual of
your target device for details.

nX-8/500S Instruction Manual Chapter 1 29

Chapter 1 Architecture
Data Types

1-3. Data Types

This section describes the types of data that can be used with nX-8/500S instructions.

Unsigned byte
The unsigned byte data type can be handled by byte instructions. Its range is 0 to 255. When
arithmetic calculations on unsigned byte data cause overflow or underflow from the 0 to 255
range, the carry (CY) will be set to 1 and the result will be the value of the modulo 256 operation.
Logical calculations on unsigned byte data are performed on each bit. Bit positions in one byte
of data are assigned numbers such that the MSB is bit 7 and the LSB is bit 0.

Signed byte
The signed byte data type can be handled by byte instructions. It is expressed as 2's complement,
with the most significant bit recognized as the sign bit. Its range is -128 to 127. When arithmetic
calculations on signed byte data cause overflow or underflow from the -128 to 127 range, the
overflow flag (OV) will be set to 1.

Unsigned word
The unsigned word data type can be handled by word instructions. Its range is 0 to 65535.
The low byte (bits 7-0) of a word is allocated to the lower address in memory, while the high byte
(bits 15-8) is allocated to the higher address. In data memory space the lower address at which
the low byte is located will always be an even address in order to keep word boundaries. In
code memory space this restriction does not exist. The address of word data will be the address
of that word's low byte.

When arithmetic calculations on unsigned word data cause overflow or underflow from the 0 to
65535 range, the carry (CY) will be set to 1 and the result will be the value of a modulo 65536
operation. Logical calculations on unsigned word data are performed on each bit. Bit positions
in one word of data are assigned numbers such that the MSB is bit 15 and the LSB is bit 0.

15 8 7 0

30 Chapter 1 nX-8/500S Instruction Manual

Chapter 1 Architecture
Data Types

Signed word

The signed word data type can be handled by word instructions. It is expressed as 2's
complement, with the most significant bit recognized as the sign bit. Its rar@2468 to
+32767. The low byte (bits 7-0) of a word is allocated to the lower address in memory, while
the high byte (bits 15-8) is allocated to the higher address. In data memory space the lower
address at which the low byte is located will always be an even address in order to keep word
boundaries. In code memory space this restriction does not exist. The address of word data
will be the address of that word's low byte.

When arithmetic calculations on signed word data cause overflow or underflow fret32re8
to +32767 range, the overflow flag (OV) will be set to 1.

15 14 8 7 0
S

Unsigned long word

The unsigned long word data type is used for multiplication (MUL instruction) and division (DIV
and DIVQ instruction). Its range is 0 to 4,294,967,295. It expresses the product of a 16-
bitx16-bit multiplication or the dividend and quotient of a 32¢8#&-bit division.

31 24 23 16 15 8 7 0
T
;? ERO

Bit
The bit data type is accessed by bit manipulation instructions. It takes the values 0 and 1. |t
can express all bits in memory and bit-type registers. Bit data is specified in operands by
appending a bit position specifier 0 to 7 to addressing of a byte-type register or memory. Moves,
logical calculations, and bit test and jump operations can be performed on accessed bits.
76543210
Bit array

The bit array data type is handled by bit manipulation instructions with register indirect bit
specifications (MBR). A bit array is a maximum 256 bits (32 bytes) starting from a byte
boundary in memory specified as the instruction operand. Each element of the array is bit data.
The array is allocated to memory as bytes starting from bit O in 8-bit increments in the direction
of higher addresses. The bits in each byte are allocated in sequence with the smallest specifier
assigned to the LSB and the largest specifier assigned to the MSB.

255 248 Y 15 8 7 0
(4

)
((

nX-8/500S Instruction Manual Chapter1 31

Chapter 1 Architecture
Address Allocation

1-4. Address Allocation
Address allocation in memory is performed in both byte units and bit units.

Byte addresses are individual addresses allocated to all bytes in memory. A 64K-byte space is
allocated 65535 addresses from a low address of 0 to a high address of OFFFFH. The range of
complete addresses including segment addresses is 0:0 to OFFH:0OFFFFH.

Bit addresses are individual addresses allocated to all bits in memory. A 64K-byte space is
allocated 524288 addresses from a low address of 0 to a high address of 7FFFFH. The bit
addresses in each byte are assigned such that the lowest address is the LSB and the highest
address is the MSB. If a byte is at byte address addr, then the bit address of its LSB8is addr
The range of complete addresses including segment addresses is 0:0 to OFFH:7FFFFH.

The nX-8/500S has two independent spaces, program memory space and data memory space.
Each of these are allocated both byte addresses and bit addresses as explained above. Bit
addresses in program memory space correspond to bits in the table segment opened through the
ROM window.

m Byte addresses and bit addresses

Bit position
\ 7 6 5 4 3 2 1 0

Bvte address

0000H 7H 6H 5H 4H 3H 2H 1H OH
0001H OFH OEH ODH OCH 0BH O0AH 9H 8Hi
0002H 17H 16H 15H 14H 13H| 121 11H 10H
0003H 1FH 1EH 1DH 1CH 1BH 1AH 19K 18H
0004H 27H 26H 25H 24H 23H| 22K 21H 20H
0005H 2FH 2EH 2DH 2CH 2BH 2AH 29H 28K
- 2RH 35H 34H 33H 32H 31H 30H
OFFFCH| 7FFE7H 7FFEONR - 3BH 3AH 39H 38H
OFFFDH |7FFEFH | 7FFEEH 7FFEDH 7FFEQH 7rtcy.. ~TA4 7FFESH
OFFFEH|7FFF7H | 7FFF6H 7FFFS5H 7FFF4H 7FFFBH 7FFF2H 7FFF1H ...
OFFFFH|7FFFFH | 7FFFER 7FFFDH 7FFFQH 7FFFBH 7FFFAH 7FFR9H 7FFF8H

32 Chapter 1 nX-8/500S Instruction Manual

Chapter 1 Architecture
Word Boundaries

1-5. Word Boundaries

Data memory of the nX-8/500S has word boundaries (word alignment). Word boundaries
restrict word memory accesses to even addresses. For the nX-8/500S, a word memory access to
an odd address will actually access the word data located at the next lower address. In other
words, word data that extends across a word boundary cannot be read. Looked at another way,
word data in data memory space must be arranged to follow word boundaries.

BWord boundaries in data memory space

L A, 200H ; JA « 1234H (AH- contents of address 201H, Alcontents of address 200H)
L A, 201H ; JA « 1234H (AH- contents of address 201H, Alcontents of address 200H)
(1) —> 200H 34H «—When memory at either 200H or 201H is read as a
(2)—> 201H 12H word, these contents (1234H) will be read, as
explained above.

Word boundaries do not exist in program memory space. They also do not exist in program
memory space accessed through the ROM window (table segment). This operational difference

between data memory space and program memory space arises due to differences in address
generation hardware.

nX-8/500S Instruction Manual Chapter1 33

Chapter 1 Architecture
ROM Window Function

1-6. ROM Window Function

Compared to the addressing modes and instructions available for accessing data memory, those
available for accessing the table segment in program memory space are severely restricted.
There are only four instructions: LC, LCB, CMPC, and CMPCB. To get around this
restriction, the nX-8/500S provides a ROM window function.

The ROM window functions opens a window in an area that is not allocated to internal memory
of the data segment, and then views the table segment through that window. When the ROM
window is opened, the table segment can be accessed by using RAM addressing at the same
offset address to read the data segment. The ROM window can only be accessed by reads.
The results of a write operation to the ROM window are not guaranteed.

DSR
DSR:0000H ;- - = - - = 4 -
| . TSR:0000H
1 1
Data :
ROMWIN $egment .
y : |
” X000T RS L
N T
§ 1
N Table :
s Segment : ROM Window Area
N
————= JFFFHR :
\i .
Data :
Segment !
DSR:0FFFFH | 1 !
T T~ TSR:0FFFFH
TSR

In order to open the ROM window, its lower and upper addresses must be set in the ROM
window control register (ROMWIN). ROMWIN is an 8-bit register allocated in SFR space.
The lower 4 bits specify the starting address of the ROM window, and the upper 4 bits specify the
ending address. The starting address will be ROMWNOOH, and the ending address will

be ROMWIN,_x1000H + OFFFH. For example, if 71H is written to ROMWIN, then the ROM
window will be 1000H to 7FFFH. If the value written to the lower 4 bits is 0, then the ROM
window function will not operate.

ROMWIN may be written only once after reset. Second and later writes will be ignored.
Immediately after reset, the value of ROMWIN will be 0, so the ROM window function will not
operate. To use the ROM window function, it is recommended that you open the ROM window
soon after reset.

34 Chapter 1 nX-8/500S Instruction Manual

Chapter 1 Architecture
Memory Models

1-7. Memory Models

The nX-8/500S implements the concept of hardware memory models. Depending on the
memory model, accessible memory size, interrupt and corresponding RTI instruction operation,
and VCAL instruction operation will differ. The hardware can also check whether or not FJ and
FCAL instructions with far code addressing and corresponding FRT instructions can be executed.

The memory model chooses the maximum accessible memory size from two possibilities: 64K
bytes and 64M bytes. The combination of both choices for code memory space and data
memory space gives four memory models, as shown in the table below. When accessing a 16M-
byte space, segment addresses will be valid for that space. Writes are permitted to segment
registers that are not use by the specified memory model, but these values will not be used by the
hardware to specify segments.

Under the medium or large model, with 16M-bytes of code memory space, interrupts and VCAL
instructions will push both the PC and CSR on the stack. Then when an RTI instruction returns
from processing an interrupt, the CSR will also be popped from the stack. Also, the FRT
instruction must be used to return from a subroutine called by a VCAL instruction.

Under the small or compact model, with 64K-bytes of code memory space, FJ, FCAL, and FRT
instructions will cause an op-code trap. The microcontroller will resume execution from the
vector address corresponding to resets when an op-code trap occurs.

Devices that have only the small model do not have a configuration for setting the memory model.
Only the first memory model setting made after reset is valid. All devices assume the small
model by default immediately after reset. Refer to the user's manual of your target device
regarding how to set the memory model.

The above information is summarized in the table below.

Model Max.Memory Segment Register Interrupts Instructions
Code Data CSR TSR DSR VCAL FJ,FCAL,FRT
Small 64K 64K - - - Near Near Op-code trap
Compact 64K 16M - - Valid Near Near Op-code trap
Medium 16M 64K Valid Valid - Far Far Executable
Large 16M 16M Valid Valid Valid Far Far Executable

nX-8/500S Instruction Manual Chapter1 35

Chapter 1 Architecture
Data Descriptor

1-8. Data Descriptor (DD)

The nX-8/500S has a special flag called the data descriptor (DD). The programmer must pay
attention to the DD flag when the type of data being handled changes during the flow of the
program.

This section first describes the meaning and use of DD, and then lists the instructions that affect
DD and the instructions affected by DD.

The dependence of each instruction on DD is shown in the "Flags" section of each instruction's
description in Chapter 3, under the heading "Flags affecting instruction execution." The
"Description” section will also include the statement, "Execution of this instruction is limited to
when DD is 0/1."

1-8-1. Description And Use OF DD
The data descriptor (DD) is allocated to bit 12 of the PSW. It is a flag that indicates the type of

data in the accumulator (A). When DD is 0, it indicates byte data. When DD is 1, it indicates
word data.

DD Accumulator

MByte data [q L | AL |

E\Word data | A |

The type of calculations that use the accumulator (A) is determined by DD. Instructions that
affect this flag are accumulator load instructions, clear instructions, and type conversion
instructions, as well as instructions that directly set and reset the flag. Instructions affected by
this flag are basically those that leave calculation results in A and those that store the contents of
A.

In general, a program is made up of blocks that load data of some type in the accumulator,
perform several calculations of that type, and then store the results in memory. If the type of
data to be loaded in A and then calculated is determined once, then further calculations and stores
should be performed with that same type. In such cases, there is no need for the instruction
codes of calculation and store instructions to contain information about data type. This has
allowed the nX-8/500S to efficiently increase the number of instructions implemented.

The flag that preserves the data type information determined by the accumulator load is DD.
Thus, instructions that load word data to the accumulator set DD to 1. Instructions that load byte
data to the accumulator reset DD to O.

L A, #1234H : Sets DD to 1.
LB A, #12H : Resets DD to 0.

36 Chapter 1 nX-8/500S Instruction Manual

Chapter 1 Architecture
Data Descriptor

Further calculations performed on the accumulator will be affected by DD. In the following
example, the word data at address VAR is added to A, and the result is stored as a word in

memory at VAR2.
L A, #1234H i A<1234H Sets DD to 1.
ADD AVAR i A - A+VAR Executed when DD is 1.
ST AVAR2 : A VAR2 Executed when DD is 1.

The following example shows the handling of byte data. Byte data at address VAR is added to
AL, and the result is stored as a byte in memory at VARZ2.

LB A, #12H :AL < 12H Sets DD to 0.

ADDB A,VAR ;AL < AL+VAR Executed when DD is 0.
STB AVAR2 1 AL . VAR2 Executed when DD is 0.

In these two examples, ADD and ADDB actually have identical instruction codes. ST and STB
also have identical instruction codes. The difference is only the value of DD. In the following
example, the ADDB and STB mnemonics are expressed for byte instruction operation (or so the
programmer hopes), but they will actually operate as word instructions.

L A, #1234H i A—1234H Sets DD to 1.

ADDB A\ VAR i A A+VAR Byte instruction operates as word.
STB A VAR2 : ALVAR2 Byte instruction operates as word.

If the programmer truly wants ADDB and STB to operate as byte instructions, then he needs to
change the value of DD as shown next.

L A, #1234H i A—1234H Sets DD to 1.

RDD ;DD~0 Calculate with byte data.
ADDB A,VAR ;AL « AL+VAR Operates as byte.
STB A VAR2 : AL -~ VAR2 Operates as byte.

Conversely, to calculate with word data after loading byte data, the programmer can use the SDD
instruction to set DD to 1, or he can use the sign-extension type conversion instruction as shown

below.
LB A, VAR ;A -VAR Sets DD to 0.
EXTND ; A — (sign extension)AL Signed type conversion. Sets DD to 1.
ADD A\VAR2 ;A - A+VAR2 Operates as word.
ST A VAR3 : AL VAR3 Operates as word.

The programmer must look closely at whether DD must be explicitly set or reset at points where
calculations change between byte data and word data. The assembler provides the USING
DATA directive in order to detect when DD is inappropriate for instructions that reference DD.

nX-8/500S Instruction Manual Chapter 1 37

Chapter 1 Architecture
Data Descriptor

1-8-2. Instructions That Change DD

1-8-2-1.Instructions That Change DD As Part Of Their Function
In accordance with the philosophy explained in Section 1-8, "Description And Use Of DD,"
instructions that move data to the accumulator or sign-extend the accumulator will determine the
accumulator's data type. Also, the programmer needs instructions that set and reset DD. The
nX-8/500S instructions that change DD as part of their function are listed below.

HInstructions that set DD to 1

Mnemonic Operand CZSVHD D: Function
L A,0bj Z...1 . | A 0bj,DD- 1

CLR A L1001 . : A~ 0,DD~ 1

SDD o1 : DD~ 1

EXTND .S 1 . A, A,DD 1

M Instructions that reset DD to 0

Mnemonic Operand CZSVHD D: Function

LB A,0bj .Z...0 . | AL- 0bj,DD - 0

CLRB A .1...0 . : AL- 0,DD~ 0

RDD0 : DD~ 0

BRK 000000 : RESET, PC-(Vector-table 0002H)

DD is always changed when these instructions are executed. Flag changes are clearly shown to
be 0 or 1 under the “Flags” heading for each instruction of chapter 3 in the manual.

1-8-2-2. Other Instructions That Change DD

The PSW is allocated to SFR space. DD can be written by accessing PSW and DD using byte
addresses and bit addresses.

B ExampldllOther instructions that change DD

MOV APSW.,#0 ; Write PSW using byte address.
MOVB PSWH,#0 ; Write PSWH using byte address.
SB DD ; Set DD to 1 using bit address.

Depending on the operation, these instructions may or may not change DD. Writes to DD in
these cases are not clarified in this manual's descriptions of flag changes ("Flags" heading for
each instruction of chapter 3). These instruction are considered to just happen to have PSW as
their object.

38 Chapter 1 nX-8/500S Instruction Manual

Chapter 1 Architecture
Data Descriptor

1-8-3. Instructions Affected By DD
The instructions that operate in accordance with the data type of the accumulator, as described in
Section 1-8-1, "Description And Use Of DD," are shown in the table below. These are nearly
all the instructions that have A as their first operand.

HMInstruction executed when DD is 1 (word) EInstructions executed when DD is 0 (byte)

Mnemonic Operand CZSVHDD: Function Mnemonic Operan CZSVHt)D Function
ST Aobj . 3 obi A STB Aobj | 0, obj AL

FILL A e l: A~ OFFFFH FILLB A oL O: AL- OFFH

XCHG Aob |..... 1 A _obj XCHGB Aobj | 0, Al —obj

SLL Awidth [c..... 1: GCl, A J-0 SLLB A width | C..... o: C[, AL J-0
SRL : 0-[, A J-C SRLB : 0-[, AL]-C
SRA ! AL5[, A]-C SRAB ! A7-[, AL J-C
ROL ! C[,. A J-C ROLB ! C-[, AL J-C
ROR ! C.[, A J-C RORB ! C.[, AL J-C
INC A . ZSVH. 1! A A+l INCB A .ZSVH. 0 ! AL—AL+1

DEC ! A-A-1 DECB ! AL — AL-1

SQR A Lz 1: <AERO= A x A SQRB A Lz 0: A— AL x AL

ADD A,0bj CZSVH. 1: A A+0bj ADDB A,0bj CZSVH. o: AL AL+o0bj

ADC : A —A+obj+C ADCB : AL — AL+0bj+C

SUB ! A — A-obj SUBB ! AL — AL-obj

SBC ! A — A-obj-C SBCB ! AL — AL-obj-C

CMP ! A-obj CMPB ! AL-obj

NEG A CZSVH. 1! A -A NEGB A CZSVH. O! AL — -AL

AND A,0bj . ZS. .. 1! A-A n obj ANDB A,o0bj ZS. .. o! AL-AL n obj

OR ! A — A D obj ORB ! AL — AL O obj
XOR ! A — ATT obj XORB ! AL — ALTT obj

TJZ A, radr ! if A=0 then PC-radr TJZB Aradr | ... ¢ if AL=0 then RGradr
TINZ ! if Az0 then PC-radr TJINZB ! if ALZ0 then PG-radr

nX-8/500S Instruction Manual Chapter1 39

Chapter 1 Architecture
Data Descriptor

1-8-4. Pre-Fetched Instructions And DD

If DD is changed using an instruction described in Section 1-8-2-2, "Other Instructions That
Change DD," (for example, if DD is changed by performing a write with the address specification
as PSW in SFR space), and if the next instruction is one that is affected by DD, then a NOP must
be inserted before that next instruction.

EExampldNOP insertion

ANDB PSWH,#05H ; DD reset to 0 along with C, Z, HC, S, and OV.
NOP :NOP is needed.
ADDB A#12H ; Instruction is affected by DD.

Normal programming does not have many instances of changing DD using instructions described
in Section 1-8-2-2, "Other Instructions That Change DD." They are limited to cases like the
example above, where other flag types are to be changed simultaneously. Typically this would
be to set the PSW to an initial value with a single instruction.

The reason that a NOP is needed is as follows. Before execution of one instruction is finished,
the nX-8/500S starts to fetch and decode the next instruction. The value of DD is fetched along
with the instruction code at this point, so if the previous instruction does not change DD until its

last state, then the (final) value of DD when the previous instruction finishes executing will not be

the same as the value of DD that is fetched. If the next instruction is affected by the value of
DD, then it will operate based on the DD value that was fetched. If a NOP is inserted before
that instruction, then it will operate based on the correctly changed value of DD.

How this affects a program is explained below. In the next example, the instruction immediately
after an RB instruction is an ADD instruction that references DD. The programmer intends to
load the immediate value 1234H in A, and then add the byte data at address 300H to AL.
However, the ADDB instruction will operate not on byte data, but actually as an ADD instruction
for word data. As a result, the word data at address 300H will be added to the accumulator.

L A, #1234H i A—1234H, DD-1

RB DD :DD-0
ADDB A, 300H ; Operates as word instruction “ADD A,300H”

In order to avoid this, use the RDD instruction instead of an RB instruction. The RDD
instruction was created specifically for manipulating DD.

L A, #1234H i A—1234H, DD-1

RDD :DD-0
ADDB A, 300H ; Operates as byte instruction as expected

40 Chapter 1 nX-8/500S Instruction Manual

Chapter 1 Architecture
Data Descriptor

Alternatively, insert an NOP before the instruction that references DD.

L A, #1234H i A—1234H, DD~ 1

RB DD :DD<0

NOP ; Next instruction fetched while NOP execution.
ADDB A, 300H ; Operates as byte instruction as expected.

nX-8/500S Instruction Manual Chapter1 41

Chapter 1 Architecture
Changing The Stack

1-9. Changing The Stack

This section summarizes how the stack is changed by instructions and interrupts. Refer to

Chapter 3 for details of each instruction. For pushing/popping the register sets CR, ER, and PR,

this section illustrates only the case where the entire sets are pushed/popped at once. The
sequence for pushing/popping the entire register set at once is identical to selecting the individual

registers to be pushed/popped. The images shown are the locations in memory of registers when
ER and PR are pushed as register sets, and when an interrupt pushes CR as a register set.

B Push
CAL, SCAL, ACAL instructions
VCAL instruction(small/conpact model)
Pop
RT instruction

B Push
FCAL instruction
VCAL instruction(medium/lage model)
Pop
FRT instruction

SSP

Interrupt (small/conpact model)

Pop

RTI instruction(small/conpact model)

SSP SSP SSP
after pushing /\9 <'_ before | after pushing |9 e| before |
SSP . v SSP N T :
before [~ PC Se after pushing : - 1 CSR
SSP SSP
| before |9 PC Iél after pushing |
EPush EPush

Interrupt (medium/lage model)

Pop

RTI instruction(medium/lage model)

| afterS ;;Supshing > < bg%'?e | | aﬁersr)SuZhing |9 < | bngoFr)e |
B PSW ' B PSW :
LRB LRB
. A \/ A ;
bg%'?e |9 PC < aftersy;supshing| : - : CSR v
| bg_fSQFr,e — PC < afterSpSuZhing
EPush B Push
PUSHS CR PUSHS ER, PUSHS PR
Pop Pop
POPS CR POPS ER, POPS PR
| afterS ;;Supshing > e| bg%'?e | | aﬁersr)SuZhing |9 e| bngoFr)e |
A PSW ' ERO or X1 :
: LRB ER1 or X2 :
| bgfsqfe I9 A e| afterSpSuPshing | : ER2 or DP V
| bngoFr)e —>| ER3 or USP e| aﬁerS;)SuZhing

42 Chapter 1

nX-8/5008S Instruction Manual

Chapter 1 Architecture
Instruction Code Format

1-10. Instruction Code Format

This section explains native instructions and composite instructions, a feature of nX-8/500S
instruction code format.

1-10-1. Native Instructions And Composite Instructions

Instructions of the nX-8/500S are classified as native instructions or composite instructions based
on the background of their instruction codes. Instructions that require high coding efficiency
and processing efficiency are implemented as native instructions. Composite instructions
consist of a prefix code and suffix code. The prefix code specifies the address being accessed.
The suffix code mainly specifies the operation. This was one idea for implementing a wide
variety of addressing modes. By having both native instructions and composite instructions, the
nX-8/500S instruction set is able to be both efficient and easy to code with.

Native instructions are instructions with 1 to 4 bytes of code.

1to 4 bytes

Composite instructions consist of a 1 to 3 byte address specification field (prefix) and a 1 to 3 byte
operation specification field (suffix).

Prefix Suffix
1to 3 bytes 1to 3 bytes

Prefixes can be word type or byte type. Word prefix codes and byte prefix codes are listed
below. Suffixes of word instructions are combined with word prefixes. Suffixes of byte
instructions and bit instructions are combined with byte prefixes.

BWWord Prefixes HByte Prefixes
<word> <byte>
HN Word Prefix Instruction Code || CYcle a Byte Prefix Instruction Code Cycle
1st 2nd 3rd (Internal) 1st 2nd 3rd (Internal)
A BC 2 A BC 2
ERnN 64 +n 2 Rn 68 +n 2
PRn 60 +n 2 [X1] BO 4
X1] AO 4 [DP] B2 4
[DP] A2 4 [DP-] B1 5
[DP] AL 5 [DP+] B3 5
[DP+] A3 5 fix B4 fix8 4
fix A4 fix8 4 off B5 off8 4
off A5 off8 4 sfr B6 sfr8 4
sfr A6 sfr8 4 dir B7 dirL dirH 6
dir A7 dirL dirH 6 D16[X1] B8 D16L D16H 6
D16[X1] A8 D16L D16H 6 D16[X2] B9 D16L D16H 6
D16[X2] |[A9 D16L D16H 6 n7[DP] || 9B n7 6
n7[DP] | 8B n7 6 n7[USP] || 9B 80 +n 6
n7[USP] || 8B 80 +n7 6 [X1+A] | BA 6
[X1+A] [[AA 6 [X1+R0] [BB 6
[X1+R0] | AB 6 PSWL 8A 2
PSWH 9A 2

nX-8/500S Instruction Manual Chapter 1 43

Chapter 1 Architecture
Instruction Code Format

The instruction code table given for each instruction in Chapter 3 is shown as a single table for
native instructions. For composite instructions, the suffix code table corresponding to the word
or byte prefix code table is shown. When the function of an instruction that can be combined
from a prefix and suffix is identical to the function of a native instruction, the assembler will
generate the native instruction code.

44 Chapter 1 nX-8/500S Instruction Manual

Chapter 1 Architecture
Microcontrollers That Use The nX-8/500S Core

1-11. Microcontrollers That Use The nX-8/500S Core

The functional specifications of microcontrollers the use the nX-8/500S core differ on the
following points. Devices without these functions also exist.

- Peripheral circuits and allocation of registers in SFR space to control them.

- Accessible memory ranges and bit length of segment registers to control them (CSR, TSR,
DSR).

- Permitted memory models and structures for setting them.

- Internal program memory range.

- Internal data memory types and ranges.

- Control methods for special internal data memory (EEPROM programming methods, etc.).

- Multiply-Addition function (MAC instruction) and its flag in the PSW (MAB).

When program memory space only has segment #0, the device has the following limitations.

- CSR and TSR do not exist.
- FJ, FCAL, and FRT instructions, which transfer execution across code segments, do not exist.
- Medium and large memory models cannot be specified.

When data memory space only has segment #0, the device has the following limitations.

- DSR does not exist.

- The concept of common memory across data segments does not apply.
- BCB in the PSW can be used as user flags.

- Compact and large memory models cannot be specified.

Refer to the user's manual of your target device for the functional specifications of the above
items when you need this information to write programs. However, when a function or structure
does not exist for your target device, it might not be alluded to in the user's manual if it seemed
unnecessary for explanations.

nX-8/500S Instruction Manual Chapter 1 45

Chapter 2. Addressing Modes

This Chapter explains how to access registers and memory using nX-8/500S core
instructions. The specific methods for these accesses are called addressing modes.
This chapter describes the types, functions, and syntax of addressing modes.

Chapter 2 Addressing Mode
Addressing Mode Types

2-1. Addressing Mode Types

The nX-8/500S core has two independent memory spaces: a data memory space and a program
memory space. The nX-8/500S core addressing modes can be classified broadly to correspond
to these spaces.

Data memory space is normally configured from read/write memory (RAM), so it is also called
RAM space. Addressing to this space is called RAM addressing.

Program memory space is hormal configured from read-only memory (ROM), so it is also called
ROM space. Addressing to this space is called ROM addressing.

ROM addressing can be further divided into immediate addressing for accessing from instructions
themselves, table data addressing for accessing data in ROM space, and program code addressing
for accessing programs in ROM space.

In addition, the nX-8/500S core has a special addressing called ROM window addressing. This
addressing mode accesses table data in ROM space using RAM addressing. It reads data in a
table segment through a window in a data segment opened by the program.

The above addressing mode types and their addressing are summarized below.

@emory Space
Ek RAM Addressing

Register addressing
Page addresing
Direct addressing
Indirect addressing
Special bit addressing

00000

@m Memory Space
OM Addressinging

EI\R
—Eklmmediate Addressing

Immediate addressing
—Ek Table Data Addressing

Direct addressing
Indirect addressing

—Ek Program Code Addressing

Direct addressing
Relative addressing
Special code addressing
Indirect address

R ROM Window Space

O 0000 OO O

ROM window addressing

RAM addressing, ROM addressing, and ROM window addressing are explained in order below.

nX-8/500S Instruction Manual Chapter2 1

Chapter 2 Addressing Mode
RAM Addressing

2-2. RAM Addressing
RAM addressing is the addressing mode for addressing program variables in RAM space.

(1) Register Addressing

O Accumulator addressing A..3
O Control register addressing PSW,LRB,SSP....4
O Pointing register addressing X1,X2,DP,USP....5
OO Local register addressing ERN,RN....6

These various registers have dedicated addressing modes, and can also be addressed as data memory.
These modes are classified as register addressing and RAM addressing.

(2) Page Addressing

[0 SFR page addressing sfr Dadr....7
OO0 Fixed page addressing fix Dadr....8
O Current page addressing off Dadr....9
(3) Direct Addressing
O Direct Data Addressing dir Dadr.. 10
(4) Pinting register indirect addressing
O DP/X1 indirect addressing [DP],[X1] ..11
0 DP indirect addressing with post-increment [DP+]..12
O DP indirect addressing with post-decrement [DP-]..13
[0 DP/USP indirect addressing with 7-bit displacement n7[DP],n7[USP].. 14
[0 X1/X2 indirect addressing with 16-bit base D16X1],D16[X2] .. 15
OO0 X1 indirect addressing with 8-bit register displacement [X1+A],[X1+R0] .. 16

(5) Special bit area (SBA) addressing

O Fixed page SBA addressing sbafix Badr.. 17
O Current page SBA addressing sbaoff Badr.. 18

2 Chapter 2 nX-8/500S Instruction Manual

Chapter 2 Addressing Mode
RAM Addressing

A Accumulator Addressing

Function

For word-type instructions, this addressing mode accesses the contents of the accumulator (A).
For byte-type and bit-type instructions, this addressing mode accesses the contents of the low byte
of the accumulator (AL).

Syntax

The instruction mnemonic determines whether the addressed object is the contents of the
accumulator (A) or the contents of the low byte of the accumulator (AL).

Word format

L A #1234H

ST A VAR
Byte format

LB A #12H

STB A VAR
Bit format

MB C,A3

JBS A3 ,LABEL

Nx-8/500S Instruction Manual Chapter2 3

Chapter 2 Addressing Mode
RAM Addressing

PSW /LRB / SSP Control Register Addressing

Function
This addressing mode accesses the contents of registers.

Syntax
SSP System stack pointer
LRB Local register base
PSW Program status word
PSWH Program status word high byte
PSWL Program status word low byte
C Carry flag

The register name itself is coded as the operand.

Word format

FILL SSP
MOV LRB ,#401H
CLR PSW
Byte format
CLR PSWH
INC PSWL

Bit format
MB C ,BITVAR

4 Chapter 2 nX-8/500S Instruction Manual

Chapter 2 Addressing Mode
RAM Addressing

X1/ X2/DP/USP Pointing Register Addressing

Function
This addressing mode accesses the contents of pointing registers.

In this addressing mode, value of System Control Base (SCB) field in the PSW specifies one of
the 8 pointing registers (PRO to PR7: every 8 bytes of 200H to 23FH in data memory.)

Syntax

X1 Index register 1

X2 Index register 2

DP Data pointer

USP User stack pointer

X1L Index register 1 low byte
X2L Index register 2 low byte
DPL Data pointer low byte

DP* Data pointer low byte
USPL User stack pointer low byte

* Only for the "JRNZ DP,radr" instruction, provided for compatibility with nX-8/100-400.

The register name itself is coded as the operand.

Word format

L A, X1
ST A X2
MOV DP ,#2000H
CLR USP

Byte format

DIJNz X1L ,LOOP
DIJNz X2L ,LOOP
DIJNZ DPL ,LOOP
DIJNZ USPL ,LOOP
JRNZ DP,LOOP

Nx-8/500S Instruction Manual Chapter2 5

Chapter 2 Addressing Mode
RAM Addressing

ERnNn/Rn Local Register Addressing

Function
This addressing mode accesses the contents of local registers.

In this addressing mode, value of the low byte of Local Register Base (LRB) specifies one of 256
local registers (every 8 bytes of 200H to 9FFH of data memory.)

Syntax

ERO to ER3 Extended local registers
RO to R7 Local registers

The register name itself is coded as the operand.

Word format

L A,ERO
MOV ER2, ER1
CLR ER3
Byte format
LB A, RO
ADDB R1, A
CMPB R2, #12H
INCB R3
RORB R4
MOVB R5, R6
Bit format
SB RO.0
RB R1.7
JBRS R7.3, LABEL

6 Chapter 2 nX-8/500S Instruction Manual

Chapter 2 Addressing Mode
RAM Addressing

sfr Dadr SFR Page Addressing

Function

This addressing mode specifies an offset within the SFR page (data memory addresses 0-OFFH)
with one byte in an instruction code. The specified address can be accessed as word, byte, or bit
data.

Syntax

sfr address_expression
address_expression

An expression with the "sfr" addressing specifier is coded as the operand. The "sfr" can be
omitted, but SFR page addressing will result only when the assembler recognizes that the
expression is an address in the SFR page.

Address symbols for each type of device are provided in the SFR. Usually these symbols are
used for SFR accesses.

Word format RAM

L A, sfr PO 0000H| |

L A, PO ! !
> 00xxH

SFR page

OOFFHL 111111

If an odd address is specified, then the data word starting at the even address immediately below it will be
accessed (- word boundary). However, there may be exceptions depending on the SFR.

Byte format RAM
LB A, sfr PO 0000H|m_|
LB A, PO ' '
—>00xxH SFR
[AENEEN page
| |
OOFFHL 111111
Bit format
SB sfr PO.3 RAM
SB P0.3 00ooH[riii1]
I I
Q0xxH L B 1]
Litiii1](SFRpage
| |
OOFFHL 111111

Nx-8/500S Instruction Manual Chapter2 7

Chapter 2 Addressing Mode
RAM Addressing

fix Dadr Fixed Page Addressing

Function

This addressing mode specifies an offset within the fixed page (data memory addresses 200-
2FFH) with one byte in an instruction code. The specified address can be accessed as word,
byte, or bit data.

Syntax

fix address_expression
address_expression

An expression with the "fix" addressing specifier is coded as the operand. The "fix" can be
omitted, but fixed page addressing will result only when the assembler recognizes that the
expression is an address in the fixed page.

Word format

L A, fix FIXVAR RAM

L A. FIXVAR OZOOHIIIIIIIII

> 02xxH

Fixed page

| |
O2FFH 1111111

If an odd address is specified, then the data word starting at the even address immediately below it will be
accessed (- word boundary).

Byte format

LB A fixFIXVAR AV
LB A, FIXVAR 0200H 1111111
I I
= 02xxH _
Liiiiid] [Fixedpage
| |
O2FFHL 111111
Bit format
SB fix FIXVAR.3 oo RAM
SB FIXVAR.3 Imm.I
02xxH Y 141111 _
LL11111] [Fixedpage
| I
O2FFH| 111111

8 Chapter 2 nX-8/500S Instruction Manual

Chapter 2 Addressing Mode
RAM Addressing

off Dadr Current Page Addressing

Function

This addressing mode specifies an offset within the current page (data memory of one page of
256 as specified by the value of LRBH) with one byte in an instruction code. The specified
address can be accessed as word, byte, or bit data.

Syntax

off address_expression
\address_expression

An expression with the "off* addressing specifier is coded as the operand. A backslasn"
be coded instead of "off", but the meaning is slightly different when accessing bit data in the SBA

area (- sbaoff Badr).
Word format
RAM
L A, off VAR _ xx00H L1111
L A, \VAR | |
xxxxH Currentpage
[[
XXFFHLL 11111

If an odd address is specified, then the data word starting at the even address immediately below it will be
accessed (- word boundary).

Byte format

LB A, off VAR RAM
LB A, \VAR XXOOH L1 111111
I I
XXXXH c ;
T urrent page
I I
XXFFH L 11111]
Bit format
SB off VAR.3 RAM
SB \\VAR.3 xxOOH L1111

XXXXH LI [[L]
LLLLLdd

| |
XXFFH L 11011

Currentpage

Nx-8/500S Instruction Manual Chapter2 9

Chapter 2 Addressing Mode
RAM Addressing

dir Dadr Direct Addressing

Function

This addressing mode specifies an address in the current physical segment of data memory
(addresses 0-OFFFFH = 64K bytes) with two bytes in an instruction code. The specified address
can be accessed as word, byte, or bit data.

Syntax

dir address_expression
address_expression

An expression with the "dir" addressing specifier is coded as the operand. The "dir" can be
omitted, but the assembler may select SFR page addressing or fixed page addressing when the
specified address is in the SFR page or fixed page.

Word format
RAM

L A, dir VAR ooooH [r11i11]
L A, VAR | |
xooH 64K bvtes
| |
FFFFHL 111111

If an odd address is specified, then the data word starting at the even address immediately below it will be
accessed (- word boundary).

Byte format
LB A, dir VAR RAM

- A VAR ooooH]
| |
XXXXH
LLiirll 64K bytes
I |
FFFFHm
Bit format
SB dir VAR.3 e
SB VARS3 pooon
I I
XXXxH P41 1111 64K bytes
NN

10 Chapter 2 nX-8/500S Instruction Manual

Chapter 2 Addressing Mode
RAM Addressing

[DP] / [Xl] Pointing Register Indirect Addressing

Function

This addressing mode specifies an address in the current physical segment of data memory
(addresses 0-OFFFFH = 64K bytes) with the contents of a pointing register. The specified
address can be accessed as word, byte, or bit data.

Syntax

[DP] DP indirect addressing
[X1] X1 indirect addressing

Only [DP] can be used with nX-8/100-400.

Word format

RAM

L A, [DP] |
. A X1] OOOOHI |
- o

If an odd address is specified, then the data word starting at the even address immediately below it will be
accessed (- word boundary).

Byte format

LB A, [DP] RAM

LB A, [X1] oooor 1]

DP or X1 XXXXH
64K bytes

Bit format

RAM
SB [DP].3 OOOOH' T l
RB [X1].3 | |
7]

DP or X1 XXXXH '
LLLLIll 64K bytes

Nx-8/500S Instruction Manual Chapter2 11

Chapter 2 Addressing Mode
RAM Addressing

[DP+] DP Indirect Addressing With Post-Increment

Function
This addressing mode specifies an address in the current physical segment of data memory
(addresses 0-OFFFFH = 64K bytes) with the contents of a pointing register. The specified
address can be accessed as word, byte, or bit data.
After the address has been accessed, the contents of the pointing register are incremented. For
word-type instructions, the contents are increased by 2. For byte-type and bit-type instructions,
the contents are increased by 1.

Syntax
| [DP+] DP indirect addressing with post-increment

This addressing mode does not exist for nX-8/100-400.

Word format RAM

L A, [DP+] 0000H| |

x00H
64K bytes

1 increment by
1 after access I I

If an odd address is specified, then the data word starting at the even address immediately below it will be
accessed (- word boundary).

Byte format
RAM

LB A, [DP+] ooowm

xooH
64K bytes

t increment by
1 after access | |

Bit format
SB [DP+].3 RAM

0000H lm‘

/L

LA
[o F——> oot i1t
64K bytes

t increment by NNEEE
1 after access | |

12 Chapter 2 nX-8/500S Instruction Manual

Chapter 2 Addressing Mode
RAM Addressing

[D P-] DP Indirect Addressing With Post-Decrement

Function

This addressing mode specifies an address in the current physical segment of data memory
(addresses 0-OFFFH = 64K bytes) with the contents of a pointing register. The specified address
can be accessed as word, byte, or bit data.

After the address has been accessed, the contents of the pointing register are decremented. For
word-type instructions, the contents are reduced by 2. For byte-type and bit-type instructions,
the contents are reduced by 1.

Syntax
| [DP-] DP indirect addressing with post-decrement

This addressing mode does not exist for nX-8/100-400.

Word format RAM

L A, [DP] 0000H 1111 11]

| |
[P 0

1 decrement by
2 after access | |

If an odd address is specified, then the data word starting at the even address immediately below it will be
accessed (- word boundary).

64K bytes

Byte format
RAM

LB A, [DP-] ooowm

i byes

t decrement by
1 after access | |

Bit format
SB [DP-].3 RAM
0000H[111 11]
| — |
wooxH L L bytes
1 decrement by LIl

1 after access | |

Nx-8/500S Instruction Manual Chapter 2 13

Chapter 2 Addressing Mode
RAM Addressing

n7[DP]/ n7[USP] bpusp|

ndirect Addressing With 7-Bit Displacement

Function

This addressing mode specifies an address in the current physical segment of data memory

(addresses 0-OFFFFH = 64K bytes) wi
signed displacement (bits 6-0, with bit
range -64 to +63 of the contents of a

th the contents of a pointing register as the base and a 7-bit
6 the sign bit) in the instruction code. Addresses within a
pointing register can be accessed. The specified address

can be accessed as word, byte, or bit data.

Syntax

constant_expressifDP]
constant_expressigdSP]

DP indirect addressing with 7-bit displacement
USP indirect addressing with 7-bit displacement

The constant_expression is a value in
DP and USP can be used as the pointi
Only [DP] can be used with nX-8/100-400. For t
register can be accessed.

Word format

the range -64 to +63.
ng register.
hese, addresses within a range -128 to +127 of the contents of the pointing

L A, 12[DP] RAM
L A, JI.2[X1] OOOOHI LIl I
I I
D——> xxxxH
64K bytes
[oparxa |

If an odd address is specified, then the data word starting at the even address immediately below it will be

accessed (- word boundary).

Byte format

LB A, 12[DP] RAM
LB A, 12[X1] 0000H]| |
|- | |
> oo 64K bytes
[oparx1 |—— L
| |
Bit format
SB 12[DP].3 RAM
RB lLZ[Xl]"3 0000H|m|
I | I
/
S———> xxxxH |||'||||
I b [

14 Chapter 2

nX-8/500S Instruction Manual

Chapter 2 Addressing Mode
RAM Addressing

D16 [Xl] /| D16 [XZ] X1/X2 Indirect Addressing With 16-Bit Base

Function
This addressing mode specifies an address in the current physical segment of data memory
(addresses 0-OFFFFH = 64K bytes) with two bytes in the instruction code (D16) as a base added
to the contents of a pointing register (X1 or X2). The addition to generate the address is word
(16-bit) addition with overflows ignored. Accordingly, the address generated will be 0 to
OFFFFH. The specified address can be accessed as word, byte, or bit data.

Syntax

address_expressipl] X1 indirect addressing with 16-bit base
address_expressiph2] X2 indirect addressing with 16-bit base

The address_expression is a value in the range 0 to OFFFFH. However, the assembler permits a
range -8000H to +OFFFFH. D16 could be thought of not as a base address, but as a
displacement.

Word format
L A, 1234H[X1] RAM

ST A, 1234H[X2] oooor[iiiii]

D—> xxxxH

X1 or X2

64K hytes

FrrrH 0]

If an odd address is specified, then the data word starting at the even address immediately below it will be
accessed (- word boundary).

Byte format

B A 1234H[X1] |
-l A, 1234H[X2] 0000H
1499 [!
P—> xxxxH 64K bytes
[WEAREN
| |
=1 I
Bit format
SB 1234H[X1].3 I m |
> 12|34H[X2].3 0000HY 1111111}
L
S—>00oH 111111 64K bytes
[EEAREN

Nx-8/500S Instruction Manual Chapter 2 15

Chapter 2 Addressing Mode
RAM Addressing

[X1+A] / [X1+ RO] X1 Indirect Addressing With 8-Bit Register Displacement

Function

This addressing mode specifies an address in the current physical segment of data memory
(addresses 0-OFFFFH = 64K bytes) with the contents of a pointing register as the base added to
the contents of the low byte of the accumulator (AL) or local register 0 (R0O). The addition to
generate the address is word (16-bit) addition, with the 8-bit displacement from the register
extended without sign. Overflow from this addition is ignored, so the generated value will be 0
to OFFFFH. The specified address can be accessed as word, byte, or bit data.

Syntax
[X1+A] X1 indirect addressing with 8-bit register displacement (AL)
[X1+RO0] X1 indirect addressing with 8-bit register displacement (RR0)
Word format
MOV A, [X1+A] RAM
MOV A, [X1+R0] OOOOHlm‘
| ! !
O—> xxxxH
64K bytes

rrrrn 0]

If an odd address is specified, then the data word starting at the even address immediately below it will be
accessed (- word boundary).

Byte format

MOVB A, [X1+A] RAM
MOVB A, [X1+RO] 0000H [11]
| ! '
P> x00H 64K bytes
L

Bit format
SB [X1+A].3 RAM

RB [X1+RO0].3 0000H m
[AL orRO}— | |
L 64K bytes

S>> xxxxH L1111

LI1LTT1

16 Chapter 2 nX-8/500S Instruction Manual

Chapter 2 Addressing Mode
RAM Addressing

shafix Badr Fixed page SBA area addressing

Function

This addressing mode specifies a bit address in the 512-bit SBA area (2COH.0-2FFH.7) in the
fixed page. The specified address is accessed as bit data.

Syntax

sbafixaddress_expression
address_expression

Four instructions can be coded with this addressing mode: SB, RB, JBS, and JBR.

Bit format

SB sbhafix 2C0OH.0

RB sbhafix 1600H

JBS sbafix FIXBITVAR, LABEL
JBR sbafix 2EFH.7,LABEL

SB 2C0OH.0
RB 1600H
JBS FIXBITVAR, LABEL
JBR 2EFH.3,LABEL RAM
02COH| 1111111
I I
02xxH | | 14 111 SBA area in the
LLLLLL] fixed page
| |
O2FFHL 111111

Nx-8/500S Instruction Manual Chapter 2 17

Chapter 2 Addressing Mode
RAM Addressing

sbaoff Badr Current page SBA area addressing

Function

This addressing mode specifies a bit address in the 512-bit SBA area (xxCOH.0-xxFFH.7) in the
current page. The specified address is accessed as bit data.

Syntax

sbaoffaddress_expression
\address_expression

Four instructions can be coded with this addressing mode: SB, RB, JBS, and JBR.

Bit format

SB sbaoff 4COH.0

RB sbaoff 2E80H

JBS sbaoff VAR, LABEL

JBR sbaoff OFFFFH.3,LABEL

SB \2COH.0
RB \ 2E80H
JBS \VAR, LABEL
JBR \OFFFFH.3, LABEL RAM
XXCOHLLL11111
| |
beee(all NNENENE] SBA area in the
LLliill current page
| |
XXFFH L1111

18 Chapter 2 nX-8/500S Instruction Manual

Chapter 2 Addressing Mode
ROM Addressing

2-3.

2-3-1.

2-3-2.

3-3-3.

ROM Addressing
Immediate Addressing

These addressing modes access immediate data including in the instruction code.
O Wword/byte immediate addressing #N16,#N8.. 20

Table Data Addressing

These addressing modes access the 64K bytes in the current table segment area in ROM space.
(1) Direct addressing

O Direct table addressing Tadr..21
(2) Indirect addressing

[0 RAM address indirect table addressing] ..22
O RAM address indirect addressing with 16-bit base T16[** .23

Program Code Addressing

These addressing modes access the current program code in ROM space. They are used for
operands in branch instructions.

(1) Direct addressing

O Near code addressing Cadr..24
O Far code addressing Fadr..25

(2) Relative addressing
O Relative code addressing radr.. 26
(3) Special code addressing for particular instructions

O ACAL code addressing Cadrl1l..27
O VCAL code addressing Vadr.. 28

(4) Indirect addressing

0 RAM address indirect code addressing [**1 ..29

Nx-8/500S Instruction Manual Chapter2 19

Chapter 2 Addressing Mode
ROM Addressing

#N16 /| #N8 Word/Byte Immediate Addressing

Function

For words, this addressing mode accesses two bytes (N16) in the instruction code. For bytes, it
accesses one byte (N8) in the instruction code.

Syntax

#expression

For words, the expression has a value in the range 0-OFFFFH. For bytes, it has a value in the
range 0-OFFH. However, the assembler permits values in the ranges covered by both signed and

unsigned expressions. For words, this range is -8000H to +OFFFFH. For bytes, it is -80H to
+0FFH.

Word format

L A, #1234H
MOV X1, #WORD_ARRAY_BASE

Byte format

LB A, #12H
MOVB X1, #BYTE_ARRAY_BASE

20 Chapter 2 nX-8/500S Instruction Manual

Chapter 2 Addressing Mode
ROM Addressing

Tadr Direct Table Addressing

Function

This addressing mode specifies an address in the current table segment (0-OFFFFH: 64K bytes)
with two bytes in the instruction code. The specified address can be accessed as word or byte
bit data.

Four instructions can use this addressing mode: LC, LCB, CMPC, and CMPCB.

Syntax

address_expression

The expression indicates and table address and is coded as the operand.

Word format

LC A, VAR

CMPC A VAR
Byte format

LCB A, VAR

CMPCB A, VAR

Nx-8/500S Instruction Manual Chapter2 21

Chapter 2 Addressing Mode
ROM Addressing

[**] RAM Address Indirect Table Addressing

Function

This indirect addressing mode uses word data specified by RAM addressing as a pointer to the
current table segment. Table memory can thus be accessed by placing a pointer to table memory
in a register or in data memory.

Four instructions can use this addressing mode: LC, LCB, CMPC, and CMPCB.

Syntax
| [RAM_address_specificatidn

A word RAM address specification is entered in the brackets.

Word format

LC A, [A]

CMPC A,[1234[X1]]
Byte format

LCB A, [ERO]

CMPCB A, [VAR]

22 Chapter 2 nX-8/500S Instruction Manual

Chapter 2 Addressing Mode
ROM Addressing

T1 6[**] RAM Address Indirect Addressing With 16-Bit Base

Function

This addressing mode specifies an address in the current table segment (0-OFFFFH: 64K bytes)
with a two-byte base (T16) in the instruction code added to the word data specified by RAM
addressing. The addition to generate the address is word (16-bit) addition with overflows

ignored. Accordingly, the address generated will be 0 to OFFFFH. The specified address can
be accessed as word or byte data.

Four instructions can use this addressing mode: LC, LCB, CMPC, and CMPCB.

Syntax

address_expressifRAM_address_specificatibn

A word RAM address specification is entered in the brackets.

Word format

LC A, 2000H[A]

CMPC A, 2000H[1234[X1]]
Byte format

LCB A, 2000H[ERQ]

CMPCB A,2000H[VAR]

Nx-8/500S Instruction Manual Chapter 2 23

Chapter 2 Addressing Mode
ROM Addressing

Cadr Near Code Addressing

Function

This addressing mode specifies an address in the current code segment (0-OFFFFH: 64K bytes)
with two bytes in the instruction code.

Two instructions can use this addressing mode: Jand CAL.

Syntax

address_expression

The expression indicates a code address as the operand.

Example use

J 3000H
CAL LABEL

24 Chapter 2 nX-8/500S Instruction Manual

Chapter 2 Addressing Mode
ROM Addressing

Fadr Far Code Addressing

Function
This addressing mode specifies an address anywhere in program memory (0:0-OFFH:OFFFFH:
16M bytes) with three bytes in the instruction code.

Two instructions can use this addressing mode: FJ and FCAL.

Syntax

address_expression

The expression indicates a code address as the operand

Example use
FJ 20H:3000H
FCAL FARLABEL

Nx-8/500S Instruction Manual Chapter2 25

Chapter 2 Addressing Mode
ROM Addressing

radr Relative Code Addressing

Function

This addressing mode specifies an address in the current code segment (0-OFFFFH: 64K bytes)
with the current program counter (PC) as a base added to an 8-bit or 7-bit sign-extended value in
the instruction code. The addition to generate the address is word (16-bit) addition with
overflows ignored. Accordingly, the address generated will be 0 to OFFFFH.

Instructions that can use this addressing mode are the SJ instruction and conditional branch
instructions.

Syntax

address_expression

The expression indicates a code address as the operand.

Example use
SJ LABEL
DJNZ RO,LABEL
JC LT,LABEL

26 Chapter 2 nX-8/500S Instruction Manual

Chapter 2 Addressing Mode
ROM Addressing

Cadrll ACAL Code Addressing

Function

This addressing mode specifies an address in the ACAL area current code segment (1000H-
17FFH: 2K bytes) with 11 bits in the instruction code.

Only the ACAL instruction can use this addressing mode.

Syntax

address_expression

The expression indicates a code address as the operand.

Example use

ACAL 1000H
ACAL ACALLABEL

Nx-8/500S Instruction Manual Chapter 2 27

Chapter 2 Addressing Mode
ROM Addressing

Vadr VCAL Code Addressing

Function

This addressing mode specifies a vector (word data) for the VCAL instruction with four bits in
the instruction code.

Only the VCAL instruction can use this addressing mode.

Syntax

address_expression

The expression indicates a code address as the operand.

Example use
VCAL 4AH
VCAL 0:4AH
VCAL VECTOR

28 Chapter 2 nX-8/500S Instruction Manual

Chapter 2 Addressing Mode
ROM Addressing

[**] RAM Address Indirect Code Addressing

Function
This indirect addressing mode uses word data specified by RAM addressing as a pointer to the
current code segment. Indirect jumps and calls can be executed by placing a pointer to code
memory in a register or in data memory.

Two instructions can use this addressing mode: Jand CAL.

Syntax
| [RAM_address_specificatipn

A word RAM address specification is entered in the brackets.

Example use
J [Al
CAL [1234[X1]]

Nx-8/500S Instruction Manual Chapter2 29

Chapter 2 Addressing Mode
ROM Addressing

2-4. ROM Window Addressing

ROM window addressing accessed table data in ROM space using RAM addressing. It reads
data in a table segment through a window in a data segment opened by the program.

Addressing to data memory in the ROM window area is permitted, but if an instruction that writes
to the ROM window is executed, then the results are not guaranteed.

30 Chapter 2 nX-8/500S Instruction Manual

Chapter 3. Instruction Details

This chapter explains the functions of each nX-8/500S core instruction in detail.

Chapter 3 Instruction Details
Instruction Set

nX-8/500S Instruction Set Listed By Function

Data Move

Mnemonic Operand CZSVHD D Function

L A,obj z .1 .| Word move (Word load) ! Aobj, DD-1

ST Aobj |...... 1| Word move (Word store) ! objA

MOV objl,obj2 [...... Word move ' objd obj2

CLR A 1...1 .| word clear " A0,DD-1
obj |...... | word clear ' okjo

FILL A 1| Word fill : A~ OFFFFH
obj ..., .| word fill | obj- OFFFFH

XCHG Aobj [...... 1| Word exchange : A obj

swap ..o High/low byte swap ! AH AL

LB A,obj z...0 .| Byte move (Byte load) ! ALobj, DD-0

STB Aobj |...... 0] Byte move (Byte store) ! objAL

MOVB objl,0bj2 | Byte move ! objd obj2

CLRB A 1...0 Byte clear : AL 0, DD-0
obj| Byte clear : 0bj0

FILLB L 0| Byte fill : AL OFFH
obj |...... | Byteill ! obj-OFFH

XCHGB Aobj [...... 0| Byte exchange ! AL obj

Stack Manipulation

Mnemonic Operand CZSVHD D Function

PUSHS register list | Push on system stack : System-sRakister group

POPS register_list CZSVHD . | Pop off system stack ! Register groufystem stack

nX-8/5008S Instruction Manual

Chapter3 1

Chapter 3

Instruction Details
Instruction Set

Shift/Rotate

Mnemonic Operand CZSVHD D Function
SLL A,width C..... 1| Word left shift (with carry) |

A width=1 to 4 | ﬁ(-ﬁﬂﬂﬂﬁﬂ]ﬂ]ﬁé—o

obj,width C..... .| Word left shift (with carry) : obj

obj width=1 to 4 | A T <o
SRL A,width C..... 1| Word right shift (with carry) : A n

A width=1 to 4 | o%ﬁjﬂjﬂ_IQﬂjE >0

obj,width C..... .| Word right shift (with carry) : obj o}

o width=1 10 4 | oS> S
SRA A,width C..... 1| Word arithmetic right shift (with carry} E - .

A width=1 to 4 S B O

obj,width C..... .| Word arithmetic right shift (with carry} W N

obj width=1 to 4 | B Iﬁ
ROL A,width C..... 1| Word left rotate (with carry) : |_

A width=1 to 4 | L8 i <

obj,width C..... .| Word left rotate (with carry) : |_ obi

obj width=1 to 4 | L8t <
ROR A,width C..... 1| Word right rotate (with carry) :

A width=1 to 4 | b8 ST

obj,width C..... .| Word right rotate (with carry) : L : J

obj width=1to 4 MSRESnanannnnnnnnnas
SLLB Awidth C..... o[Byte left shift (with carry) | N

A width=1 to 4 | B¢ <o

obj,width C..... .| Byte left shift (with carry) : obi o

obj width=1 to 4 | E|<- EIIIIlIEIé— 0
SRLB A,width C..... 0| Byte right shift (with carry) : A 0o

A width=1 to 4 | 0> Ifl:l:l:l_:l:l:l:l >

obj,width C..... .| Byte right shift (with carry) : obj n

obj width=1 to 4 ! 0> EOIILm >
SRAB A,width C..... 0| Byte arithmetic right shift (with carry): T’ o

A width=110 4 | s b 5 6

obj,width C..... .| Byte arithmetic right shift (with carry): W n

obj width=1 to 4 | l; |7:|:|:|:|:|‘_-|:|:| S ﬁ
ROLB A,width C..... 0| Byte left rotate (with carry) : |_ A R

A width=1 to 4 | ﬁ < ﬁEEEEEEEIéJ

obj,width C..... .| Byte left rotate (with carry) : |_ b n

obj width=1 to 4 I G¢ i <J
RORB A,width C..... 0| Byte right rotate (with carry) :

A width=1 to 4 | L& 9ﬁ]:|j6\:|:|:|f| _J

obj,width C..... .| Byte right rotate (with carry) : -

obj width=1 to 4 | L& %f—m—?—bh—ﬁ |

2 Chapter

3

nX-8/500S Instruction Manual

Chapter 3

Increment/Decrement
Mnemonic Operand CZSVHD D Function
INC A . ZSVH. . .1 | Word increment : A-A+l
obj . ZSVH. . .. | Word increment ! obj obj+1
DEC A . ZSVH. . .1 [Word decrement ! AA-1
obj . ZSVH. . ..| Word decrement ' objobj-1
INCB A . ZSVH. . .0| Byte increment " AL-AL+L
obj . ZSVH. . .. | Byte increment : obj- obj+1
DECB A . ZSVH. . .0 | Byte decrement P ALALL
obj . ZSVH. . ..| Byte decrement | objobj-1
Arithmetic Calculation
Mnemonic Operand CZSVHD D Function
MUL obj .Z.... .| Word multiplication : <A,ERO>- A x obj
SQR A .Z.... 1| word square | <AERO= AxA
DIV obj cz. ... Word division | <A.ERO>- <AER0>+ obj,
| ER1 — <A,ER0> mod obj
DIVQ obj CZ. V.. Word quick division ' Ac <AERO>=+ obj,
! ER1 « <A,ERO0> mod obj
ADD A,0bj CzSVH 1| Word addition ' A—A+obj
obj1, obj2 CZSVH . | Word addition : objl-objl+obj2
ADC A,obj CzZSVH 1| Word addition with carry : A-A+obj+C
obj1, obj2 CZSVH .| Word addition with carry ! obji objl+obj2+C
SuUB A,obj CZSVH 1| Word subtraction ! A-A-obj
obj1, obj2 CZSVH .| Word subtraction ! obji objl-obj2
SBC A,obj CZSVH 1| Word subtraction with carry ! A- A-obj-C
obj1, obj2 CZSVH . | Word subtraction with carry : objL objl-obj2-C
CMP A,obj CZSVH 1| Word comparison : A-obj
obj1, obj2 CZSVH .| Word comparison : obj1-obj2
NEG A CZSVH 1| Word negation : A -A
MULB obj a .| Byte multiplication ! A~ AL x obj
SQRB A Z.. 0| Byte square I A AL xAL
DIVB obj cz. ... Byte division | A- A= obj,
| R1 < A mod obj
ADDB A,0bj CZSVH 0 | Byte addition | AL AL+obj
obj1, obj2 CZSVH .| Byte addition : objl-objl+obj2
ADCB A,obj CZSVH 0 | Byte addition with carry ! Al— AL+0bj+C
obj1, obj2 CZSVH . | Byte addition with carry ! objl objl+obj2+C
SUBB A,0bj CZSVH 0 | Byte subtraction ' AL— AL-obj
obj1, obj2 CZSVH .| Byte subtraction ! objl objl-obj2
SBCB A,obj CZSVH 0 | Byte subtraction with carry : Al— AL-0bj-C
obj1, obj2 CZSVH .| Byte subtraction with carry : objL objl-obj2-C
CMPB A,0bj CzSVH 0 | Byte comparison | AL-obj
obj1, obj2 CZSVH . | Byte comparison : objl1-obj2
NEGB A czSVH 0| Byte negation 'AL— -AL

nX-8/5008S Instruction Manual

Chapter 3

Instruction Details
Instruction Set

Chapter 3 Instruction Details
Instruction Set

Logical Calculation

Mnemonic Operand CZSVHD D Function
AND A,0bj .7zS... 1| Word logical AND ''A— A nobj
obj1,0bj2 .ZS... .| Word logical AND ! obj1— objln obj2
OR A,obj .ZS... 1| Word logical OR ! A~ A0 obj
obj1,0bj2 .ZS... .| Word logical OR : objl— obj10 obj2
XOR A,obj .ZS... 1| Word logical exclusive OR : A- A 5-obj
obj1,0bj2 .ZS... .| Word logical exclusive OR : objL objlg obj2
ANDB A,obj .ZS... 0] Byte logical AND : AL~ AL nobj
obj1,0bj2 .7S... .|Byte logical AND | objl—objlnobj2
ORB A,0bj .ZS... 0| Byte logical OR ! AL— AL O obj
obj1,0bj2 .ZS... .| Byte logical OR ' obj1— obj10 obj2
XORB A,obj .ZS... 0] Byte logical exclusive OR ! AL- AL 3- obj
0bj1,0bj2 .ZS. .. .| Byte logical exclusive OR ! objL- objlg- obj2

ROM table Reference

Mnemonic Operand CZSVHD D Function
LC A,[obj] .Z... .| Word ROM data move (indirect) ! A TSR:(obj)
A, T16[obj] L2 .| Word ROM data move (indirect with base) ! ATSR:(T16 + obj)
A, Tadr .Z... .| Word ROM data move (direct) ! A TSR:Tadr
CMPC A,[obj] CZSVH .| Word ROM comparison (indirect) : A - TSR:(obj)
A, T16[obj] CzSVH .| Word ROM comparison (indirect with base) : A - TSR:(T16 + obj)
A, Tadr CZSVH .| Word ROM comparison (direct) : AL - TSR:Tadr
LCB A,[obj] .Z... .| Byte ROM data move (indirect) : Al TSR:(obj)
A,T16[obj] .Z... .|Byte ROM data move (indirect with base) | AL TSR:(T16 + obj)
A, Tadr .Z... .| Byte ROM data move (direct) ! Al TSR:Tadr
CMPCB A,[obj] CZSVH .| Byte ROM data move (indirect) ! AL - TSR:(obj)
A, [obj] CzSVH .| Byte ROM data move (indirect with base) ! AL - TSR:(obj)
A, T16[obj] CZSVH .| Byte ROM data move (direct) : AL - TSR:(T16 + obj)

Bit Manipulation

Mnemonic Operand CZSVHD D Function
SBR obj .Z... .| Sethit (registerindirect bit specification) ! obj.(AL) 1
RBR obj L2 .| Reset bit (register indirect bit specificatiod) 0bj.(AL)0
TBR obj .Z... .| Testhit (registerindirect bit specification): if obj.(AL)=0 then~Z else
1 Z-0
MBR C,0bj C.|Bitmove (register indirect bit specification)! C obj.(AL)
objC [...... .| Bit move (register indirect bit specificationj obj.(ALXC
SB obj.bit . Z. .. .| Setbit (bit position direct specification) Fif obj.bit =1 then-Z else Z-0,
! obj.bit—1
RB obj.bit . Z. .. .| Reset bit (bit position direct specification) b obj.bit = 0 then Zelse Z-0,
! obj.bit—0
MB C,0bj.bit Cc.... .|Bitmove ! C— obj.bit
objbitc |......] Bit move ' obj.bit C
BAND C,0bj.bit c | Bit logical AND 'C—Cn obj.bit
BOR C,0bj.bit C.... .|Bitlogical OR ' c_C O obj.hit
BXOR C,0bj.bit C.... .|Bitlogical exclusive OR ! C C & obj.bit
BANDN C,0bj.bit C .| Bit logical AND with bit complement ' ¢.Cn obphit
BORN C,0bj.bit C .| Bit logical OR with bit complement : CC [obj.bit

4 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

Jump/Call
Mnemonic Operand CZSVHD D Function
JBS obj.bitradr [...... . Bittest & jump : if obj.bit=1 then Peadr
JBR obj.bitradr | Bit test & jump ! if obj.bit=0 then P@&dr
JBSR obj.bitradr | Bit test & jump (with bit reset) : if obj.bit=1
| then obj.bit-0, PC—radr
JBRS obj.bitradr | Bit test & jump (with bit set) : if obj.bit=0
| then obj.bit-1, PC—radr
TJZ Aradr | 1| Word test & jump (jump if zero) ! if A=0 then Pedr
objradr | Word test & jump (jump if zero) : if obj=0 thenP@dr
TINZ Aradr | ..., .. 1| Word test & jump (jump if non-zero) : if#20 then PC-radr
objradr [...... Word test & jump (jump if non-zero) : if e then PC-radr
TJZB Aradr | 0] Byte test & jump (jump if zero) ! if AL=0 then P@dr
objradr | Byte test & jump (jump if non-zero) : if obj=0 then-R&dr
TINZB Aradr | 0] Byte test & jump (jump if non-zero) ! if A0 then PC-radr
objradr [...... Byte test & jump (jump if zero) : if abp then PC-radr
Jcond radr [...... | Conditional jump dondis true then PC-radr
DJINZ objadr [...... Loop objobj-1,if obj# 0 then PC-radr
JRNZ DPyjadr | Loop DRLDPL-1,if DPL# 0 then PC-radr
SJ radr | ... Short jump RCadr
J Cadr | | 64K-byte space (within current physical code segment) direct jump
[ob]| 64K-byte space (within current physical code segment) indirect jump
CAL Cadr | | 64K-byte space (within current physical code segment) direct call
[ob]| 64K-byte space (within current physical code segment) indirect call
VCAL Vadr |.... .. .| Vector call
ACAL Cadrll | | Special area call
SCAL Cadr | 64K-byte space (within current physical code segment) direct call
RT o .| Return from subroutine
RTI CZSVHD . | Return from interrupt
FCAL Fadr [...... | 24-bit space (16M bytes: entire program area) direct call
FJ Fadr [...... 24-bit space (16M bytes: entire program area) direct jump
FRT .. .| Return from far subroutine
Other Instructions
Mnemonic Operand CZSVHD D Function
SC 1..... .| Set carry : C-1
RC 0..... .| Reset carry : C-0
CPL C C..... .| complement carry ''c¢C
sb 1. 1 .|setbp "'Db-1
rRoD oo 0 .|ResetDD ' DD 0
e .| Enable interrupts ! MIE- 1
oo| Disable interrupts : MIE- 0
EXTND .. S..1 .| Extend byte to word with sign : A -A,DD-1
Nnopo e .| No operation : NO OPERATION
BRK 000000 .| Break (system reset) : RESET, RGVector-table 0002H)
MAC | .| Multiply-accumulate ! Multiply-accumulate start bit 1

nX-8/500S Instruction Manual Chapter3 5

Chapter 3

Instruction Details

Instruction Set

Symbols Used In Operand Expressions Of Instruction

Operand Expressions

Symbol Syntax Meaning Permitted range of value
Registers
ERn ERO, Word local register
ER1,
ER2,
ER3
PRn X1, Pointing register
é% (PRO,PR1,PR2,PR3 correspond
Osp to X1,X2,DP,USP respectively
RN RO,R1, Byte local register
R2,R3,
R4,R5,
R6,R7

Expressions ngresentilg data addresses

(represents table addresses (TSR base) within the ROM window)
D16 expression Index indirect base data address DSR:0H to DSR:0FFFFH
off —OI%%%%%?(')%Q———— Current page data address DSR:0H to DSRIOFFFFER
sfr expression : :
St Fayprossion >~ SFR page data address DSR:0H to DSR:0FFH
fix _LQ;&%%%%@Q____ Fixed page data address DSR:200H to DSR:2FFH
i | dir expression __ __[DSR:0 to DSR:0FFFFH
dir eéprfessmn Direct data address I—
. sbafix expression : - : .0to
sbafix —e—t)gargf?jsfgﬁ —————— Fixed page SBA bit address BEE:ZFIC:OHFFO
| sbaoll epression _ _ XX Oto
sbaoff - eXOression . Cyrrent page SBA address DSRXXFFH 7
\ , Off, sfr, fix, dir, sbafix, and sbaoff are addregscifiers.
Expressions representing code addresses
Cadr expression Code address within codgnsent | CSR:0H to CSR:0FFFFH
Cadrl1l | expression ACAL code address CSR:1000H to
CSR:17FFH
Vadr expression VCAL vector address 0:4AH to 0:69H
Fadr expression FAR code address 0:0H to OFFH:OFFFFH
radr expression Relative code address CSR:0H to CSR:0FFFFH

Expressions rngresentiig ROM table ad

dresses

[Tadr [expression | Address within tablegaent | TSR:0H to TSR:0FFFFH
Expressions ngresentilg constants
N16 expression Word immediate value -8000H to +0OFFFFH
N8 expression Bte Immediate value -80H to +OFFH
n7 expression Syned 6-bit diglacement -40H to +3FH
Operands pecifying prefix codes
(1] Word prefix codegroup
1] Byte prefix codegroup
Other
bit expression Bitposition Oto7
width expression Shift width 1t04

*All character expressions in instruction tables other than those above are used as is.

6 Chapter 3

nX-8/500S Instruction Manual

Instruction Details
Instruction Set

Chapter 3

Symbols Used In Instruction Code Expressions Of Instruction

Code Expressions
Symbol Meaning Field
Instruction codes thapscify registers 76543210
XX +n ERn (n:0-3) ' ' '
I BEREEN
'Rn(n0-py B '_4,""!"_4,"_'
Instruction codes that indicate data addresses 765432
Di6L Low byte of D16 expression value : : :
Di6H High byte of D16 expression value : : :
off8 Low byte of expression value : : :
sfr8 Low byte of expression value : : :
fix8 Low byte of expression value : : :
dirL Low byte of dir : : :
dirH High byte of dir : : :
Instruction codes that indicate code addresses 765432
CadrL Low byte of Cadr expression value I : :
CadrH High byte of Cadr expression value | | :
CadrllL | Low byte of Cadrll expression value : : :
Cadrl1H | 3 bits (bit 10 to bit 8) of Cadr11 expression value (0-7) : : :
Vno4 Vector number (0-15) : : :
FadrL Low byte of expression value : : :
FadrM High byte of expression value : : :
FadrH Physical code segment of expression : : :
rdiff8 Difference between radr and the next PC (-128 to +127) ! ! I
rdiff7 Difference between radr and the PC (-128 to -1) I : :
Instruction codes that indicate ROM table addresses 765432
TadrL Low byte of Tadr expression value : : :
TadrH High byte of Tadr expression value : : :
Ti6L Low byte of T16 expression value : : :
T16H High byte of T16 expression value : : :
Instruction codes that indicate constants
N16L Word immediate value low byte | ! :
N16H Word immediate value high byte : : :
N8 Byte immediate value : : :
n7 Signed 6-bit displacement (-40H to 3FH) RN
Other 76543210
bit Bit position (0-7) N
width Shift width 1-4 corresponding to code 0-3 gy
Prefix codes 7654321
<word> | Word prefix codes (1-3 bytes) : : :
<byte> Byte prefix codes (1-3 bytes) | | |
<dumyW> | Dummy word prefix (X1 prefix code: 60H) ! ! |
<dumyB> | Dummy byte prefix (PSWL prefix code: 8AH) : : |

* All values other than those above are expressed as hexadecimal constants.

nX-8/5008S Instruction Manual

Chapter3 7

10

10

Chapter 3 Instruction Details
Instruction Set

The following pages contain a reference of instruction details. Instructions are presented in alphabetical
order, with the following as a general example. Basically one instruction is explained on one page.

[General format of Metaformat of
instruction instruction operation
Shows general format of mnemonic Shows instruction operation using
and operands with symbols. easy-to-understand symbols.
Datailed description of Simple meaning |
instruction functions of instruction

o

Explains operation details, operan
coding, restrictions,etc.

Chapter 3 Instruction Details
Instruction Set
ADDB A,obj Byte Addition
Function
ALAL+ob) H1 Flag changes _
Classifies changes in
Description flag states from instuction
« This instruction performs byte addition, adding the contents of obj (byte length) to the execution;
accumulator low byte (AL). blank No change
» Execution of this instruction is limited to when DD is 0 (byte). 0 Resetto 0
1 Setto 1
Flags * Changes according
Flags affected by instruction execution Flags affecting instruction execution to result
[c[z]s Jov][HC]DD] [Dp |
* * * * * 0 4\
e [T -1 -T+1 | l ! —1 Necessary
cod conditions for
odes execution
Instruction Syntax Instruction Code Cyel
mnemonic __; operand 1st 2nd. 3rd 4th 5th 6th (lzf;:al ShOWS the neCeS‘SaryStat P
ADCB Rn 28 3 of the data descriptor
#Ng AR N8 4 .
= G o 4 _for executing the
P\ off AD off 4 instruction;
RIS —— 1 blank State of DD is
nstruction Syntax nstruction Code Cycles H H
‘minemonic__{ operand refix [rlst___ | +2nd | +3rd | T (Internal) irrelative
ADDB A 1w <byte> | F5 [[[[+2 0 Resetto 0
/ 1 Setto 1
" <byte> .
1 Instruction code table . Prefx oseuction Code o
Shows instruction code and < 1 Zd 3rd
execution cycles with internal Rn 68 n 2
memory for the addressing {gg 1 .
groups permitted as operands, [DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off BS off8 4
H - sft B6 sfr8 4
Instruction code prefix table O ™ T
Each item in the left column can be coded gig Q] gg DI6L__|DieH |6
as operand in the above instruction code{ s o3 e
table (* or **). The combined cycle count| [x7[Usp] 9B 80 +n7 6
is found by summing both cycle count. Al i s C
table entry isvalid when combined with the[pswL 8A 2
same instruction. PSWH 24 2
A-8 Chapter 3 nX-8/5008 Instruction Manual

8 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

ACAL Cadrll Special Area Call

Function
(SSP)-PC+2
SSP-SSP-2
PC~Cadrll
However, CSR:1000K Cadrli< CSR:17FFH

Description

- This instruction calls the ACAL area in the current physical segment. The ACAL area is the
2K-bytes starting from address 1000H in code space.

- The state of the stack after execution of an ACAL instruction is identical to that after
execution of a CAL instruction. Subroutines called with an ACAL instruction return using
an RT instruction.

- The first address of the subroutine is coded in Cadrll.

- ACAL area subroutines can be called more efficiently with the ACAL instruction than the
CAL instruction.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
ACAL Cadrll : 44+Cadr11H| CadrllL 7

nX-8/500S Instruction Manual Chapter 3 A-1

Chapter 3 Instruction Details
Instruction Set

ADC A,Obj Word Addition With Carry

Function
A — A+obj+C

Description

- This instruction performs word addition, adding the contents of obj (word length) and the
carry flag to the accumulator (A).
- Execution of this instruction is limited to when DD is 1 (word).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
1l [[[[1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internfal)
ADC A i #N16 BC F3 N16L N16H 8
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix | +1st +2nd +3rd +4th +5th (Internal)
ADC A Han| <word> F5 +2
<word>
M Word Prefix Instruction Code (cl:r%ltzlfnsal)
1st 2nd 3rd
A - -
ERN 64 +n 2
PRn 60 +n 2
X1 AO 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

A-2 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

ADC Objl,Obj2 Word Addition With Carry

Function
obj1—objl+obj2+C

Description

- This instruction performs word addition, adding the contents of obj2 (word length) and the
carry flag to objl (word length).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O 0 0 0 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
ADC mn fix <word> FO fix8 +5
off <word> F1 off8 +5
sfr <word> F2 sfr8 +5
#N16 <word> F3 N16L N16H +6
A <word> F4 +2
<word>
[HE] Word Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A - -
ERN 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+4] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

nX-8/500S Instruction Manual Chapter 3 A-3

Chapter 3 Instruction Details
Instruction Set

ADCB A,0bj

Byte Addition With Carry

Function
AL — AL+obj+C
Description
- This instruction performs byte addition, adding the contents of obj (byte length) and the carry
flag to the accumulator low byte (AL).
- Execution of this instruction is limited to when DD is 0 (byte).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 [l [l [l [l 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internfal)
ADCB A i #N8 BC F3 N8 6
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix +1st +2nd +3rd (Internal)
ADCB A i 0 <byte> F5 +2
<byte> Cycles
O Byte Prefix Instruction Code (Ir¥ternal)
1th 2nd 3rd
A -
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

A-4 Chapter 3

nX-8/500S Instruction Manual

Chapter 3

Instruction Details

Instruction Set

ADCB o0bjl,0bj2

Byte Addition With Carry

Function
obj1—objl+obj2+C
Description
- This instruction performs byte addition, adding the contents of obj2 (byte length) and the carry
flag to obj1 (byte length).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O O O O O
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
ADCB O fix <byte> FO fix8 +5
off <byte> F1 off8 +5
sfr <byte> F2 sfr8 +5
#N8 <byte> F3 N8 +4
A <byte> F4 +2
<byte>
O Byte Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A -
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

nX-8/5008S Instruction Manual

Chapter 3 A-5

Chapter 3 Instruction Details
Instruction Set

ADD A,obj Word Addition

Function
A — A+obj
Description
- This instruction performs word addition, adding the contents of obj (word length) to the
accumulator (A).
- Execution of this instruction is limited to when DD is 1 (word).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O 0 0 0 0 1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
ADD A ERnN 28+n 3
PRn 2C+n 3
#N16 AE N16L N16H 6
fix AC fix8 4
off AD off8 4
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd +4th +5th (Internal)
ADD A N <word> A5 +2
<word>
NN Word Prefix Instruction Code (cl:r%ltzlfnsal)
1st 2nd 3rd
A - -
ERnN 64 +n 2
PRn 60 +n 2
X1 AO 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

A-6 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

ADD objl,0bj2 Word Addition

Function
obj1— objl+obj2

Description
- This instruction performs word addition, adding the contents of obj2 (word length) to objl
(word length).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O O O O O
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
ADD mE| fix <word> A0 fix8 +5
off <word> Al off8 +5
sfr <word> A2 sfr8 +5
#N16 <word> A3 N16L N16H +6
A <word> A4 +2
<word>
[HE] Word Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A - -
ERN 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP] Al 5
[DP+4] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

nX-8/500S Instruction Manual Chapter 3 A-7

Chapter 3 Instruction Details
Instruction Set

ADDB A,Obj Byte Addition

Function
AL — AL+obj
Description
- This instruction performs byte addition, adding the contents of obj (byte length) to the
accumulator low byte (AL).
- Execution of this instruction is limited to when DD is 0 (byte).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 [l [l [l [l 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internfal)
ADDB A Rn 28+n 3
#N8 AE N8 4
fix AC fix8 4
off AD off8 4
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix | +1st +2nd +3rd (Internal)
ADDB A i 0 <byte> A5 +2
<byte>
O Byte Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A - -
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

A-8 Chapter 3 nX-8/500S Instruction Manual

Chapter 3

Instruction Details

Instruction Set

ADDB o0bjl,0bj2

Byte Addition
Function
obj1— objl+obj2
Description
- This instruction performs byte addition, adding the contents of obj2 (byte length) to objl (byte
length).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O 0 0 0 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
ADDB O fix <byte> AO fix8 +5
off <byte> Al off8 +5
sfr <byte> A2 sfr8 +5
#N8 <byte> A3 N8 +4
A <byte> A4 +2
<byte>
O Byte Prefix Instruction Code (?riltcelrensal)
1st 2nd 3rd
A - -
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

nX-8/5008S Instruction Manual

Chapter 3 A-9

Chapter 3 Instruction Details
Instruction Set

AND A,Obj Word Logical AND

Function
A <A n obj
Description
- This instruction takes the word logical AND of the contents of obj (word length) and the
accumulator (A), and stores the result in the accumulator.
- Execution of this instruction is limited to when DD is 1 (word).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
[l [l 1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
AND A off BD off8 4
#N16 BE N16L N16H 6
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix [+1st +2nd +3rd +4th +5th (Internal)
AND A i [<word> B5 +2
<word> Cycles
M Word Prefix Instruction Code (Ir)1/ternal)
1st 2nd 3rd
A - -
ERn 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+4] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

A-10 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

AND Objl,Obj2 Word Logical AND

Function
objl—objl n obj2

Description

- This instruction takes the word logical AND of the contents of obj1 (word length) and obj2
(word length), and stores the result in obj1.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
AND mE| fix <word> BO fix8 +5
off <word> B1 off8 +5
sfr <word> B2 sfr8 +5
#N16 <word> B3 N16L N16H +6
A <word> B4 +2
<word>
[HE] Word Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A - -
ERN 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+4] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

nX-8/500S Instruction Manual Chapter 3 A-11

Chapter 3 Instruction Details
Instruction Set

ANDB A,Obj Byte Logical AND

Function
AL AL n obj
Description
- This instruction takes the word logical AND of the contents of obj (byte length) and the
accumulator low byte (AL), and stores the result in the accumulator.
- Execution of this instruction is limited to when DD is 0 (byte).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
[l [l 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internfal)
ANDB A off BD off8 4
#N8 BE N8 4
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix | +1st +2nd +3rd (Internal)
ANDB A i O <byte> B5 +2
<byte>
M Byte Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A - -
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

A-12 Chapter 3 nX-8/500S Instruction Manual

Chapter 3

Instruction Details

Instruction Set

ANDB o0bjl,0bj2

Byte Logical AND

Function
objl—objl n obj2
Description
- This instruction takes the word logical AND of the contents of obj1 (byte length) and obj2
(byte length), and stores the result in obj1.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
[l [l
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
ANDB O fix <byte> BO fix8 +5
off <byte> Bl off8 +5
sfr <byte> B2 sfr8 +5
#N8 <byte> B3 N8 +4
A <byte> B4 +2
<byte>
O Byte Prefix Instruction Code (?riltcelrensal)
1st 2nd 3rd
A - -
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

nX-8/5008S Instruction Manual

Chapter 3 A-13

Chapter 3 Instruction Details
Instruction Set

BAND C,obj.bit Bit Logical AND

Function
C«C n obj.bit
Description
- This instruction takes the logical AND of the specified bit in obj (byte length) and the carry
(C), and stores the result in carry. The bit has a value of 0-7.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
BAND C i Obit <byte> 40+bit +3
<byte>
O Byte Prefix Instruction Code (?riltcelrensal)
1st 2nd 3rd
A BC 2
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

nX-8/500S Instruction Manual Chapter3 B-1

Chapter 3 Instruction Details
Instruction Set

BANDN C,obj.bit

Bit Complement and Bit Logical

Function
C-C n obj.bit
Description
- This instruction takes the logical AND of the complement of the specified bit in obj (byte
length) and the carry (C), and stores the result in carry. The bit has a value of 0-7.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
BANDN C i Obit <byte> 48+bit +3
<byte>
O Byte Prefix Instruction Code (?riltcelrensal)
1st 2nd 3rd
A BC 2
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

B-2 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details

Instruction Set

BOR C,obij.bit

Bit Logical OR
Function
CC 0O obj.bit
Description
- This instruction takes the logical OR of the specified bit in obj (byte length) and the carry (C),
and stores the result in carry. The bit has a value of 0-7.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
BOR C i [bit <byte> 50+bit +3
<byte>
O Byte Prefix Instruction Code (?riltcelrensal)
1st 2nd 3rd
A BC 2
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

nX-8/500S Instruction Manual Chapter 3 B-3

Chapter 3 Instruction Details
Instruction Set

BORN C,obj.bit

Bit Complement and Bit Logical OR

Function
C.C [obj.bit
Description
- This instruction takes the logical OR of the complement of the specified bit in obj (byte
length) and the carry (C), and stores the result in carry. The bit has a value of 0-7.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
BORN C i Obit <byte> 58+hit +3
<byte>
O Byte Prefix Instruction Code %%f(le?ﬁal)
1st 2nd 3rd
A BC 2
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

B-4 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

BRK Break (System Reset)

Function

SYSTEM RESET
PC— (Vector-table 0002H)

Description
- This instruction performs a software system reset.
- The CPU first performs system reset processing. Next the word data at address 2 in the code
space reset vector table (the first address of the break processing routine) is moved to the PC.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 0 0 0 0 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
BRK H FF 2

nX-8/500S Instruction Manual Chapter 3 B-5

Chapter 3 Instruction Details
Instruction Set

BXOR C,Obj.bit Bit Logical Exclusive OR

Function
C—C# obj.bit
Description
- This instruction takes the logical exclusive OR of the specified bit in obj (byte length) and the
carry (C), and stores the result in carry. The bit has a value of 0-7.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
BXOR C i Obit <byte> 60+bit +3
<byte>
O Byte Prefix Instruction Code (?riltcelrensal)
1st 2nd 3rd
A BC 2
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

B-6 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

CAL Cadr 64K-Byte Space (Within Current Physical Code Segment) Direct Call

Function

(SSP)~PC+3

SSP-SSP-2

PC~Cadr

However, CSR:0000< Cadr< CSR:0FFFFH

Description

- This instruction calls any addresss in the 64K bytes in the current physical segment.

- The first address of the subroutine is coded in Cadr. The subroutine must exist within the
current physical segment.

- The state of the stack after execution of a CAL instruction is shown below. Subroutines
called with a CAL instruction return using an RT instruction.

SSP after call ——» |7 o] t+ Low addresses
SSP before call——§ P GT\EE

| High addresses

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
CAL Cadr_: FE CadrL CadrH 9

nX-8/500S Instruction Manual Chapter3 C-1

Chapter 3 Instruction Details
Instruction Set

CAL [obj]

64K-Byte Space (Within Current Physical Code Segment) Indirect Call

Function

(SSP)~PC+n

SSP-SSP-2

PC- obj

However, n is the number of bytes in this instruction and differs depending on obj.

Description

- This instruction is a 64K-byte space indirect call based on the contents of obj (word length).

- This instruction calls any addresss in the 64K bytes in the current physical segment.
- obj is the word-length contents of data memory or a register. The first address of the

subroutine must be set in obj prior to executing this instruction. The subroutine must exist
within the current physical segment.

- The state of the stack after execution of a CAL instruction is shown below. Subroutines

called with a CAL instruction return using an RT instruction.

SSP after call —— |7 o] + Low addresses
SSP before cal——] P G

| High addresses

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd +4th +5th (Internal)
CAL [<word> EB +5
<word>
NN Word Prefix Instruction Code (cl:r%ltzlfnsal)
1st 2nd 3rd
A BC 2
ERnN 64 +n 2
PRn 60 +n 2
X1 AO 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

C-2 Chapter 3

nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

CLR A Word Clear

Function
A0
DD 1
Description
- This instruction clears the accumulator (word length).
- This instruction also sets DD to 1 (word).
- This instruction is functionally identical to the "L A,#0" instruction, including the effect on
flags. However, this instruction requires fewer bytes and cycles.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
1 1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
CLR A FA 2

nX-8/500S Instruction Manual Chapter 3 C-3

Chapter 3 Instruction Details
Instruction Set

CLR Obj Word Clear

Function
obj-0

Description
- This instruction clears obj (word length).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix | +1st +2nd +3rd (Internal)
CLR mn} <word> C7 +2
<word>
[HE] Word Prefix Instruction Code (?riltcelrensal)
1st 2nd 3rd
A - -
ERN 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

C-4 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

CLRB A Byte Clear

Function
AL -0
DD -0
Description
+ This instruction clears the accumulator (byte length).
- This instruction also sets DD to 0 (byte).
- This instruction is functionally identical to the "LB A,#0" instruction, including the effect on
flags. However, this instruction requires fewer bytes and cycles.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
1 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan 1st 2nd 3rd 4th 5th 6th (Internal)
CLRB A FB 2

nX-8/500S Instruction Manual Chapter 3 C-5

Chapter 3
Instruction Set

Instruction Details

CLRB obj

Byte Clear
Function
obj-0
Description
- This instruction clears obj (byte length).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix | +1st +2nd +3rd (Internal)
CLRB O <byte> C7 +2
<byte>
O Byte Prefix Instruction Code (?riltcelrensal)
1st 2nd 3rd
A - -
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

C-6 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

CMP A,Obj Word Comparison

Function
A-obj

Description

- This instruction compares the contents of obj (word length) to the accumulator (A).

- Actually the contents of obj are subtracted from the contents of the accumulator, and the result
is used to set the PSW flags. This result can be referenced using conditional branch
instructions. The accumulator contents do not change.

- Execution of this instruction is limited to when DD is 1 (word).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 0 0 0 0 1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
CMP A ERnN 18 +n 3
PRn 1C__+n 3
#N16 9E N16L N16H 6
fix 9C fix8 4
off 9D off8 4
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix | +1st +2nd +3rd (Internal)
CMP A N <word> 95 +2
<word>
M Word Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A - -
ERn 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

nX-8/500S Instruction Manual Chapter 3 C-7

Chapter 3 Instruction Details
Instruction Set

CMP Objl,Oij Word Comparison

Function
obj1-obj2

Description

+ This instruction compares the contents of obj1 to obj2 (word length).

- Actually the contents of obj2 are subtracted from the contents of obj1, and the result is used to
set the PSW flags. This result can be referenced using conditional branch instructions. The
contents of obj1 do not change.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 [l [l [l [l
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
CMP fix #N16 C4 fix8 N16L N16H 8
off C5 off8 N161 N16H 8
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix [+1st +2nd +3rd (Internal)
CMP m fix <word> 90 fix8 +5
off <word> 91 off8 +5
sfr <word> | 92 sfr8 +5
#N16 <word> 93 N16L N16H +6
A <word> 94 +2
<word>
m Word Prefix Instruction Code (cl:r%ltgrensal)
1st 2nd 3rd
A - -
ERn 64 +n 2
PRn 60 +n 2
X1 AO 4
[DP] A2 4
[DP] Al 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

C-8 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

CMPB A,Obj Byte Comparison

Function
AL-obj
Description
* This instruction compares the contents of obj (byte length) to the accumulator low byte (AL).
- Actually the contents of obj are subtracted from the contents of the accumulator, and the result
is used to set the PSW flags. This result can be referenced using conditional branch
instructions. The accumulator contents do not change.
- Execution of this instruction is limited to when DD is 0 (byte).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O 0 0 0 O 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internfal)
CMPB A Rn 18+n 3
#N8 9E N8 4
fix 9C fix8 4
off 9D off8 4
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix | +1st +2nd +3rd (Internal)
CMPB A iD <byte> | 95 +2
<byte>
O Byte Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A - -
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP4] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

nX-8/500S Instruction Manual Chapter 3 C-9

Chapter 3 Instruction Details
Instruction Set

CMPB Objl,Oij Byte Comparison

Function
obj1-obj2

Description

+ This instruction compares the contents of obj1 to obj2 (byte length).
- Actually the contents of obj2 are subtracted from the contents of obj1, and the result is used to

set the PSW flags. This result can be referenced using conditional branch instructions. The
contents of obj1 do not change.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 0 0 0 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
CMPB fix #N8 D4 fix8 N8 6
off D5 off8 N8 6
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
CMPB O fix <byte> 90 fix8 15
off <byte> 91 off8 +5
sfr <byte> 92 sfr8 15
#N8 <byte> 93 N8 +4
A <byte> 94 +2
<byte>
O Byte Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A - -
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+RO] BB 6
PSWL 8A 2
PSWH 9A 2

C-10 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

CMPC A, [Obj] Word ROM Comparison (Indirect)
Function

A - TSR:(obj)
Description

+ This instruction compares ROM data (word length) to the accumulator (A).

- The ROM data is word data in the current table segment, with the contents of obj as the
address.

+ Actually the ROM data is subtracted from the contents of the accumulator, and the result is
used to set the PSW flags. This result can be referenced using conditional branch
instructions. The accumulator contents do not change.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O 0 0 0 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
CMPC A i [<word> D8 +9
<word>
[HE] Word Prefix Instruction Code (?riltcelrensal)
1st 2nd 3rd
A -
ERN 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

nX-8/500S Instruction Manual Chapter3 C-11

Chapter 3 Instruction Details
Instruction Set

CM PC A,T16[Obj] Word ROM Comparison (Indirect With 16-Bit Base)

Function
A - TSR:(T16 +obj)

Description

+ This instruction compares ROM data (word length) to the accumulator (A).

- The ROM data is word data in the current table segment, with the contents of obj added to the
base address of the data table (T16) as the address.

+ Actually the ROM data is subtracted from the contents of the accumulator, and the result is
used to set the PSW flags. This result can be referenced using conditional branch
instructions. The accumulator contents do not change.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O 0 0 0 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
CMPC A i Tie[1] <word> E6 T16L T16H +13
<word>
[HE] Word Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A -
ERN 64 +n 2
PRn 60 +n 2
X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

C-12 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

CMPC A,Tadr Word ROM Comparison (Direct)
Function

A - TSR:Tadr
Description

+ This instruction compares ROM data (word length) to the accumulator (A).

- The ROM data is the word data in the current table segment indicated by Tadr.

+ Actually the ROM data is subtracted from the contents of the accumulator, and the result is
used to set the PSW flags. This result can be referenced using conditional branch
instructions. The accumulator contents do not change.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 [l [l [l [l
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
CMPC A i Tadr <dumyW>| B6 TadrL TadrH +15

nX-8/500S Instruction Manual Chapter 3 C-13

Chapter 3 Instruction Details
Instruction Set

CMPCB A,[Obj] Byte ROM Comparison (Indirect)

Function
AL - TSR:(obj)

Description

+ This instruction compares ROM data (byte length) to the accumulator low byte (AL).

- The ROM data is byte data in the current table segment, with the contents of obj as the
address.

+ Actually the ROM data is subtracted from the contents of the accumulator, and the result is
used to set the PSW flags. This result can be referenced using conditional branch
instructions. The accumulator contents do not change.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O 0 0 0 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
CMPCB A i [<word> D9 +6
<word>
[HE] Word Prefix Instruction Code (?riltcelrensal)
1st 2nd 3rd
A -
ERN 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

C-14 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

CMPCB A,T16[Obj] Byte ROM Comparison (Indirect With 16-Bit Base)

Function
AL - TSR:(T16 +obj)

Description

+ This instruction compares ROM data (byte length) to the accumulator low byte (AL).

- The ROM data is byte data in the current table segment, with the contents of obj added to the
base address of the data table (T16) as the address.

+ Actually the ROM data is subtracted from the contents of the accumulator, and the result is
used to set the PSW flags. This result can be referenced using conditional branch
instructions. The accumulator contents do not change.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O 0 0 0 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
CMPCB A i Tie[1] <word> F6 T16L T16H +10
<word>
[HE] Word Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A -
ERN 64 +n 2
PRn 60 +n 2
X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

nX-8/500S Instruction Manual Chapter 3 C-15

Chapter 3 Instruction Details
Instruction Set

CMPCB A,Tadr Byte ROM Comparison (Direct)
Function

AL - TSR:Tadr
Description

+ This instruction compares ROM data (byte length) to the accumulator low byte (AL).

- The ROM data is the byte data in the current table segment indicated by Tadr.

+ Actually the ROM data is subtracted from the contents of the accumulator, and the result is
used to set the PSW flags. This result can be referenced using conditional branch
instructions. The accumulator contents do not change.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 [l [l [l [l
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
CMPCB A { Tadr <dumyB> [B6 TadrL TadrH 12

C-16 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details

Instruction Set

CPL C

Complement Carry

Function
c-C
Description
- This instruction complements the carry flag.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan 1st 2nd 3rd 4th 5th 6th (Internal)
CPL C FD 2

nX-8/5008S Instruction Manual

Chapter 3 C-17

Chapter 3

Instruction Details

Instruction Set

DEC A

Word Decrement

Function

A-A-1

Description

+ This instruction decrements the word-length accumulator by 1.
- Execution of this instruction is limited to when DD is 1 (word).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 0 0 0 1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan 1st 2nd 3rd 4th 5th 6th (Internal)
DEC A i DC 2

nX-8/5008S Instruction Manual

Chapter 3 D-1

Chapter 3 Instruction Details
Instruction Set

DEC Obj Word Decrement

Function
obj— obj-1

Description
- This instruction decrements the word-length obj by 1.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
[[[(1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
DEC PRn 50 +n 3
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix | +1st +2nd +3rd (Internal)
DEC 1] <word> D6 +2
<word>
M Word Prefix Instruction Code (cl:r%ltzlfnsal)
1st 2nd 3rd
A - -
ERN 64 +n 2
PRn 60 +n 2
X1 AO 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

D-2 Chapter 3 nX-8/500S Instruction Manual

Chapter 3

Instruction Details

Instruction Set

DECB A

Byte Decrement

Function

AL < AL-1

Description

- This instruction decrements the accumulator low byte (AL) by 1.
- Execution of this instruction is limited to when DD is 0 (byte).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 0 0 0 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan 1st 2nd 3rd 4th 5th 6th (Internal)
DECB A i DC 2

nX-8/5008S Instruction Manual

Chapter 3 D-3

Chapter 3 Instruction Details
Instruction Set

DECB Obj Byte Decrement

Function
obj— obj-1
Description
+ This instruction decrements the byte-length obj by 1.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
[l [l [l 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internfal)
DECB RN (n=0-3)| DO +n 3
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix +1st +2nd +3rd (Internal)
DECB 0 <byte> D6 +2
<byte> Cycles
O Byte Prefix Instruction Code (Ir¥ternal)
1st 2nd 3rd
A - -
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

D-4 Chapter 3 nX-8/500S Instruction Manual

Chapter 3

Instruction Details

Instruction Set

DI

Disable Interrupts

Function

MIE 0

Description

- This instruction disables all maskable interrupts.

- This instruction resets MIE (mask interrupt enable flag: PSW bit 8) to 0.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
DI i DA 2

nX-8/5008S Instruction Manual

Chapter 3 D-5

Chapter 3 Instruction Details

Instruction Set

DIV obj

Word Division

Function

<A,ER0> ~ <A ERO0>+ obj
ER1 — <A,ERO0> mod obj

Description

- This instruction divides a 32-bit number by a 16-bit number, giving a 32-bit quotient and 16-

bit remainder.

- The dividend is 32 bits, formed with the accumulator (A) as the upper word and extended

local register 0 (ERO) as the lower word. The divisor is the word data indicated by obj. For
the results of the division, the quotient is stored in the A and ERO pair, and the remainder is
stored in extended local register 1 (ER1).

- This instruction functions differently than previous devices (nX-8/100-400) in the way

registers are used. Care should be exercised.

- IF the divisor is 0, the carry flag will be setto 1. In this case, the quotient and the remainder

will be undefined.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O 0
C :The carry flag will be 1 if the divisor is 0, and will be 0 otherwise.
Z :The zero flag will be 1 if the quotient is 0, and will be 0 otherwise.
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix +1st +2nd +3rd (Internal)
DIV H <word> A8 +42
<word>
NN Word Prefix Instruction Code (cl:r%ltzlfnsal)
1st 2nd 3rd
A -
ERnN 64 +n 2
PRn 60 +n 2
X1 AO 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

D-6 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

DIVB Obj Byte Division

Function
A — A+ obj
R1 —~ A mod obj

Description

- This instruction divides a 16-bit number by a 8-bit number, giving a 16-bit quotient and 8-bit
remainder.

- The dividend is the 16-bit accumulator (A). The divisor is the byte data indicated by obj.
For the results of the division, the quotient is stored in A, and the remainder is stored in local
register 1 (R1).

- IF the divisor is 0, the carry flag will be setto 1. In this case, the quotient and the remainder
will be undefined.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 [l
C . The carry flag will be 1 if the divisor is 0, and will be 0 otherwise.
Z . The zero flag will be 1 if the quotient is 0, and will be O otherwise.
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
DIVB = <byte> | A8 +22
‘<byte> . Cycles
O Byte Prefix Instruction Code (Internal)
1st 2nd 3rd
A -
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] B1 5
[DP+4] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

nX-8/500S Instruction Manual Chapter 3 D-7

Chapter 3 Instruction Details

Instruction Set

DIVQ obj

Word Quick Division

Function

A — <A,ER0>= obj
ER1 — <A,ERO0> mod obj

Description

- This instruction divides a 32-bit number by a 16-bit number, giving a 16-bit quotient and 16-

bit remainder.

- The dividend is 32 bits, formed with the accumulator (A) as the upper word and extended
local register 0 (ERO) as the lower word. The divisor is the word data indicated by obj. For
the results of the division, the quotient is stored in A, and the remainder is stored in extended
local register 1 (ER1).

- Except for when the quotient needs more than 16-bit precision, this instruction is functionally
the same as the "DIV obj" instruction, but execution time is approximately half.

- IF the divisor is 0, the carry flag will be set to 1.
will be undefined.

In this case, the quotient and the remainder

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O 0 0
C: The carry flag will be 1 if the divisor is 0, and will be 0 otherwise.
Z . The zero flag will be 1 if the quotient is 0, and will be 0 otherwise. However,
it is undefined when OV is 1.
QV: The overflow flag will be 1 if the quotient is greater than 65535, and will be 0
otherwise.
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix +1st +2nd +3rd (Internal)
DIVQ i <word> | FB 24
<word>
[HE] Word Prefix Instruction Code (?riltcelrensal)
1st 2nd 3rd
A -
ERN 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

D-8 Chapter 3

nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

DJINZ obj,radr Loop

Function
obj— obj-1
if obj # 0 then PC-radr
However, the next instruction's first address-228dr< the next instruction's first address+127

Description

- This instruction implements a loop process with obj as the counter.

- This instruction decrements the byte-length obj. If the result is not 0, then control will jump
to the address indicated by radr. A loop count of up to 256 times can be implemented.

- The jump range possible with the loop instruction is -128 to +127 bytes of the first address of
the next instruction.

- Use of local register R4 or R5 can make the instruction more efficient (fewer bytes), by
allowing jumps only to lower addresses. The jump range possible with this loop instruction
is -128 to -1 bytes of the first address of the next instruction. The assembler chooses the
optimal instruction.

Example) Assembler selection

LOOP: ;RO, R4, and R5 are loop counters
DJNZ R4,LOOP 2-byte instruction
DJNZ RO,LOOP 3-byte instruction
DJNZ R5,NEXT ;3-byte instruction
NEXT:
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD

nX-8/500S Instruction Manual Chapter 3 D-9

Chapter 3 Instruction Details
Instruction Set

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
DJINZ R4 radr 05 rdiff7 7/10
R5 05 rdiff7+80 7/10
X1L 60 EA rdiff8 7/10
X2L 61 EA rdiff8 7/10
DPL 62 EA rdiff8 7/10
USPL 63 EA rdiff8 7/10
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
DJINZ 0 i radr <byte> EA rdiff8 +5/8
‘<byte> . Cycles
O Byte Prefix Instruction Code (Internal)
1st 2nd 3rd
A BC 2
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

D-10 Chapter 3 nX-8/500S Instruction Manual

Chapter 3

Instruction Details

Instruction Set

El

Enable Interrupts

Function

MIE 1

Description

- This instruction enables maskable interrupts.

- This instruction sets MIE (mask interrupt enable flag: PSW bit 8) to 1.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
El i DB 2

Nx-8/500S Instruction Manual

Chapter 3 E-1

Chapter 3 Instruction Details
Instruction Set

EXTND Byte to Word Sign Extend

Function

A15-7‘_ A7
DD ~ 1

Description

- This instruction sign extends the contents of the accumulator low byte (AL) to 16 bits. The
extended result is returned to the accumulator (A).

- The actual operation copies bit 7 of A to bits 8-15. At the same time the data descriptor
(DD) is set to 1.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
[l 1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
EXTND FC 2

E-2 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

FCAL Fadr 24-Bit Space (16M Bytes: Entire Program Area) Direct Calll

Function

(SSP)- PC+5, SSR- SSP-2

(SSP)- CSR, SSR-SSP-2,
CSR-Fadr,

PC—Fadrt,,

However, 0:0000H Fadr< OFFH:OFFFFH

Description

- This instruction calls any addresss in the entire program space that can be accessed with the
nX-8/500S core.

- The first address of the subroutine is coded in Fadr. The state of the stack after execution of
an FCAL instruction is shown below. Subroutines called with a FCAL instruction return using
an FRT instruction.

SSP after call— |7 o] t Low addresses
| _CSR_
_LSB |
SSP before call—— PC MSB
| High addresses

- This instruction is executable only under the medium or large memory models.
- If this instruction is executed under the small or compact memory models, then an op-code
trap (reset) will occur.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
FCAL Fadr i 07 08 FadrL FadrM FadrH 13

nX-8/500S Instruction Manual Chapter 3 F-1

Chapter 3 Instruction Details
Instruction Set

FILL A Word Fill

Function
A - OFFFFH
Description
+ This instruction fills the accumulator with OFFFFH.
- This instruction also sets DD to 1 (word).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan 1st 2nd 3rd 4th 5th 6th (Internal)
FILL A BC D7 4

F-2 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

FILL obj Word Fill

Function
obj— OFFFFH
Description
- This instruction fills the word-length obj with OFFFFH.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix +1st +2nd +3rd +4th +5th (Internal)
FILL [HE] <word> D7 +2
<word>
NN Word Prefix Instruction Code (cl:r%ltg?nsal)
1st 2nd 3rd
A - -
ERnN 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+RO] AB 6

nX-8/500S Instruction Manual Chapter 3 F-3

Chapter 3 Instruction Details
Instruction Set

FILLB A Byte Fill

Function
AL — OFFH

Description

- This instruction fills the accumulator low byte (AL) with OFFH.
- This instruction also sets DD to 0 (byte).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan 1st 2nd 3rd 4th 5th 6th (Internal)
FILLB A BC D7 4

F-4 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

FILLB obj Byte Fil

Function
obj— OFFH
Description
- This instruction fills the byte-length obj with OFFH.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix +1st +2nd +3rd +4th +5th (Internal)
FILLB [mn <byte> D7 +2
<byte> Cycles
O Byte Prefix Instruction Code (Ir¥ternal)
1st 2nd 3rd
A - -
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] B1 5
[DP+4] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

nX-8/500S Instruction Manual Chapter 3 F-5

Chapter 3 Instruction Details
Instruction Set

FJ Fadr 24-Bit Space (16M Bytes: Entire Program Area) Direct Jump
Function

CSR-Fadr,

PC—Fadrt,,

However, 0:0000K& Fadr< OFFH:0FFFFH

Description

- This instruction jumps to any addresss in the entire program space that can be accessed with
the nX-8/500S core.

- The jump address is coded in Fadr.
- This instruction is executable only under the medium or large memory models. Ifitis
executed under the small or compact memory models, then an op-code trap (reset) will occur.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
FJ Fadr i <dumyW>| FA FadrL FadrM FadrH 11

F-6 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

FRT Return From Far Subroutine

Function

SSP_SSP+2, CSR (SSP)
SSP_SSP+2, PG (SSP)

Description

- This instruction returns from a far subroutine.

- This instruction is used to return from an FCAL (24-bit space direct call) or VCAL (vector
call) instruction.

- This instruction is executable only under the medium or large memory models. If this
instruction is executed under the small or compact memory models, then an op-code trap
(reset) will occur.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
FRT H 07 09 9

nX-8/500S Instruction Manual Chapter 3 F-7

Chapter 3

Instruction Details

Instruction Set

INC A

Word Increment

Function

A-A+1

Description

+ This instruction increments the word-length accumulator by 1.
- Execution of this instruction is limited to when DD is 1 (word).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 0 0 0 1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan 1st 2nd 3rd 4th 5th 6th (Internal)
INC A i CC 2
nX-8/500S Instruction Manual Chapter 3

-1

Chapter 3 Instruction Details
Instruction Set

INC Obj Word Increment

Function
obj— obj+1

Description
+ This instruction increments the word-length obj by 1.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
[[[(1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internfal)
INC PRn 40 +n 3
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix | +1st +2nd +3rd (Internal)
INC 1] <word> C6 +2
<word>
M Word Prefix Instruction Code (cl:r%ltzlfnsal)
1st 2nd 3rd
A - -
ERN 64 +n 2
PRn 60 +n 2
X1 AO 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

-2 Chapter 3 nX-8/500S Instruction Manual

Chapter 3

Instruction Details

Instruction Set

INCB A

Byte Increment

Function

AL < AL+1

Description

+ This instruction increments the accumulator low byte (AL) by 1.
- Execution of this instruction is limited to when DD is 0 (byte).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 0 0 0 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan 1st 2nd 3rd 4th 5th 6th (Internal)
INCB A i CC 2
nX-8/500S Instruction Manual Chapter 3

-3

Chapter 3 Instruction Details
Instruction Set

INCB Obj Byte Increment

Function
obj— obj+1

Description
+ This instruction increments the byte-length obj by 1.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
[[[(1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internfal)
INCB RN (n=0-3)|| CO +n 3
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix | +1st +2nd +3rd (Internal)
INCB 0 <byte> C6 +2
‘<byte> . Cycles
O Byte Prefix Instruction Code (Internal)
1st 2nd 3rd
A - -
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

-4 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

J Cadr 64K-Byte Space (Within Current Physical Code Segment) Direct Jump

Function

PC—Cadr
However, CSR:0000d Cadr< CSR:0FFFFH

Description

- This instruction jumps to any addresss in the 64K bytes in the current physical segment.
- The jump address is coded in Cadr. The jump address must exist within the current physical

segment.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
J Cadr : 03 CadrL CadrH 7

nX-8/500S Instruction Manual Chapter 3 J-1

Chapter 3 Instruction Details

Instruction Set

J_[obj]

64K-Byte Space (Within Current Physical Code Segment) Indirect Jump

Function
PC- obj

Description

- This instruction is a 64K-byte space indirect jump based on the contents of obj (word length).

- This instruction jumps to any addresss in the 64K bytes in the current physical segment.

- obj is the word-length contents of data memory or a register.
in obj prior to executing this instruction.

physical segment.

The jump address must be set
The jump address must exist within the current

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
J [i <word> | C9 +4
<word>
NN Word Prefix Instruction Code (cl:r%ltzlfnsal)
1st 2nd 3rd
A BC 2
ERnN 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

J-2 Chapter 3

nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

JBR obj.bit,radr Bit Test and Jump

Function

if obj.bit=0 then PC-radr
However, the next instruction's first address-&28dr< the next instruction's first address+127

Description
- This instruction jumps if the bit specified by obj.bit is O.
- The bit tested is at the bit position specified by bit within the one byte of data specified by obj.
- The jump range possible with this jump instruction is -128 to +127 bytes of the first address of
the next instruction.

Example)
JBR A5, LABEL : bit 5 of AL (accumulator low byte)
JBR RO.7, LABEL : bit 7 of RO (local register 0)
JBR [DP].1, LABEL : bit 1 of data specified by DP (data pointer)
JBR BIT_SYM, LABEL : bit indicated by BIT_SYM (user-defined bit symbol)
JBR sbafix BIT_FIX, LABEL ; bit indicated by BIT_FIX (user-defined fixed page bit symbol)
JBR sbaoff BIT_OFF, LABEL bit indicated by BIT_OFF (user-defined current page bit symbol)
LABEL:
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD

nX-8/500S Instruction Manual Chapter 3 J-3

Chapter 3 Instruction Details
Instruction Set

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
JBR shafix radr 58 +bit| sbafix6+CQ rdiff8 6/9
sbaoff 48 +bit | sbaoff6+C0O| rdiff8 6/9
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix +1st +2nd +3rd (Internal)
JBR Obit i radr <byte> 20 +bit] rdiff8 +4/8
‘<byte> . Cycles
O Byte Prefix Instruction Code (Internal)
1st 2nd 3rd
A BC 2
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

J-4 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

JBRS obj.bit,radr Bit Test and Jump (With Bit Set)

Function

if obj.bit=0 then obj.bit- 1,PC.- radr
However, the next instruction's first address-&28dr< the next instruction's first address+127

Description

- This instruction jumps if the bit specified by obj.bit is 0, and sets that bit to 1.
- The bit tested is at the bit position specified by bit within the one byte of data specified by obj.

- The jump range possible with this jump instruction is -128 to +127 bytes of the first address of
the next instruction.

Example)
JBRS
JBRS
JBRS
JBRS
JBRS
JBRS

LABEL:

Flags

A.5, LABEL : bit 5 of AL (accumulator low byte)

RO.7, LABEL : bit 7 of RO (local register 0)

[DP].1, LABEL : bit 1 of data specified by DP (data pointer)
BIT_SYM, LABEL : bit indicated by BIT_SYM (user-defined bit symbol)

sbafix BIT_FIX, LABEL ; bit indicated by BIT_FIX (user-defined fixed page bit symbol)
sbaoff BIT_OFF, LABEL bit indicated by BIT_OFF (user-defined current page bit symbol)

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV | HC | DD DD

nX-8/500S Instruction Manual Chapter 3 J-5

Chapter 3 Instruction Details
Instruction Set

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix +1st +2nd +3rd (Internal)
JBRS Obit i radr <byte> 30 +bit] rdiff8 +4/10
‘<byte> . Cycles
O Byte Prefix Instruction Code (Internal)
1st 2nd 3rd
A BC 2
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

J-6 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

JBS obj.bit,radr Bit Test and Jump

Function

if obj.bit=0 then PC-radr
However, the next instruction's first address-&28dr< the next instruction's first address+127

Description
- This instruction jumps if the bit specified by obj.bit is 1.
- The bit tested is at the bit position specified by bit within the one byte of data specified by obj.
- The jump range possible with this jump instruction is -128 to +127 bytes of the first address of
the next instruction.

Example)
JBS A.5, LABEL : bit 5 of AL (accumulator low byte)
JBS RO.7, LABEL : bit 7 of RO (local register 0)
JBS [DP].1, LABEL : bit 1 of data specified by DP (data pointer)
JBS BIT_SYM, LABEL ; bit indicated by BIT_SYM (user-defined bit symbol)
JBS sbafix BIT_FIX, LABEL ; bit indicated by BIT_FIX (user-defined fixed page bit symbol)
JBS sbaoff BIT_OFF, LABEL bit indicated by BIT_OFF (user-defined current page bit symbol)
LABEL:
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD

nX-8/500S Instruction Manual Chapter 3 J-7

Chapter 3 Instruction Details
Instruction Set

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
JBS shafix radr 58 +bit| sbafix6+80| rdiff8 6/9
sbaoff 48 +bit | sbaoff6+80| rdiff8 6/9
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix +1st +2nd +3rd (Internal)
JBS Obit i radr <byte> 28 +bit] rdiff8 +4/8
‘<byte> . Cycles
O Byte Prefix Instruction Code (Internal)
1st 2nd 3rd
A BC 2
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

J-8 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

JBSR obj.bit,radr Bit Test and Jump (With Bit Reset)

Function

if obj.bit=1 then obj.bit- 0,PC- radr
However, the next instruction's first address-&28dr< the next instruction's first address+127

Description

- This instruction jumps if the bit specified by obj.bit is 1, and resets that bit to 0.
- The bit tested is at the bit position specified by bit within the one byte of data specified by obj.

- The jump range possible with this jump instruction is -128 to +127 bytes of the first address of
the next instruction.

Example)
JBSR
JBSR
JBSR
JBSR
JBSR
JBSR

LABEL:

Flags

A.5, LABEL : bit 5 of AL (accumulator low byte)

RO.7, LABEL : bit 7 of RO (local register 0)

[DP].1, LABEL : bit 1 of data specified by DP (data pointer)
BIT_SYM, LABEL : bit indicated by BIT_SYM (user-defined bit symbol)

sbafix BIT_FIX, LABEL ; bit indicated by BIT_FIX (user-defined fixed page bit symbol)
sbaoff BIT_OFF, LABEL bit indicated by BIT_OFF (user-defined current page bit symbol)

Flags affected by instruction execution Flags affecting instruction execution

C Z S OV | HC | DD DD

nX-8/500S Instruction Manual Chapter 3 J-9

Chapter 3 Instruction Details
Instruction Set

Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix +1st +2nd +3rd (Internal)
JBSR Obit i radr <byte> 38 +bit] rdiff8 +4/10
‘<byte> . Cycles
O Byte Prefix Instruction Code (Internal)
1st 2nd 3rd
A BC 2
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

J-10 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

JC cond,radr
Jcond radr Conditional Jump

Function

if cond is true then PCradr
However, the next instruction's first address-&28dr< the next instruction's first address+127

Description

- This instruction jumps if the condition specified by cond is true.

- The condition is indicated by the flag state remaining in the PSW (program status word).
Therefore, this instruction presumes prior execution of an instruction that leaves its result in
the PSW (comparison, etc.). This instruction is then used to evaluate that result.

- The cond can be coded as an operand or as part of the mnemonic string.

Example)

CMP A#9

JC GT, LABEL : cond is operand

CMP A#OFH

JLE LABEL ; cond is part of mnemonic string

LABEL:
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes

Instruction Syntax Instruction Code
Jcond JCcond Meaning Flag Conditions 1st 2nd 3rd
JGT JC GT unsignesd (Z=0) n (C=0) FO rdiff8 4/6
JGE JC GE unsignec C=0 F5 rdiff8 4/6
JNC JC NC
JLT JCLT unsignee C=1 F2 rdiff8 4/6
JCY JC CY
JLE JC LE unsigned (Z=1)0O (C=1) F7 rdiff8 4/6
JEQ JCEQ = Z=1 F1 rdiff8 4/6
JZ JC ZF
JNE JC NE Z Z=0 F6 rdiff8 4/6
JNZ JC Nz
JGTS JC GTS signed (OVH S)0Z)=0 || <dumyB>| FE rdiff8 6/10
JGES JC GES signed (Vg S)=0 <dumyB>| FF rdiff8 6/10
JLTS JCLTS signed (OV & S)=1 <dumyB>| FC rdiff8 6/10
JLES JC LES signed (GV g S)dZ)=0 <dumyB>| FD rdiff8 6/10
JPS JC PS positive S=0 F4 rdiff8 4/6
JNS JC NS negative S=1 F3 rdiff8 4/6
JOV JC OV overflow ov=1 9A 28 +1 rdiff8 6/10
JNV JC NV no overflow ov=0 9A 20 +1 rdiff8 6/10

nX-8/500S Instruction Manual Chapter 3 J-11

Chapter 3 Instruction Details
Instruction Set

JRNZ DP, radr

Loo

P

Function

DPL-DPL-1
if DPL # O then PG- radr

However, the next instruction's first address-228dr< the next instruction's first address+127

Description

- This instruction implements a loop process with the data pointer low byte (DPL) as the

counter.

+ This instruction decrements the contents of DPL.
to the address indicated by radr. A loop count of up to 256 times can be implemented.
- The jump range possible with the loop instruction is -128 to +127 bytes of the first address of

the next instruction.

This instruction is completely identical to "DJNZ DPL,radr".

level compatibility with nX-8/100-400.

If the result is not 0, then control will jump

It is provided to support source

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
JRNZ DP i oradr 62 EA rdiff8 6/11

J-12 Chapter 3

nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

L A,Obj Word Load

Function

A < obj
DD-1

Description

- This instruction loads the contents of obj (word length) into the accumulator (A).
- Execution of this instruction sets DD to 1 (word).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
[l 1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
L A #N16 F8 N16L N16H 6
ERN 74 +n 2
PRn 70 +n 2
[X1] 80 4
[DP] 82 4
[DP-] 81 5
[DP+] 83 5
fix 84 fix8 4
off 85 off8 4
sfr 86 sir8 4
dir 87 dirL dirH 6
D16[X1] 88 D16L D16H 6
n7[USP] 89 n7 6
n7[DP] 89 80 +n7 6

nX-8/500S Instruction Manual Chapter 3 L-1

Chapter 3 Instruction Details
Instruction Set

LB A,Obj Byte Load

Function
AL —obj
DD -0
Description
* This instruction loads the contents of obj (byte length) into the accumulator low byte (AL).
- Execution of this instruction sets DD to 0 (byte).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
[l 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
LB A #N8 F9 N8 4
Rn 78 +n 2
[X1] 90 4
[DP] 92 4
[DP-] 91 5
[DP+] 93 5
fix 94 fix8 4
off 95 off8 4
sfr 96 sir8 4
dir 97 dirL dirH 6
D16[X1] 98 D16L D16H 6
n7[USP] 99 n7 6
n7[DP] 99 80 +n7 6

L-2 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

LC A,[obj] Word ROM Load (Indirect)

Function
A < TSR:(obj)

Description

+ This instruction loads ROM data (word length) into the accumulator (A).
- The ROM data is word data in the current table segment, with the contents of obj as the

address.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
LC A i [<word> DA +9
<word>
[HE] Word Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A BC 2
ERN 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

nX-8/500S Instruction Manual Chapter 3 L-3

Chapter 3 Instruction Details
Instruction Set

LC A, T16[obj] Word ROM Load (Indirect With 16-Bit Base)

Function
A « TSR:(T16 + obj)

Description

+ This instruction loads ROM data (word length) into the accumulator (A).
- The ROM data is word data in the current table segment, with the contents of obj added to the
base address of the data table (T16) as the address.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
LC A i T16[] <word> E7 T16L T16H +13
<word>
[HE] Word Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A BC 2
ERN 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

L-4 Chapter 3 nX-8/500S Instruction Manual

Chapter 3

Instruction Details
Instruction Set

LC A, Tadr

Word ROM Load (Direct)

Function
A < TSR:Tadr
Description
+ This instruction loads ROM data (word length) into the accumulator (A).
- The ROM data is the word data in the current table segment indicated by Tadr.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
LC A i Tadr <word> | B7 TadrL TadrH 15

nX-8/5008S Instruction Manual

Chapter 3 L-5

Chapter 3 Instruction Details
Instruction Set

LCB A,[Obj] Byte ROM Load (Indirect)

Function
AL ~ TSR:(obj)

Description

- This instruction loads ROM data (byte length) into the accumulator low byte (AL).
- The ROM data is byte data in the current table segment, with the contents of obj as the

address.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
LCB A i [<word> DB +6
<word>
[HE] Word Prefix Instruction Code (?riltcelrensal)
1st 2nd 3rd
A BC 2
ERN 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

L-6 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

LCB A,T16[Obj] Byte ROM Load (Indirect With 16-Bit Base)

Function
AL ~ TSR:(T16 + ohj)

Description

- This instruction loads ROM data (byte length) into the accumulator low byte (AL).
- The ROM data is byte data in the current table segment, with the contents of obj added to the
base address of the data table (T16) as the address.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
LCB A i T16[] <word> F7 T16L T16H +10
<word>
[HE] Word Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A BC 2
ERN 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

nX-8/500S Instruction Manual Chapter 3 L-7

Chapter 3 Instruction Details
Instruction Set

LCB A,Tadr Byte ROM Load (Direct)

Function
AL — TSR:Tadr

Description

- This instruction loads ROM data (byte length) into the accumulator low byte (AL).
- The ROM data is the byte data in the current table segment indicated by Tadr.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
LCB A { Tadr <dumyB>| B7 TadrL TadrH 12

L-8 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

MAC Multiply-Addition Calculation
Function
MAC start bit—1
(SsB sfr MAC start bit)
Description

- This instruction starts multiply-addition calculations. It can be executed only with target
devices in which a multiply-addition calculation circuit exists as an SFR.
- Refer to the appropriate hardware manual for more detailed information of MAC instruction

function.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
MAC H B6 *1 08 +bit 4

*1 is the byte address of the MAC start bit.
Bit is the bit position of MAC start bit

nX-8/500S Instruction Manual Chapter 3 M-1

Chapter 3 Instruction Details
Instruction Set

MB C,Obj.bit Move Bit

Function
C « obj.bit
Description
- This instruction moves the contents of the bit specified by bit in obj (byte length) to the carry
flag (C).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd +4th +5th (Internal)
MB C i Obit <byte> 10 +bit +3
<byte>
O Byte Prefix Instruction Code (?riltcelrensal)
1st 2nd 3rd
A BC 2
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

M-2 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

MB Obj.bit,C Move Bit

Function
obj.bit « C
Description
- This instruction moves the contents of the carry flag (C) to the bit specified by bit in obj (byte
length).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd +4th +5th (Internal)
MB Obit i C <byte> 18 +bit +3
<byte>
O Byte Prefix Instruction Code (?riltcelrensal)
1st 2nd 3rd
A BC 2
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

nX-8/500S Instruction Manual Chapter 3 M-3

Chapter 3 Instruction Details
Instruction Set

MBR C,obj

Move Bit (Register Indirect Bit Specification)

Function
C « obj.(AL)

Description

- This instruction moves the contents of the bit at the specified position within the bit block to
the carry flag (C).

- The bit block is the block of 256 bits starting from the address obj.
specification is coded in obj.

- The bit position is 0-255, specified by the contents of the accumulator low byte (AL).

- The same instruction coded for nX-8/100-400 has a different function. For nX-8/100-400,
only the lower 3 bits of AL are valid for the bit position specification. In this case, only the 8
bits of obj can specified as the target bit.

A byte addressing

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
1l
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix | +1st +2nd +3rd +4th +5th (Internal)
MBR C i 0 <byte> BA +6
<byte>
O Byte Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A -
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+RO] BB 6
PSWL 8A 2
PSWH 9A 2

M-4 Chapter 3

nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

MBR Obj,C Move Bit (Register Indirect Bit Specification)

Function
obj.(AL) - C

Description

- This instruction moves the contents of the carry flag to the bit at the specified position within

the bit block.

- The bit block is the block of 256 bits starting from the address obj. A byte addressing

specification is coded in obj.

- The bit position is 0-255, specified by the contents of the accumulator low byte (AL).
- The same instruction coded for nX-8/100-400 has a different function. For nX-8/100-400,

only the lower 3 bits of AL are valid for the bit position specification. In this case, only the 8
bits of obj can specified as the target bit.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix | +1st +2nd +3rd +4th +5th (Internal)
MBR] iC <byte> BB +5
<byte>
O Byte Prefix Instruction Code (?riltcelrensal)
1st 2nd 3rd
A -
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+RO] BB 6
PSWL 8A 2
PSWH 9A 2

nX-8/500S Instruction Manual Chapter 3 M-5

Chapter 3 Instruction Details

Instruction Set

MOV objl,0bj2

Word Move

Function
obj1

Description

- This instruction moves a word of data from obj1 to obj2.

~ 0bj2

- The address of the source word is coded in obj1.
- The address of the destination word is coded in obj2.
- Difference with nX-8/100-400:
the instruction "MOV A,obj" does not modify the data descriptor (DD).
For DD in nX-8/100-400, "MOV A,obj" is handled the same as an L instruction (that is,

DD is set to 1).

instruction has been eliminated.

For DD in nX-8/500S, DD does not change.

DD switching by the MOV

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
However, all flags will change if PSW is the destination.
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
MOV ERN #N16 24 +n N16L N16H 6
PRn 20 +n N16L N16H 6
off C7 off8 N16L N16H 8
sfr C6 sfr8 N16L N16H 8
LRB C6 02 N16L N16H 8

M-6 Chapter 3

nX-8/500S Instruction Manual

Chapter 3

Instruction Details
Instruction Set

Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
MOV A [N <word> 97 +2
ERN <word> 70 +n +2
PRn <word> 74 +n +2
[X1] <word> 88 +4
[DP] <word> 8A +4
[DP-] <word> 89 +5
[DP+] <word> | 8B 5
fix <word> 86 fix8 +4
off <word> 87 off8 +4
sfr <word> 96 sfr8 +4
PSW <word> 96 04 +4
SSP <word> 96 00 +4
LRB <word> 96 02 +4
dir <word> 9B dirL dirH +6
D16[X1] <word> | 98 D16L D16H +6
D16[X2] <word> 99 D16L D16H +6
n7[Dp] <word> | 9A n7 6
n7[USP] <word> 9A 80 +n +6
[X1+A] <word> F8 +6
[X1+R0] <word> F9 +6
M A <word> AA +2
#N16 <word> AB N16L N16H +6
<word>
[HE] Word Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A - -
ERN 64 +n 2
PRn 60 +n 2
X1 AO 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix Ad fix8 4
off Ab off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 _+n7 6
[X1+A] AA 6
[X1+RO] AB 6

nX-8/5008S Instruction Manual

Chapter 3 M-7

Chapter 3

Instruction Set

Instruction Details

MOVB objl,0bj2

Byte Move
Function
objl ~ obj2
Description
- This instruction moves a byte of data from obj1 to obj2.
- The address of the source byte is coded in obj1.
- The address of the destination byte is coded in obj2.
- Difference with nX-8/100-400:
the instruction "MOVB A,obj" does not modify the data descriptor (DD).
For DD in nX-8/100-400, "MOVB A,obj" is handled the same as an LB instruction (that is,
DD is setto 0). For DD in nX-8/500S, DD does not change. DD switching by the MOVB
instruction has been eliminated.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C | Z | S |[OV|HC |DD DD
However, all flags will change if PSW is the destination.
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
MOVB Rn #N8 10 +n NB 4
off D7 off8 N8 6
sfr D6 sfr8 N8 6

M-8 Chapter 3

nX-8/500S Instruction Manual

Chapter 3

Instruction Details

Instruction Set

Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
MOVB A 0 <byte> 97 +2
Rn <byte> 70 +n +2
[X1] <byte> 88 +4
[DP] <byte> 8A +4
[DP-] <byte> 89 +5
[DP+] <byte> 8B +5
fix <byte> 86 fix8 +4
off <byte> 87 off8 +4
sfr <byte> 96 sfr8 +4
PSWL <byte> 96 04 +4
PSWH <byte> 96 05 +4
dir <byte> 9B dirL dirH +6
D16[X1] <byte> 98 D16L D16H +6
D16[X2] <byte> 99 D16L D16H +6
n7[DP] <byte> 9A n7 +6
n7[USP] <byte> 9A 80 +n7 +6
[X1+A] <byte> F8 +6
[X1+R0] <byte> F9 +6
O A <byte> AA +2
#N8 <byte> AB N8 +4
<byte>
O Byte Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A - -
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+RO] BB 6
PSWL 8A 2
PSWH 9A 2

nX-8/5008S Instruction Manual

Chapter 3 M-9

Chapter 3 Instruction Details
Instruction Set

MUL Obj Word Multiplication

Function
<A,ER0> — Axobj

Description

- This instruction multiplies a 16-bit number by a 16-bit number, giving a 32-bit product.

- The multiplicand is the contents of the accumulator (A). The multiplier is the word data
indicated by obj. For the results of the multiplication, the product is stored in the A and ERO
pair.

- Refer to the appropriate hardware manual for with or without of multiplier circuit.

- Difference with nX-8/100-400:

Word addressing can be coded in the multiplier. This has to be a fixed register for nX-

8/100-400.
The registers that store the high and low words of the product are different.
nX-8/500S <A,ERO0>~ A x obj
nX-8/100-400 : <ER1,A> A x ERO
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
Z: The zero flag will be 1 if the product is 0, and will be 0 otherwise.
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix +1st +2nd +3rd (Internal)
MUL EE (Without <word> A9 +21
Multiplier)
MUL L[] (With Multiplier) <word> | A9 +3
<word> Cycles
NN Word Prefix Instruction Code (Ir¥ternal)
1st 2nd 3rd
A -
ERnN 64 +n 2
PRn 60 +n 2
X1 AO 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

M-10 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

MULB Obj Byte Multiplication

Function
A < AL x obj
Description
- This instruction multiplies an 8-bit number by an 8-bit number, giving a 16-bit product.
- The multiplicand is the contents of the accumulator low byte (AL). The multiplier is the byte
data indicated by obj. For the results of the multiplication, the product is stored in the
accumulator (A).
- Refer to the appropriate hardware manual for with or without of multiplier circuit.
- Difference with nX-8/100-400:
Byte addressing can be coded in the multiplier. This has to be a fixed register for
nX-8/100-400.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | bD DD
O
Z: The zero flag will be 1 if the product is 0, and will be 0 otherwise.
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix +1st +2nd +3rd (Internal)
MULB 0 (Without <byte> A9 +12
Multiplier)
p
MULB L] (With Multiplier) <byte> A9 +2
<byte> cvel
O Byte Prefix Instruction Code ycles
1st 2nd 3rd (Internal)
A -
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] B1 5
[DP+4] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

nX-8/500S Instruction Manual Chapter 3 M-11

Chapter 3 Instruction Details
Instruction Set

NEG A Word Negate Sign

Function
A~ -A

Description
- This instruction takes the 2's complement of the contents of the accumulator (A), and returns

the results in A.
- Execution of this instruction sets DD to 1 (word).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O 0 0 0 0 1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan 1st 2nd 3rd 4th 5th 6th (Internal)
NEG A CF 3

nX-8/500S Instruction Manual Chapter 3 N-1

Chapter 3 Instruction Details
Instruction Set

NEGB A Byte Negate Sign

Function
A « -AL
Description
- This instruction takes the 2's complement of the contents of the accumulator low byte (AL),
and returns the results in AL.
- Execution of this instruction sets DD to 1 (word).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O O O O O 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan 1st 2nd 3rd 4th 5th 6th (Internal)
NEG A CF 3

N-2 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

NOP No Operation

Function
NO OPERATION

Description
+ This instruction just consumes a fixed number of cycles and moves the program counter to the
next instruction.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
NOP i 00 2

nX-8/500S Instruction Manual Chapter 3 N-3

Chapter 3 Instruction Details
Instruction Set

OR A,Obj Word Logical OR

Function
A « A obj

Description

- This instruction takes the word logical OR of the contents of obj (word length) and the
accumulator (A), and stores the result in the accumulator.
- Execution of this instruction is limited to when DD is 1 (word).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 0 1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internfal)
OR A off CD off8 4
#N16 CE N16L N16H 6
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix | +1st +2nd +3rd (Internal)
OR A 10 <word> | C5 +2
<word>
[HE] Word Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A - -
ERN 64 +n 2
PRn 60 +n 2
X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

nX-8/500S Instruction Manual Chapter3 0O-1

Chapter 3 Instruction Details
Instruction Set

OR Objl,Oij Word Logical OR

Function
objl — obj10 obj2

Description

- This instruction takes the word logical OR of the contents of objl (word length) and obj2
(word length), and stores the result in obj1.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
OR M fix <word> CO0 fix8 +5
off <word> C1l off8 +5
sfr <word> C2 sfr8 +5
#N16 <word> C3 N16L N16H +6
A <word> C4 +2
<word>
[HE] Word Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A - -
ERN 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+4] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

0O-2 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

ORB A,Obj Byte Logical OR

Function
AL — AL [obj
Description
- This instruction takes the word logical OR of the contents of obj (byte length) and the
accumulator low byte (AL), and stores the result in the accumulator.
- Execution of this instruction is limited to when DD is 0 (byte).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
[l [l 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internfal)
ORB A off CD off8 4
#N8 CE N8 4
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix | +1st +2nd +3rd (Internal)
ORB A i 0 <byte> C5 +2
<byte>
O Byte Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A - -
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

nX-8/500S Instruction Manual Chapter3 0O-3

Chapter 3
Instruction Set

Instruction Details

ORB o0bjl,0bj2

Byte Logical OR

Function
objl — obj10 obj2
Description
- This instruction takes the word logical OR of the contents of objl (byte length) and obj2 (byte
length), and stores the result in obj1.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O O
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
ORB O fix <byte> CO fix8 +5
off <byte> Cl off8 +5
sfr <byte> C2 sfr8 +5
#N8 <byte> C3 N8 +4
A <byte> C4 +2
<byte>
O Byte Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A - -
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

0O-4 Chapter 3

nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

POPS register list Pop Off System Stack

Function

Register group- System stack
SSP~ SSP+n (n:number of popped regists

Description

- This instruction pops data off the system stack to the group of registers specified by the
register_list.
-+ The register_list can be one of the following:

1)Extended local reglster list
2 Pomtlnlg register list
3)Control register list

NHER

5)PR
6)CR

A list of register names is coded for (1), (2), or (3).

An extended local register list must be one or more of ERO, ER1, ER2, and ER3. A pointing
register list must be one or more of X1, X2, DP, and USP. A control register list must be
one or more of A, LRP, and PSW.

When two or more registers are specified in one of these three ways, they should be delimited
by commas. The registers can be coded in any order in the operand, but the order in which
they are popped and written is fixed.

For (4), (5), and (6), the symbols indicate register sets.

POPS ER" is equivalent to "POPS ERO,ER1,ER2,ER3." "POSPS PR" is equivalent to
"POPS X1,X2,DP,USP." "POPS CR" is equivalent to "POPS A,LRB,PSW." The popping
sequence for local registers is ERER1- ER2-. ER3. For pointer registers, it is
X1-5X2-DP-USP. For control registers, itis PSW.RB - A.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
1l [[[[[l
C, Z, S, OV, HC, DD are all changed only when the PSW is popped. They are unchanged in
all other cases.
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th || (Internal)
POPS register_list : 06 register mask value 5+4m*

*m: number of popped registers

PUSHS :00
PUSHU :01 OO ERnm—— ER3 ER2 ER1 ERO Bit correspondings
POPS :10 —O0L: PRn— USPDP X2 X1 5 he register to

POPU :11 10: CRn— A LRB Psw move is 1

nX-8/500S Instruction Manual Chapter3 P-1

Chapter 3

Instruction Details

Instruction Set

PUSHS register list Push On System Stack

Function

Register group- System stack
SSP-SSP+n (n:number of popped regists

Description

- This instruction pops data off the system stack to the group of registers specified by the

register_list.

-+ The register_list can be one of the following:

1)Extended local reglster list
2 Pomtlnlg register list
3)Control register list

NHER

5PR

6)CR
A list of register names is coded for (1), (2), or (3).
An extended local register list must be one or more of ERO, ER1, ER2, and ER3. A pointing
register list must be one or more of X1, X2, DP, and USP. A control register list must be one
or more of A, LRP, and PSW.
When two or more registers are specified in one of these three ways, they should be delimited
by commas. The registers can be coded in any order in the operand, but the order in which
they are popped and written is fixed.

For (4), (5), and (6), the symbols indicate register sets.

"PUSHS ER" is equivalent to "PUSHS ERO,ER1,ER2,ER3." "POSPS PR"is equivalentto "
PUSHS X1,X2,DP,USP." " PUSHS CR" is equivalent to " PUSHS A,LRB,PSW." The
popping sequence for local registers is EFER2-. ER1- ERO. For pointer registers, it is
USP- DP- X2 - X1. For control registers, it is ALRB -~ PSW.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
C, Z, S, OV, HC, DD are all changed only when the PSW is popped. They are unchanged in
all other cases.
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th || (Internal)
PUSHS A 07 3
PUSHS register_list 06 register mask value 5+4m*
*m: number of popped registers
PUSHS :00
PUSHU :01 00 ERn— ER3 ER2 ER1 ERO Bit correspondings
POPS :10 —O0L: PRn— USPDP X2 X1 (4 he register to
: A LRB P5W -
POPU :11 10: CRn— move is 1
P-2 Chapter 3 nX-8/500S Instruction Manual

Chapter 3

Instruction Details
Instruction Set

RB obj.

bit

Reset Bit (Bit Position Direct Specification)

Function

if obj.bit = 0 then Z- 1 else Z-0
obj.bit—0

Description

- This instruction resets to 0 the contents of the bit specified by bit in obj (byte length).

- Byte addressing is coded in obj.

- Before resetting the specified bit, this instruction examines its contents and sets the zero flag
If the specified bit is 0 before instruction execution, then Z will be set to 1; if the bit is 1,
then Z will be reset to 0.

- For bits in particular areas, this instruction can be executed more effectively with sbafix/sbaoff

@).

addressing. Please see the chapter that explains addressing for details.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
[l
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
RB shafix 58 +bit sbafix6+40 4
sbaoff 48 +bit sbaoff6+4(4
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
RB Obit <byte> 00 +hit +3
‘<byte> . Cycles
O Byte Prefix Instruction Code (Internal)
1st 2nd 3rd
A BC 2
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

nX-8/5008S Instruction Manual

Chapter 3 R-1

Chapter 3 Instruction Details
Instruction Set

RBR Obj Reset Bit (Register Indirect Bit Specification)

Function

if obj.(AL) = 0 then Z-1 else Z-0
obj.(AL) -0

Description

- This instruction resets to 0 the contents of the bit at the specified position within the bit block.

-+ The bit block is the block of 256 bits starting from the address obj. A byte addressing
specification is coded in obj.

-+ The bit position is 0-255, specified by the contents of the accumulator low byte (AL).

- Before resetting the specified bit, this instruction examines its contents and sets the zero flag
(2). If the specified bit is 0 before instruction execution, then Z will be set to 1; if the bitis 1,
then Z will be reset to 0.

- The same instruction coded for nX-8/100-400 has a different function. For nX-8/100-400,
only the lower 3 bits of AL are valid for the bit position specification. In this case, only the 8
bits of obj can specified as the target bit.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
[l
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix +1st +2nd +3rd +4th +5th (Internal)
RBR O <byte> B9 +5
<byte>
O Byte Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A -
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

R-2 Chapter 3 nX-8/500S Instruction Manual

Chapter 3

Instruction Details
Instruction Set

RC

Reset Carry

Function
C-0
Description
- This instruction resets the carry flag (C) to 0.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
RC i CA 2

nX-8/5008S Instruction Manual

Chapter 3 R-3

Chapter 3 Instruction Details
Instruction Set

RDD Reset DD

Function
DD - 0
Description
- This instruction resets the data descriptor (DD) to 0 (byte).
- DD is the flag that specifies how calculations with the accumulator are to be performed.
- Following this instruction, accumulator calculations will be byte length.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
RDD a D8 2

R-4 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

ROL A,width
ROL A Word Left Rotate (With Carry)

Function

LC 15 A 0
<L <=—

Description
+ This instruction rotates the accumulator (A) up to 4 bits to the left, including the carry flag.
- The width specifies the number of bits to rotate with a value 1 to 4. One instruction can
rotate a maximum of 4 bits.
- "ROL A" is equivalent to "ROL A,1."
- Execution of this instruction is limited to when DD is 1 (word).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
* 1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
ROL A AF 2
. BC AC 4+n*
width +width

* n=number of bits to rotate

nX-8/500S Instruction Manual Chapter 3 R-5

Chapter 3 Instruction Details
Instruction Set

ROL obj,width
ROL Obj Word Left Rotate (With Carry)

Function

C 15
<UL] <—

Description

- This instruction rotates obj (word length) up to 4 bits to the left, including the carry flag.

- The width specifies the number of bits to rotate with a value 1 to 4. One instruction can
rotate a maximum of 4 bits.

- "ROL obj" is equivalent to "ROL obj,1."

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
*
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix +1st +2nd +3rd +4th +5th (Internal)
ROL 1 i width <word> AC +width +2+n*
* n=number of bits to rotate
<word>
M Word Prefix Instruction Code (cl:r%ltgrensal)
1st 2nd 3rd
A -
ERnN 64 +n 2
PRn 64 +n 2
[X1] A0 4
[DP] A2 4
[DP] Al 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+RO] AB 6

R-6 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

ROLB A,width
ROLB A Byte Left Rotate (With Carry)

Function

LC 7 A 0
<<

Description

- This instruction rotates the accumulator low byte (AL) up to 4 bits to the left, including the
carry flag.

- The width specifies the number of bits to rotate with a value 1 to 4. One instruction can
rotate a maximum of 4 bits.

- "ROLB A" is equivalent to "ROLB A,1."

- Execution of this instruction is limited to when DD is 0 (byte).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
* 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
ROLB A AF 2
. BC AC 4+n*
width +width

* n=number of bits to rotate

nX-8/500S Instruction Manual Chapter3 R-7

Chapter 3 Instruction Details
Instruction Set

ROLB obj,width
ROLB Obj Byte Left Rotate (With Carry)

Function

LC 7 obj 0
< LI]<—

Description

- This instruction rotates obj (byte length) up to 4 bits to the left, including the carry flag.

- The width specifies the number of bits to rotate with a value 1 to 4. One instruction can
rotate a maximum of 4 bits.

- "ROLB obj" is equivalent to "ROLB obj,1."

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
*
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd +4th +5th (Internal)
ROLB 0 i width <word> | AC+width +2+n*
* n=number of bits to rotate
<byte>
O Byte Prefix Instruction Code (cl:r%ltgrensal)
1st 2nd 3rd
A -
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

R-8 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

ROR A,width
ROR A Word Right Rotate (With Carry)

Function
‘ C 15 A 0
Description
+ This instruction rotates the accumulator (A) up to 4 bits to the right, including the carry flag.
- The width specifies the number of bits to rotate with a value 1 to 4. One instruction can
rotate a maximum of 4 bits.
- "ROR A" is equivalent to "ROR A,1."
- Execution of this instruction is limited to when DD is 1 (word).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
* 1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
ROR A BF 2
. BC BC 4+n*
width +width

* n=number of bits to rotate

nX-8/500S Instruction Manual Chapter 3 R-9

Chapter 3 Instruction Details
Instruction Set

ROR obj,width
ROR Obj Word Right Rotate (With Carry)

Function
‘ C 15 obj 0
Description
+ This instruction rotates obj (word length) up to 4 bits to the right, including the carry flag.
- The width specifies the number of bits to rotate with a value 1 to 4. One instruction can
rotate a maximum of 4 bits.
- ROR obj" is equivalent to "ROR obj,1."
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
*
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix +1st +2nd +3rd +4th +5th (Internal)
ROR J i width <word> BC +width +2+nU
* n=number of bits to rotate
<word> Cycles
[HE] Word Prefix Instruction Code (Ir¥ternal)
1st 2nd 3rd
A -
ERnN 64 +n 2
PRn 64 +n 2
[X1] A0 4
[DP] A2 4
[DP] Al 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

R-10 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

RORB A,width
RORB A Byte Right Rotate (With Carry)

Function
\ﬁ ﬁ 7 A 0
Description
- This instruction rotates the accumulator low byte (AL) up to 4 bits to the right, including the
carry flag.
- The width specifies the number of bits to rotate with a value 1 to 4. One instruction can
rotate a maximum of 4 bits.
- "RORB A" is equivalent to "RORB A,1."
- Execution of this instruction is limited to when DD is 0 (byte).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C | Z | S |[OV|HC |DD DD
* 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
RORB A BF 2
. BC BC 4+n *
width +width

* n=number of bits to rotate

nX-8/500S Instruction Manual Chapter3 R-11

Chapter 3 Instruction Details
Instruction Set

RORB obj,width
RORB obj

Byte Right Rotate (With Carry)

Function
‘ C 7 obj 0
Description
* This instruction rotates obj (byte length) up to 4 bits to the right, including the carry flag.
- The width specifies the number of bits to rotate with a value 1 to 4. One instruction can
rotate a maximum of 4 bits.
- "RORB obj" is equivalent to "RORB obj,1."
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
*
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd +4th +5th (Internal)
RORB 0 i width <byte> | BC+width +2+n U
* n=number of bits to rotate
<byte> cvel
O Byte Prefix Instruction Code (Ir%ltZ?nsal)
1st 2nd 3rd
A -
Rn 68 +n 2
X1] BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

R-12 Chapter 3

nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

RT Return From Subroutine

Function

SSP. SSP+2
PC — (SSP)

Description
- This instruction returns from a subroutine called by an SCAL, CAL, or ACAL instruction, or
by a VCAL instruction under the small or compact memory models.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
RT H 01 6

nX-8/500S Instruction Manual Chapter 3 R-13

Chapter 3 Instruction Details
Instruction Set

RTI Return From Interrupt

Function

1) Small/compact memory models
SSP~ SSP+2, PSW- (SSP)
SSP~ SSP+2, LRB- (SSP)
SSP~ SSP+2, A« (SSP)
SSP~ SSP+2, PC- (SSP)

2) Medium/large memory models
SSP~ SSP+2, PSW- (SSP)
SSP~ SSP+2, LRB- (SSP)
SSP~ SSP+2, A (SSP)
SSP.~ SSP+2, CSR- (SSP)
SSP~ SSP+2, PC- (SSP)

Description

- This instruction returns from an interrupt routine.
1)Under the small/compact memory models, the PSW, LRB, A, and PC are popped from the
system stack in that order.

SSP before popping——>|7 t Low addresses

LSB

PSW 43

LSB

LRB s

LSB

A isa

pc =28

SSP aftepopping ———» mse ¢ High addresses

2)Under the small/compact memory models, the PSW, LRB, A, PC, and CSR are popped from
the system stack in that order.

SSP before popping——|7 t Low addresses
LSB
PSW VSE
LSB
LRB +isa
LSB
A g
| _CSR_ |
. pc S8l
SSP aftepopping —— msg| | High addresses
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
* * * * * *
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
RTI ; 02 12/14

Near/Far

R-14 Chapter 3 nX-8/500S Instruction Manual

Chapter 3

Instruction Details
Instruction Set

SB ob.

bit

Set Bit (Bit Position Direct Specification)

Function

if obj.bit = 0 then Z- 1 else Z-0
obj.bit—1

Description

- This instruction sets to 1 the contents of the bit specified by bit in obj (byte length).

- Byte addressing is coded in obj.

- Before setting the specified bit, this instruction examines its contents and sets the zero flag (2).
If the specified bit is O before instruction execution, then Z will be set to 1; if the bit is 1, then

Z will be reset to 0.

- For bits in particular areas, this instruction can be executed more effectively with sbafix/sbaoff

addressing. Please see the chapter that explains addressing for details.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
[l
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
SB shafix 58 +bit | sbafix6 4
sbaoff 48 +bit| sbaoff6 4
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
SB Obit <byte> 08 +hit +3
‘<byte> . Cycles
O Byte Prefix Instruction Code (Internal)
1st 2nd 3rd
A BC 2
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

nX-8/5008S Instruction Manual

Chapter3 S-1

Chapter 3 Instruction Details

Instruction Set

SBC A,obj

Word Subtraction With Carry

Function
A — A-obj-C
Description
- This instruction performs word subtraction, subtracting the contents of obj (word length) and
the carry flag from the accumulator (A).
- Execution of this instruction is limited to when DD is 1 (word).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O 0 0 0 0 1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internfal)
SBC A i #N16 BC E3 N16L N16H 8
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix +1st +2nd +3rd (Internal)
SBC A Han| <word> E5 +2
<word>
NN Word Prefix Instruction Code (cl:r%ltzlfnsal)
1st 2nd 3rd
A - -
ERnN 64 +n 2
PRn 60 +n 2
X1 AO 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

S-2 Chapter 3

nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

SBC Objl,Obj2 Word Subtraction With Carry

Function
objl — objl-obj2-C

Description

- This instruction performs word subtraction, subtracting the contents of obj2 (word length) and
the carry flag from objl (word length).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O 0 0 0 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
SBC M fix <word> EO fix8 +5
off <word> E1l off8 +5
sfr <word> E2 sfr8 +5
#N16 <word> E3 N16L N16H +6
A <word> E4 +2
<word>
[HE] Word Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A - -
ERN 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+4] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

nX-8/500S Instruction Manual Chapter 3 S-3

Chapter 3 Instruction Details

Instruction Set

SBCB A,0bj

Byte Subtraction With Carry

Function
AL — AL-0bj-C
Description
- This instruction performs byte subtraction, subtracting the contents of obj (byte length) and the
carry flag from the accumulator low byte (AL).
- Execution of this instruction is limited to when DD is 0 (byte).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 [l [l [l [l 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internfal)
SBCB A i #N8 BC E3 N8 6
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix +1st +2nd +3rd (Internal)
SBCB A IO <byte> E5 +2
<byte> Cycles
O Byte Prefix Instruction Code (Ir¥ternal)
1st 2nd 3rd
A -
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

S-4 Chapter 3

nX-8/500S Instruction Manual

Chapter 3

Instruction Details

Instruction Set

SBCB o0bjl,0bj2

Byte Subtraction With Carry

Function

objl — objl-obj2-C

Description

- This instruction performs byte subtraction, subtracting the contents of obj2 (byte length) and

the carry flag from objl (byte length).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 [l [l [l [l
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
SBCB O fix <byte> EO fix8 +5
off <byte> El off8 +5
sfr <byte> E2 sfr8 +5
#N8 <byte> E3 N8 +4
A <byte> E4 +2
<byte>
O Byte Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A -
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+RO] BB 6
PSWL 8A 2
PSWH 9A 2

nX-8/5008S Instruction Manual

Chapter 3 S-5

Chapter 3 Instruction Details
Instruction Set

SBR Obj Set Bit (Register Indirect Bit Specification)
Function

if obj.(AL) = 0 then Z-1 else Z-0

obj.(AL) — 1
Description

- This instruction sets to 1 the contents of the bit at the specified position within the bit block.

-+ The bit block is the block of 256 bits starting from the address obj. A byte addressing
specification is coded in obj.

- The bit position is 0-255, specified by the contents of the accumulator low byte (AL).

- Before setting the specified bit, this instruction examines its contents and sets the zero flag (2).
If the specified bit is O before instruction execution, then Z will be set to 1; if the bit is 1, then
Z will be reset to 0.

The same instruction coded for nX-8/100-400 has a different function. For nX-8/100-400, only the lower 3 bits of AL are
valid for the bit position specification. In this case, only the 8 bits of obj can specified as the target bit.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
[l
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix +1st +2nd +3rd +4th +5th (Internal)
SBR O <byte> B8 +5
‘<byte> . Cycles
O Byte Prefix Instruction Code (Internal)
1st 2nd 3rd
A -
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

S-6 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

SC Set Carry

Function
C-1

Description
- This instruction sets the carry flag (C) to 1.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internfal)
SC i CB 2

nX-8/500S Instruction Manual Chapter 3 S-7

Chapter 3 Instruction Details
Instruction Set

SCAL Cadr 64K-Byte Space (Within Current Physical Code Segment) Direct Call

Function

(SSP)-PC+3

SSP-SSP-2,

PC~Cadr

However, CSR:0000< Cadr< CSR:0FFFFH

Description

- This instruction is supported to provide compatibility with nX-8/100-400. It is actually
identical to the CAL instruction.

- This instruction calls any addresss in the 64K bytes in the current physical segment.

- The first address of the subroutine is coded in Cadr. The subroutine must exist within the
current physical segment.

- The state of the stack after execution of an SCAL instruction is shown below. Subroutines
called with an SCAL instruction return using an RT instruction.

SSP after call — 7 o] + Low addresses
SSP before call—) P GT\EE_

| High addresses

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
SCAL Cadr FE CadrL CadrH 9

S-8 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

SDD Set DD

Function
DD ~ 1
Description
- This instruction sets the data descriptor (DD) to 1 (word).
- DD is the flag that specifies how calculations with the accumulator are to be performed.
+ Following this instruction, accumulator calculations will be word length.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internfal)
SDD i D9 2

nX-8/500S Instruction Manual Chapter 3 S-9

Chapter 3 Instruction Details
Instruction Set

SJ radr Short Jump

Function

PC-radr

However, the next instruction's first address-&28dr< the next instruction's first address+127
and CSR:0000K radr< CSR:0FFFFH

Description

- This instruction is a relative jump to an address found by adding a signed 8-bit displacement
to a base, the first address of the next instruction.
- The jump address is coded in radr. The jump address must exist within the current physical

segment.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD

Codes

Instruction Syntax Instruction Code Cycles

mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internfal)

SJ radr i 04 rdiff8 6

S-10 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

SLL A,width
SLL A Word Left Shift (With Carry)

Function

15 A 0

C
U<-LLLLLTITITTTTTT] <=0

Description

+ This instruction shifts the accumulator (A) up to 4 bits to the left.

- The width specifies the number of bits to shift with a value 1 to 4. One instruction can shift a
maximum of 4 bits.

- "SLL A" is equivalent to "SLL A,1."

- Execution of this instruction is limited to when DD is 1 (word).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 1
C : If any of the bits carried out of bit 15 of A from the shift operation is 1, then C
will be setto 1. If all carry-out bits are 0, then C will be reset to 0.
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
SLL A 8F 2
width BC 8C +width 4+n*

* n=number of bits to shift

nX-8/500S Instruction Manual Chapter 3 S-11

Chapter 3 Instruction Details
Instruction Set

SLL obj,width
SLL obj Word Left Shift (With Carry)

Function

15 obj

C 0
<L LTI <=0

Description

+ This instruction shifts obj (word length) up to 4 bits to the left.

- The width specifies the number of bits to shift with a value 1 to 4. One instruction can shift a
maximum of 4 bits.

- "SLL obj" is equivalent to "SLL obj,1."

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
C : If any of the bits carried out of bit 15 of obj from the shift operation is 1, then
C will be setto 1. If all carry-out bits are 0, then C will be reset to 0.
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix +1st +2nd +3rd +4th +5th (Internal)
SLL (0 i width <word> 8C +width +2+nUJ
* n=number of bits to shift
<word> Cycles
m Word Prefix Instruction Code (Ir¥ternal)
1st 2nd 3rd
A -
ERn 64 +n 2
PRn 60 +n 2
X1 AO 4
[DP] A2 4
[DP] Al 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

S-12 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

SSLB A,width
SSLB A Byte Left Shift (With Carry)

Function

C 7 0
(<Ll []]<—0

Description

+ This instruction shifts the accumulator low byte (AL) up to 4 bits to the left.

- The width specifies the number of bits to shift with a value 1 to 4. One instruction can shift a
maximum of 4 bits.

- "SLLB A" is equivalent to "SLLB A,1."

- Execution of this instruction is limited to when DD is 0 (byte).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 0
C : If any of the bits carried out of bit 7 of obj from the shift operation is 1, then C
will be setto 1. If all carry-out bits are 0, then C will be reset to 0.
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
SLLB A 8F 2
width BC 8C +width 4+n*

* n=number of bits to shift

nX-8/500S Instruction Manual Chapter 3 S-13

Chapter 3
Instruction Set

Instruction Details

SLLB obj,width
SLLB obj

Byte Left Shift (With Carry)

Function

Description

+ This instruction shifts obj (byte length) up to 4 bits to the left.
- The width specifies the number of bits to shift with a value 1 to 4. One instruction can shift a

maximum of 4 bits.

obj

0

c 7
O<- (1]

+ "SLLB obj" is equivalent to "SLLB obj,1."

<o

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
C : If any of the bits carried out of bit 7 of obj from the shift operation is 1, then C
will be setto 1. If all carry-out bits are 0, then C will be reset to 0.
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd +4th +5th (Internal)
SLLB] { width <byte> | 8C+width +2+nU
* n=number of bits to shift
<byte> Cycles
O Byte Prefix Instruction Code (Ir¥ternal)
1st 2nd 3rd
A -
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] B1 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

S-14 Chapter 3

nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

SQR A Word Square

Function
<A,ERO0> - A XA

Description

- This instruction squares the contents of the 16-bit accumulator (A), giving a 32-bit result.
- Execution of this instruction is limited to when DD is 1 (word).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O 1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan 1st 2nd 3rd 4th 5th 6th (Internal)
SQR A BC A9 23

nX-8/500S Instruction Manual Chapter 3 S-15

Chapter 3 Instruction Details
Instruction Set

SQRB A Byte Square

Function
A <« AL x AL
Description
- This instruction squares the contents of the 16-bit accumulator low byte (AL), giving a 16-bit
result.
- Execution of this instruction is limited to when DD is 0 (byte).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan 1st 2nd 3rd 4th 5th 6th (Internal)
SQRB A] BC A9 14

S-16 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

SRA A,width

SRA A Word Arithmetic Right Shift (With Carry)
Function
15 A 0 C
|;Illllllllllllllllﬁ\'D
_—
Description

- This instruction shifts the accumulator (A) up to 4 bits to the right, including the carry flag.

- Each time one bit is shifted in an arithmetic shift, the carry-out frpma éntered into C and
A itself is entered into A

- The width specifies the number of bits to shift with a value 1 to 4. One instruction can shift a
maximum of 4 bits.

- "SRA A" is equivalent to "SRA A,1."

- Execution of this instruction is limited to when DD is 1 (word).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 1
C : The last value carried out of Will be entered in C.
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
SRA A i width BC EC +width 4+n*

* n=number of bits to shift

nX-8/500S Instruction Manual Chapter 3 S-17

Chapter 3 Instruction Details
Instruction Set

SRA obj,width

SRA obj Word Arithmetic Right Shift (With Carry)
Function
15 obj 0 C
|;IIIIIIIIIIIIIIIII—\‘/‘D
—
Description

- This instruction shifts obj (word length) up to 4 bits to the right, including the carry flag.

- Each time one bit is shifted in an arithmetic shift, the carry-out fropisadjtered into C and
obj; itself is entered into ofj

- The width specifies the number of bits to shift with a value 1 to 4. One instruction can shift a
maximum of 4 bits.

- "SRA obj" is equivalent to "SRA obj,1."

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
C : The last value carried out of Will be entered in C.
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd +4th +5th (Internal)
SRA M ’ <word> | EC +2+n*
width +width
* n=number of bits to shift
<word> Cycles
M Word Prefix Instruction Code (Ir)1/ternal)
1st 2nd 3rd
A -
ERn 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

S-18 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

SRAB A,width
SRAB A Byte Arithmetic Right Shift (With Carry)

Function
7 A 0 C
E LI —]
Description
+ This instruction shifts the accumulator low byte (AL) up to 4 bits to the right, including the
carry flag.
- Each time one bit is shifted in an arithmetic shift, the carry-out frgma éntered into C and
A, itself is entered into A
- The width specifies the number of bits to shift with a value 1 to 4. One instruction can shift a
maximum of 4 bits.
- "SRAB A" is equivalent to "SRAB A,1."
- Execution of this instruction is limited to when DD is 0 (byte).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 0
C : The last value carried out of Will be entered in C.
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
SRAB A width BC EC 4+n*
+width

* n=number of bits to shift

nX-8/500S Instruction Manual Chapter 3 S-19

Chapter 3
Instruction Set

Instruction Details

SRAB obj,width

SRAB obj

Byte Arithmetic Right Shift (With Carry)

Function

Description
- This instruction shifts obj (byte length) up to 4 bits to the right, including the carry flag.

- Each time one bit is shifted in an arithmetic shift, the carry-out frogisoéntered into C and

0

obj, itself is entered into obj

- The width specifies the number of bits to shift with a value 1 to 4. One instruction can shift a
maximum of 4 bits.

C

I =1

- "SRAB obj" is equivalent to "SRAB obj,1."

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O
C : The last value carried out of Will be entered in C.
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd +4th +5th (Internal)
SRAB 0 i width <byte> EC+width +2+n*
* n=number of bits to shift
<byte>
O Byte Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A -
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

S-20 Chapter 3

nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

SRL A,width

SRL A Word Right Shift (With Carry)
Function
15 A 0 C
o — LI {I[|—[]
>
Description

+ This instruction shifts the accumulator (A) up to 4 bits to the right, including the carry flag.

- The width specifies the number of bits to shift with a value 1 to 4. One instruction can shift a
maximum of 4 bits.

- "SRL A" is equivalent to "SRL A,1."

- Execution of this instruction is limited to when DD is 1 (word).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 1
C : The last value carried out of Will be entered in C.
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
SRL A 9F 2
width BC 9C +width 4+n*

* n=number of bits to shift

nX-8/500S Instruction Manual Chapter 3 S-21

Chapter 3 Instruction Details
Instruction Set

SRL obj,width

SRL obj Word Right Shift (With Carry)
Function
15 obj 0 C
o —> LI [I]—
—
Description

* This instruction shifts obj (word length) up to 4 bits to the right, including the carry flag.

- The width specifies the number of bits to shift with a value 1 to 4. One instruction can shift a
maximum of 4 bits.

- "SRL obj" is equivalent to "SRL obj,1."

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
C : The last value carried out of Will be entered in C.
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd +4th +5th (Internal)
SRL [EE] i width <word> | 9C +width +2+n*

* n=number of bits to shift

<word>
[HE] Word Prefix Instruction Code (?riltcelrensal)
1st 2nd 3rd

A -

ERN 64 +n 2
PRn 60 +n 2
X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

S-22 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

SRLB A,width
SRLB A Byte Right Shift (With Carry)

Function

A

7 0 C
o= IIII[II—O

Description

+ This instruction shifts the accumulator low byte (AL) up to 4 bits to the right, including the
carry flag.

- The width specifies the number of bits to shift with a value 1 to 4. One instruction can shift a
maximum of 4 bits.

- "SRLB A" is equivalent to "SRLB A,1."

- Execution of this instruction is limited to when DD is 0 (byte).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 0
C : The last value carried out of Will be entered in C.
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
SRLB A 9F 2
width BC 9C +width 4+n *

* n=number of bits to shift

nX-8/500S Instruction Manual Chapter 3 S-23

Chapter 3 Instruction Details
Instruction Set

SRLB obj,width
SRLB obj

Byte Right Shift (With Carry)

Function
7 obj 0 C
o—>LII[[[[[]—[]
_—
Description
* This instruction shifts obj (byte length) up to 4 bits to the right, including the carry flag.
- The width specifies the number of bits to shift with a value 1 to 4. One instruction can shift a
maximum of 4 bits.
+ "SRLB obj" is equivalent to "SRLB obj,1."
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O
C : The last value carried out of Will be entered in C.
* n=number of bits to shift
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd +4th +5th (Internal)
SRLB O i width <byte> | 9C+width +2+n *
* n=number of bits to shift
<byte> cvel
O Byte Prefix Instruction Code (Ir%ltZ?nsal)
1st 2nd 3rd
A -
Rn 68 +n 2
X1] BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

S-24 Chapter 3

nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

ST A,obj

Word Store
Function
obj -« A
Description
- This instruction stores the contents of the accumulator (A) into obj (word length).
- Execution of this instruction is limited to when DD is 1 (word).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | bD DD
1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internfal)
ST A ERN 38 +n 2
PRn 3C +n 2
[X1] 30 4
[DP] 32 4
[DP-] 31 5
[DP+] 33 5
fix 34 fix8 4
off 35 off8 4
sfr 36 Sir8 4
dir 37 dirL dirH 6
D16[X1] C8 D16L D16H 6
D16[X2] BC 99 D16L D16H 8
n7[USP] c9 n7 6
n7[DP] C9 80 +n7 6

nX-8/500S Instruction Manual Chapter 3 S-25

Chapter 3 Instruction Details

Instruction Set

STB A,0bj

Byte Store
Function
obj -« AL
Description
- This instruction stores the contents of the accumulator low byte (AL) into obj (word length).
- Execution of this instruction is limited to when DD is 0 (byte).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | bD DD
0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internfal)
STB A RN 38 +n 2
[X1] 30 4
[DP] 32 2
[DP-] 31 5
[DP+] 33 5
fix 34 fix8 4
off 35 off8 4
sfr 36 Sir8 4
dir 37 dirL dirH 6
D16[X1] C8 D16L D16H 6
D16[X1] BC 99 D16L D16H 8
n7[USP] C9 n7 6
n7[DP] C9 80 +n7 6

S-26 Chapter 3

nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

SUB A,Obj Word Subtraction

Function
A ~ A-obj
Description
- This instruction performs word subtraction, subtracting the contents of obj (word length) from
the accumulator (A).
- Execution of this instruction is limited to when DD is 1 (word).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O 0 0 0 0 1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
SUB A ERnN 08+n 3
PRn 0C+n 3
#N16 8E N16L N16H 6
fix 8C fix8 4
off 8D off8 4
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix +1st +2nd +3rd (Internal)
SUB A Hun] <word> 85 +2
<word>
NN Word Prefix Instruction Code (cl:r%ltzlfnsal)
1st 2nd 3rd
A - -
ERnN 64 +n 2
PRn 60 +n 2
X1 AO 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix A4 fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

nX-8/500S Instruction Manual Chapter 3 S-27

Chapter 3 Instruction Details
Instruction Set

SUB Objl,Obj2 Word Subtraction

Function
objl — objl+obj2

Description

- This instruction performs word subtraction, subtracting the contents of obj2 (word length)
from objl (word length).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O 0 0 0 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
SUB M fix <word> 80 fix8 +5
off <word> 81 off8 +5
sfr <word> 82 sfr8 +5
#N16 <word> 83 N16L N16H +6
A <word> 84 +2
<word>
[HE] Word Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A - -
ERN 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+4] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

S-28 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

SUBB A,Obj Byte Subtraction

Function
AL — AL-obj
Description
- This instruction performs byte subtraction, subtracting the contents of obj (byte length) from
the accumulator low byte (AL).
- Execution of this instruction is limited to when DD is 0 (byte).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O O O O O 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
SUBB A Rn 08+n 3
#N8 8E N8 4
fix 8C fix8 4
off 8D 0off8 4
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix | +1st +2nd +3rd (Internal)
SUBB A io <byte> | 85 +2
<byte>
O Byte Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A - -
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

nX-8/500S Instruction Manual Chapter 3 S-29

Chapter 3 Instruction Details
Instruction Set

SUBB o0bjl,0bj2

Byte Subtraction

Function
objl — objl-obj2
Description
- This instruction performs byte subtraction, subtracting the contents of obj2 (byte length) from
obj1 (byte length).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
O O O O O
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
SUBB O fix <byte> 80 fix8 +5
off <byte> 81 off8 +5
sfr <byte> 82 sfr8 +5
#N8 <byte> 83 N8 +4
A <byte> 84 +2
<byte>
O Byte Prefix Instruction Code (?riltcelrensal)
1st 2nd 3rd
A - -
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

S-30 Chapter 3

nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

SWAP High/Low Byte Swap

Function
AH — - AL

Description

- This instruction swaps the accumulator's high byte (AH) and low byte (AL).
- Differences with nX-8/100-400:

[] nX-8/500S : DD does not affect instruction execution.
LB A#12H
SWAP i AH— S AL
] nX-8/100-400 . Instruction execution is limited to when DD is 1.
LB A#12H
SWAP ; will operate as SWAP
Flags
Flags affected by instruction execution Flags affecting instruction execution
C YA S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
SWAP i DF 2

nX-8/500S Instruction Manual Chapter 3 S-31

Chapter 3 Instruction Details

Instruction Set

TBR obj

Test Bit (Register Indirect Bit Specification)

Function
if obj.(AL)=0 then Z- 1 else Z-0

Description

- This instruction tests the contents of the bit at the specified position within the bit block and
sets the zero flag. If the specified bit is 0, then Z will be set to 1; if the bit is 1, then Z will be
resetto O.

- The bit block is the block of 256 bits starting from the address obj.
specification is coded in obj.

+ The bit position is 0-255, specified by the contents of the accumulator low byte (AL).

- The same instruction coded for nX-8/100-400 has a different function. For nX-8/100-400,
only the lower 3 bits of AL are valid for the bit position specification. In this case, only the 8
bits of obj can specified as the target bit.

A byte addressing

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
[
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix | +1st +2nd +3rd +4th +5th (Internal)
TBR O <byte> | CA +5
<byte>
O Byte Prefix Instruction Code (?riltcelrensal)
1st 2nd 3rd
A -
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+RO] BB 6
PSWL 8A 2
PSWH 9A 2

nX-8/5008S Instruction Manual

Chapter3 T-1

Chapter 3 Instruction Details
Instruction Set

TINZ A, radr Word Test and Jump (Jump If Non-Zero)

Function

if Az0 then PC- radr
However, the next instruction's first address-&28dr< the next instruction's first address+127
and CSR:0000K radr< CSR:0FFFFH

Description

- This instruction branches to the specified jump address if the contents of the accumulator (A)
are non-zero.

- The jump address is coded in radr. It is restricted to the relative jump range defined by a
signed 8-bit displacement added to a base (the first address of the next instruction). radr
must exist within the current physical segment.

- Execution of this instruction is limited to when DD is 1 (word).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
1

Codes

Instruction Syntax Instruction Code Cycles

mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internfal)

TINZ A i radr BC A6 rdiff8 7/11

T-2 Chapter 3 nX-8/500S Instruction Manual

Chapter 3

Instruction Details
Instruction Set

TIJNZ obj, radr

Word Test and Jump (Jump If Non-Zero)

Function

if obj£0 then PC- radr
However, the next instruction's first address-&28dr< the next instruction's first address+127

and CSR:0000K radr< CSR:0FFFFH

Description

- This instruction branches to the specified jump address if the contents of obj (word length) are

non-zero.
- The jump address is coded in radr.
signed 8-bit displacement added to a base (the first address of the next instruction).
must exist within the current physical segment.

It is restricted to the relative jump range defined by a

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd +4th +5th (Internal)
TINZ [N} i radr <word> | A6 rdiff8 +4/8
<word>
[HE] Word Prefix Instruction Code (?riltcelrensal)
1st 2nd 3rd
A -
ERN 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

nX-8/5008S Instruction Manual

Chapter 3 T-3

Chapter 3
Instruction Set

Instruction Details

TINZB A, radr

Byte Test and Jump (Jump If Non-Zero)

Function

if AL 20 then PC- radr
However, the next instruction's first address-&28dr< the next instruction's first address+127

and CSR:0000K radr< CSR:0FFFFH

Description

- This instruction branches to the specified jump address if the contents of the accumulator low

byte (AL) are non-zero.
- The jump address is coded in radr.

signed 8-bit displacement added to a base (the first address of the next instruction).
must exist within the current physical segment.
- Execution of this instruction is limited to when DD is 0 (byte).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Intern
TINZB A | radr BC A6 rdiff8 7/11

T-4 Chapter 3

nX-8/500S Instruction Manual

It is restricted to the relative jump range defined by a
radr

)

Chapter 3 Instruction Details
Instruction Set

TIJNZB Obj, radr Byte Test and Jump (Jump If Non-Zero)

Function

if obj£0 then PC- radr

However, the next instruction's first address-&28dr< the next instruction's first address+127
and CSR:0000K radr< CSR:0FFFFH

Description

- This instruction branches to the specified jump address if the contents of obj (byte length) are
non-zero.

- The jump address is coded in radr. It is restricted to the relative jump range defined by a
signed 8-bit displacement added to a base (the first address of the next instruction). radr
must exist within the current physical segment.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
TINZB O { radr <byte> A6 rdiff8 +4/8
<byte>
O Byte Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A -
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+RO] BB 6
PSWL 8A 2
PSWH 9A 2

nX-8/500S Instruction Manual Chapter3 T-5

Chapter 3 Instruction Details
Instruction Set

TJZ A, radr Word Test and Jump (Jump If Zero)

Function

if A=0 then PC- radr
However, the next instruction's first address-&28dr< the next instruction's first address+127
and CSR:0000K radr< CSR:0FFFFH

Description

- This instruction branches to the specified jump address if the contents of the accumulator (A)
are zero.

- The jump address is coded in radr. It is restricted to the relative jump range defined by a
signed 8-bit displacement added to a base (the first address of the next instruction). radr
must exist within the current physical segment.

- Execution of this instruction is limited to when DD is 1 (word).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
1

Codes

Instruction Syntax Instruction Code Cycles

mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internfal)

TJZ A i radr BC A7 rdiff8 7/11

T-6 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

TJZ Obj, radr Word Test and Jump (Jump If Zero)

Function

if obj=0 then PC- radr
However, the next instruction's first address-&28dr< the next instruction's first address+127
and CSR:0000K radr< CSR:0FFFFH

Description

- This instruction branches to the specified jump address if the contents of obj (word length) are
zero.

- The jump address is coded in radr. It is restricted to the relative jump range defined by a
signed 8-bit displacement added to a base (the first address of the next instruction). radr
must exist within the current physical segment.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
TJZ [N} i radr <word> | A7 rdiff8 +4/8
<word>
[HE] Word Prefix Instruction Code (?riltcelrensal)
1st 2nd 3rd
A -
ERN 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

nX-8/500S Instruction Manual Chapter 3 T-7

Chapter 3
Instruction Set

Instruction Details

TJZB A, radr

Byte Test and Jump (Jump If Zero)

Function

if AL=0 then PC-~ radr
However, the next instruction's first address-&28dr< the next instruction's first address+127

and CSR:0000K radr< CSR:0FFFFH

Description

- This instruction branches to the specified jump address if the contents of the accumulator low
byte (AL) are zero.

- The jump address is coded in radr.

signed 8-bit displacement added to a base (the first address of the next instruction).
must exist within the current physical segment.
- Execution of this instruction is limited to when DD is 0 (byte).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Intern
TJZB A | radr BC A7 rdiff8 7/11

T-8 Chapter 3

nX-8/500S Instruction Manual

It is restricted to the relative jump range defined by a
radr

)

Chapter 3 Instruction Details
Instruction Set

TJZB Obj, radr Byte Test and Jump (Jump If Zero)

Function

if obj=0 then PC- radr

However, the next instruction's first address-&28dr< the next instruction's first address+127
and CSR:0000K radr< CSR:0FFFFH

Description

- This instruction branches to the specified jump address if the contents of obj (byte length) are
zero.

- The jump address is coded in radr. It is restricted to the relative jump range defined by a
signed 8-bit displacement added to a base (the first address of the next instruction). radr
must exist within the current physical segment.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
TJZB O { radr <byte> A7 rdiff8 +4/8
<byte>
O Byte Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A -
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

nX-8/500S Instruction Manual Chapter3 T-9

Chapter 3 Instruction Details
Instruction Set

VCAL Vadr Vector Call

Function

1) Small/compact memory models
(SSP)-PC+1 ; move next PC
SSP-SSP-2
PC— (Vadr) ; store Vadr to PC

2) Medium/large memory models
(SSP)- PC+1 ; move next PC
SSP-SSP-2
(SSP)- CSR ; move CSR
SSP-SSP-2
CSR-~0 ; VCAL subroutine must be in physical segment 0
PC- (Vadr) ; store Vadr to PC

However, 0:4AH< Cadr< 0:68H, and even address for both 1) and 2).

Description

+ This instruction calls the subroutine whose jump address is the data word in the VCAL table
area specified by Vadr.

- A vector address is coded in Vadr. Any address in the 64K bytes of physical segment O can
be specified as a vector.

- The called subroutine must exist in physical segment O.

+ The state of the stack after execution of a VCAL instruction is shown below.

- Subroutines called with a VCAL instruction return using an RT instruction in the
small/compact memory models, or an FRT instruction in the medium/large memory models.

1) Small/compact memory models
SSP after call —|7 o] + Low addresses

SSP before call—»} P C----

| High addresses

2) Medium/large memory models
SSP after call—» |7 o] + Low addresses

SSP before call——» PpC MSB

| High addresses

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internal)
VCAL Vadr i EO +Vno 10

nX-8/500S Instruction Manual Chapter3 V-1

Chapter 3 Instruction Details
Instruction Set

XCHG A,Obj Word Exchange

Function
A « - 0bj
Description
- This instruction exchanges the contents of the accumulator (A) with the contents of obj (word
length).
- Execution of this instruction is limited to when DD is 1 (word).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix | +1st +2nd +3rd (Internal)
XCHG A i [<word> C8 +3
<word> Cycles
[HE] Word Prefix Instruction Code (Ir)1/ternal)
1st 2nd 3rd
A - -
ERN 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+4] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

nX-8/500S Instruction Manual Chapter 3 X-1

Chapter 3 Instruction Details
Instruction Set

XCHGB A,Obj Byte Exchange

Function
AL ~ - obj
Description
- This instruction exchanges the contents of the accumulator low byte (AL) with the contents of
obj (byte length).
- Execution of this instruction is limited to when DD is 0 (byte).
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix | +1st +2nd +3rd (Internal)
XCHGB A 10 <byte> | C8 +3
<byte>
O Byte Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A -
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

X-2 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

XOR A,Obj Word Logical Exclusive OR

Function
A < A& obj

Description

- This instruction takes the word logical exclusive OR of the contents of obj (word length) and
the accumulator (A), and stores the result in the accumulator.
- Execution of this instruction is limited to when DD is 1 (word).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 0 1
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internfal)
XOR A off DD off8 4
#N16 DE N16L N16H 6
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix | +1st +2nd +3rd (Internal)
XOR A i [<word> D5 +2
<word>
[HE] Word Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A - -
ERN 64 +n 2
PRn 60 +n 2
X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

nX-8/500S Instruction Manual Chapter 3 X-3

Chapter 3 Instruction Details
Instruction Set

XOR Objl,Oij Word Logical Exclusive OR

Function
objl — objl= obj2

Description

- This instruction takes the word logical exclusive OR of the contents of obj1 (word length) and
obj2 (word length), and stores the result in obj1.

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
0 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
XOR mE| fix <word> DO fix8 +5
off <word> D1 off8 +5
sfr <word> D2 sfr8 +5
#N16 <word> D3 N16L N16H +6
A <word> D4 +2
<word>
[HE] Word Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A - -
ERN 64 +n 2
PRn 60 +n 2
[X1] A0 4
[DP] A2 4
[DP-] Al 5
[DP+4] A3 5
fix Ad fix8 4
off A5 off8 4
sfr A6 sfr8 4
SSP A6 00 4
LRB A6 02 4
dir A7 dirL dirH 6
D16[X1] A8 D16L D16H 6
D16[X2] A9 D16L D16H 6
n7[DP] 8B n7 6
n7[USP] 8B 80 +n7 6
[X1+A] AA 6
[X1+R0] AB 6

X-4 Chapter 3 nX-8/500S Instruction Manual

Chapter 3 Instruction Details
Instruction Set

XORB A,Obj Byte Logical Exclusive OR
Function

AL < ALs obj
Description

- This instruction takes the word logical exclusive OR of the contents of obj (byte length) and
the accumulator low byte (AL), and stores the result in the accumulator.
- Execution of this instruction is limited to when DD is 0 (byte).

Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
[l [l 0
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand 1st 2nd 3rd 4th 5th 6th (Internfal)
XORB A off DD off8 4
#N8 DE N8 4
Instruction Syntax Instruction Code Cycles
mnemonic operan prefix | +1st +2nd +3rd (Internal)
XORB A i O <byte> D5 +2
<byte>
O Byte Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A - -
Rn 68 +n 2
[X1] BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+RO] BB 6
PSWL 8A 2
PSWH 9A 2

nX-8/500S Instruction Manual Chapter 3 X-5

Chapter 3
Instruction Set

Instruction Details

XORB o0bjl,0bj2

Byte Logical Exclusive OR

Function
objl ~ objlz obj2
Description
- This instruction takes the word logical exclusive OR of the contents of objl (byte length) and
obj2 (byte length), and stores the result in obj1.
Flags
Flags affected by instruction execution Flags affecting instruction execution
C Z S OV | HC | DD DD
[l [l
Codes
Instruction Syntax Instruction Code Cycles
mnemonic operand prefix | +1st +2nd +3rd (Internal)
XORB O fix <byte> DO fix8 +5
off <byte> D1 off8 +5
sfr <byte> D2 sfr8 +5
#N8 <byte> D3 N8 +4
A <byte> D4 +2
<byte>
O Byte Prefix Instruction Code (?riltcelfnsal)
1st 2nd 3rd
A - -
Rn 68 +n 2
X1 BO 4
[DP] B2 4
[DP-] Bl 5
[DP+] B3 5
fix B4 fix8 4
off B5 off8 4
sfr B6 sfr8 4
dir B7 dirL dirH 6
D16[X1] B8 D16L D16H 6
D16[X2] B9 D16L D16H 6
n7[DP] 9B n7 6
n7[USP] 9B 80 +n7 6
[X1+A] BA 6
[X1+R0] BB 6
PSWL 8A 2
PSWH 9A 2

X-6 Chapter 3

nX-8/500S Instruction Manual

	Return to Start
	COVER
	NOTICE
	Table of Contents
	Chapter 0. Preface
	Chapter 1. Architecture
	1-1. Overview
	1-1-1. Overview Of OLMS-66K Series And nX-8/500S Core

	1-2. CPU Resources And Programming Model
	1-2-1. Register
	1-2-1-1. Accumulator (A)
	1-2-1-2. Control Register (CR)
	1-2-1-2-1. Program Status Word (PSW)
	1-2-1-2-1-1. How Instructions Change PSW Flags

	1-2-1-2-2. Program Counter (PC)
	1-2-1-2-3. Local Register Base (LRB)
	1-2-1-2-4. System Stack Pointer (SSP)

	1-2-1-3. Pointing Registers (PR)
	1-2-1-3-1. Addressing With Pointing Registers

	1-2-1-4. Local Registers (ER)
	1-2-1-4-1. Addressing With Local Registers

	1-2-1-5. Segment Registers
	1-2-1-5-1. Code Segment Register (CSR)
	1-2-1-5-2. Table Segment Register (TSR)
	1-2-1-5-3. Data Segment Register (DSR)

	1-2-1-6. ROM Window Control Register (ROMWIN)
	1-2-1-7. Special Function Registers (SFR)

	1-2-2. Memory Space
	1-2-2-1. Program Memory Space
	1-2-2-1-1. Vector Table Area
	1-2-2-1-1-1. Reset Vector Area
	1-2-2-1-1-2. Interrupt Vector Area
	1-2-2-1-1-3. VCAL Table Area
	1-2-2-1-1-4. Vector Table Coding Syntax

	1-2-2-1-2. ACAL Area
	1-2-2-1-3. ROM Window Area In Program Memory Space
	1-2-2-1-4. Internal And External Program Memory Areas

	1-2-2-2. Data Memory Space
	1-2-2-2-1. SFR Area
	1-2-2-2-2. Extended SFR Area
	1-2-2-2-3. Fixed Page
	1-2-2-2-3-1. Area Available For Pointing Registers
	1-2-2-2-3-2. Fixed Page SBA Area

	1-2-2-2-4. Current Page
	1-2-2-2-4-1. Current Page SBA Area

	1-2-2-2-5. Area Available For Local Registers
	1-2-2-2-6. ROM Window Area In Data Memory Space
	1-2-2-2-7. Common Area
	1-2-2-2-8. Other Memory
	1-2-2-2-8-1. EEPROM Area
	1-2-2-2-8-2. Dual Port RAM Area

	1-2-2-2-9. Internal And External Data Memory Areas

	1-3. Data Types
	1-4. Address Allocation
	1-5. Word Boundaries
	1-6. ROM Window Function
	1-7. Memory Models
	1-8. Data Descriptor (DD)
	1-8-1. Description And Use Of DD
	1-8-2. Instructions That Change DD
	1-8-2-1. Instructions That Change DD As Part Of Their Function
	1-8-2-2. Other Instructions That Change DD

	1-8-3. Instruction Affected By DD
	1-8-4. Pre-Fetched Instructions And DD

	1-9. Changing The Stack
	1-10. Instruction Code Format
	1-10-1. Native Instructions And Composite Instructions

	1-11. Microcontrollers That Use The nX-8/500S Core

	Chapter 2. Addressing Modes
	2-1. Addressing Mode Types
	2-2. RAM Addressing
	A Accumulator Addressing
	PSW,LRB,SSP Control Register Addressing
	X1,X2,DP,USP Pointing Register Addressing
	ER n,R n Local Register Addressing
	sfr Dadr SFR Page Addressing
	fix Dadr Fixed Page Addressing
	off Dadr Current Page Addressing
	dir Dadr Direct Data Addressing
	[DP],[X1] Pointing Register Indirect Addressing
	[DP+] DP Indirect Addressing With Post-Increment
	[DP-] DP Indirect Addressing With Post-Decrement
	n 7[DP],n 7[USP] DP/USP With Indirect Addressing With 7-Bit Displacement
	D 16[X1],D 16[X2] X1/X2 Indirect Addressing With 16-Bit Base
	[X1+A],[X1+R0] X1 Indirect Addressing With 8-Bit Register Displacement
	sbafix Badr Fixed Page SBA Area Addressing
	sbaoff Badr Current Page SBA Area Addressing

	2-3. ROM Addressing
	2-3-1. Immediate Addressing
	2-3-2. Table Data Addressing
	2-3-3. Program Code Addressing
	# N16,# N8 Word/Byte Immediate Addressing
	Tadr Direct Table Addressing
	[**] RAM Addressing Indirect Table Addressing
	T16[**] RAM Addressing Indirect Addressing With 16-Bit Base
	Cadr Near Code Addressing
	Fadr Far Code Addressing
	radr Relative Code Addressing
	Cadr11 ACAL Code Addressing
	Vadr VCAL Code Addressing
	[**] RAM Addressing Indirect Code Addressing

	2-4. ROM Window Addressing

	Chapter 3. Instruction Details
	nX-8/500S Instruction Set Listed By Function
	Symbols Used In Operand Expressions Of Instructions
	Symbols Used In Instruction Code Expressions Of Instructions
	General Example for Instruction Details
	A
	ACAL Cadr11 Special Area Call
	ADC A,obj Word Addition With Carry
	ADC obj1,obj2 Word Addition With Carry
	ADCB A,obj Byte Addition With Carry
	ADCB obj1,obj2 Byte Addition With Carry
	ADD A,obj Word Addition
	ADD obj1,obj2 Word Addition
	ADDB A,obj Byte Addition
	ADDB obj1,obj2 Byte Addition
	AND A,obj Word Logical AND
	AND obj1,obj2 Word Logical AND
	ANDB A,obj Byte Logical AND
	ANDB obj1,obj2 Byte Logical AND

	B
	BAND C,obj.bit Bit Logical AND
	BANDN C,obj.bit Bit Complement and Bit Logical AND
	BOR C,obj.bit Bit Logical OR
	BORN C,obj.bit Bit Complement and Bit Logical OR
	BRK Break (System Reset)
	BXOR C,obj.bit Bit Logical Exclusive OR

	C
	CAL Cadr 64K-Byte Space (Within Current Physical Code Segment) Direct Call
	CAL [obj] 64K-Byte Space (Within Current Physical Code Segment) Indirect Call
	CLR A Word Clear
	CLR obj Word Clear
	CLRB A Byte Clear
	CLRB obj Byte Clear
	CMP A,obj Word Comparison
	CMP obj1,obj2 Word Comparison
	CMPB A,obj Byte Comparison
	CMPB obj1,obj2 Byte Comparison
	CMPC A,[obj] Word ROM Comparison (Indirect)
	CMPC A,T16[obj] Word ROM Comparison (Indirect With 16-Bit Base)
	CMPC A,Tadr Word ROM Comparison (Direct)
	CMPCB A,[obj] Byte ROM Comparison (Indirect)
	CMPCB A,T16[obj] Byte ROM Comparison (Indirect With 16-Bit Base)
	CMPCB A,Tadr Byte ROM Comparison (Direct)
	CPL C Complement Carry

	D
	DEC A Word Decrement
	DEC obj Word Decrement
	DECB A Byte Decrement
	DECB obj Byte Decrement
	DI Disable Interrupts
	DIV obj Word Division
	DIVB obj Byte Division
	DIVQ obj Word Quick Division
	DJNZ obj,radr Loop

	E
	EI Enable Interrupts
	EXTND Byte to Word Sign Extend

	F
	FCAL Fadr 24-Bit Space (16M Bytes: Entire Program Area) Direct Call
	FILL A Word Fill
	FILL obj Word Fill
	FILLB A Byte Fill
	FILLB obj Byte Fill
	FJ Fadr 24-Bit Space (16M Bytes: Entire Program Area) Direct Jump
	FRT Return From Far Subroutine

	I
	INC A Word Increment
	INC obj Word Increment
	INCB A Byte Increment
	INCB obj Byte Increment

	J
	J Cadr 64K-Byte Space (Within Current Physical Code Segment) Direct Jump
	J [obj] 64K-Byte Space (Within Current Physical Code Segment) Indirect Jump
Physical Code Segment) Indirect Jump
	JBR obj.bit,radr Bit Test and Jump
	JBRS obj.bit,radr Bit Test and Jump (With Bit Set)
	JBS obj.bit,radr Bit Test and Jump
	JBSR obj.bit,radr Bit Test and Jump (With Bit Reset)
	Jcond radr Conditional Jump
	JRNZ DP,radr Loop

	L
	L A,obj Word Load
	LB A,obj Byte Load
	LC A,[obj] Word ROM Load (Indirect)
	LC A,T16[obj] Word ROM Load (Indirect With 16-Bit Base)
	LC A,Tadr Word ROM Load (Direct)
	LCB A,[obj] Byte ROM Load (Indirect)
	LCB A,T16[obj] Byte ROM Load (Indirect With 16-Bit Base)
	LCB A,Tadr Byte ROM Load (Direct)

	M
	MAC Multiply-Addition Calculation
	MB C, obj.bit Move Bit
	MB obj.bit ,C Move Bit
	MBR C, obj Move Bit (Register Indirect Bit Specification)
	MBR obj, C Move Bit (Register Indirect Bit Specification)
	MOV obj1, obj2 Word Move
	MOVB obj1, obj2 Byte Move
	MUL obj Word Multiplication
	MULB obj Byte Multiplication

	N
	NEG A Word Negate Sign
	NEGB A Byte Negate Sign
	NOP No Operation

	O
	OR A, obj Word Logical OR
	OR obj1, obj2 Word Logical OR
	ORB A, obj Byte Logical OR
	ORB obj1, obj2 Byte Logical OR

	P
	POPS register_list Pop Off System Stack
	PUSHS register_list Push On System Stack

	R
	RB obj.bit Reset Bit (Bit Position Direct Specification)
	RBR obj Reset Bit (Register Indirect Bit Specification)
	RC Reset Carry
	RDD Reset DD
	ROL A Word Left Rotate (With Carry)
	ROL obj Word Left Rotate (With Carry)
	ROLB A Byte Left Rotate (With Carry)
	ROLB obj Byte Left Rotate (With Carry)
	ROR A Word Right Rotate (With Carry)
	ROR obj Word Right Rotate (With Carry)
	RORB A Byte Right Rotate (With Carry)
	RORB obj Byte Right Rotate (With Carry)
	RT Return From Subroutine
	RTI Return From Interrupt

	S
	SB obj.bit Set Bit (Bit Position Direct Specification)
	SBC A, obj Word Subtraction With Carry
	SBC obj1, obj2 Word Subtraction With Carry
	SBCB A, obj Byte Subtraction With Carry
	SBCB obj1, obj2 Byte Subtraction With Carry
	SBR obj Set Bit (Register Indirect Bit Specification)
	SC Set Carry
	SCAL Cadr 64K-Byte Space (Within Current Physical Code Segment) Direct Call
	SDD Set DD
	SJ radr Short Jump
	SLL A Word Left Shift (With Carry)
	SLL obj Word Left Shift (With Carry)
	SLLB A Byte Left Shift (With Carry)
	SLLB obj Byte Left Shift (With Carry)
	SQR A Word Square
	SQRB A Byte Square
	SRA A Word Arithmetic Right Shift (With Carry)
	SRA obj Word Arithmetic Right Shift (With Carry)
	SRAB A Byte Arithmetic Right Shift (With Carry)
	SRAB obj Byte Arithmetic Right Shift (With Carry)
	SRL A Word Right Shift (With Carry)
	SRL objWord Right Shift (With Carry)
	SRLB A Byte Right Shift (With Carry)
	SRLB obj Byte Right Shift (With Carry)
	ST A,obj Word Store
	STB A,obj Byte Store
	SUB A, obj Word Subtraction
	SUB obj1, obj2 Word Subtraction
	SUBB A,obj Byte Subtraction
	SUBB obj1, obj2 Byte Subtraction
	SWAP High/Low Byte Swap

	T
	TBR obj Test Bit (Register Indirect Bit Specification)
	TJNZ A, radr Word Test & Jump (Jump If Non-Zero)
	TJNZ obj, radr Word Test & Jump (Jump If Non-Zero)
	TJNZB A, radr Byte Test & Jump (Jump If Non-Zero)
	TJNZB obj, radr Byte Test & Jump (Jump If Non-Zero)
	TJZ A, radr Word Test & Jump (Jump If Zero)
	TJZ obj, radr Word Test & Jump (Jump If Zero)
	TJZB A, radr Byte Test & Jump (Jump If Zero)
	TJZB obj, radr Byte Test & Jump (Jump If Zero)

	V
	VCAL Vadr Vector Call

	X
	XCHG A, obj Word Exchange
	XCHGB A, obj Byte Exchange
	XOR A, obj Word Logical Exclusive OR
	XOR obj1, obj2 Word Logical Exclusive OR
	XORB A, obj Byte Logical Exclusive OR
	XORB obj1, obj2 Byte Logical Exclusive OR

