KISTLER measure, analyze, innovate, # **3-Component Force Sensor** # Diameter 16,5 mm, -2 ... 2 kN Type 9016B4, 9017B, 9018B Force sensor for measuring the three orthogonal components of a dynamic or quasistatic force acting in an arbitrary direction. - Miniature 3-component force sensor - High sensitivity - High rigidity - Minimal crosstalk - Multipole connector #### Description The force sensor contains three crystal rings which are mounted between two steel plates in the sensor housing. Two are sensitive to shear and measure the force components F_x and F_y , while one is sensitive to pressure and measures the component F_z of a force acting on the sensor. The electrical charges proportional to the different components are conducted via electrodes to the corresponding connectors. The crystal stack is protected by the corrosion resistant, tightly welded sensor case. The cable outlet serves to orient the sensor. # **Application** The crystal force sensors can measure the three orthogonal force components easily, directly and precisely, because these sensors feature an inherently low crosstalk. #### **Application Examples** - Miniature cutting force dynamometer for ultra precise machining - Windtunnel balance - 3-Component force measurement in confined spaces #### Technical Data | Measuring range | F _x , F _y | kN | -1 1 | 1) | |---|---------------------------------|-------|----------|----| | | Fz | kN | -2 2 | 1) | | | Fz | kN | 0 12 | 2) | | Overload | F _x , F _y | kN | -1,2/1,2 | 1) | | | Fz | kN | -2,4/2,4 | 1) | | | Fz | kN | 12,4 | 2) | | Calibrated measuring ranges F _x , F _y | | kN | 0 1 | 1) | | | Fz | kN | 0 2 | 1) | | | Fz | kN | 0 12 | 2) | | Threshold | | N | <0,01 | | | Nominal sensitivity | F_x, F_y | pC/N | ≈–26 | 1) | | | Fz | pC/N | ≈–11,5 | 1) | | Linearity, each axis | | % FSO | ≤±1 | 1) | | Hysteresis, each axis | | % FSO | ≤1 | 1) | | Crosstalk | $F_z \rightarrow F_x$, F_y | % | ≤±1,5 | 1) | | | $F_x \leftrightarrow F_y$ | % | ≤±3,5 | 1) | | | F_x , $F_y \rightarrow F_z$ | % | ≤±3,5 | 1) | | Rigidity | C _x , C _y | N/µm | ≈170 | | | | Cz | N/µm | ≈740 | | | | | | | _ | Page 1/4 This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded. ©2005 ... 2010, Kistler Group, Eulachstrasse 22, 8408 Winterthur, Switzerland Tel. +41 52 224 11 11, Fax +41 52 224 14 14, info@kistler.com, www.kistler.com Kistler is a registered trademark of Kistler Holding AG. | E-MAIL: | szss20 | @1 63.(| com | | |---------|--------|----------------|-----|---| | | 51 | | | H | ### measure. analyze. innovate. | Max. moments | M_x , M_y | N⋅m | -5/5 ¹⁾ | i | |-----------------------------|---------------|---------------------|--------------------|---| | | Mz | N⋅m | -5/5 ¹⁾ |) | | Operating temperature range | | °C | -50 12C |) | | Insulation resistance | | Ω | ≥10 ¹³ | | | Capacitance, each channel | | pF | ≈39 | | | Connector | | M8x0,75 3-pole neg. | | | | Degree of protection | | EN60529 | IP65 | | | (with cable connecte | ed) | | | | | Weight | | g | 8,5 | | | | | | | - | ¹⁾ Standard mounting with preload of 10 kN #### Sensors Types 9017B and 9018B The technical data of the Types 9017B and 9018B are identical, except that the orientation of their x- and y-axes with respect to the cable connection differs (Fig. 1). By combining both types, it is therefore possible to choose the direction of each sensors cable as required when building a dynamometer. Fig. 1: Sensors Types 9017B and Type 9018B # Type 9016B4 #### **Set Consisting of Four Selected 3-Component Force Sensors** The set of four selected sensors consists at 2 each sensors Type 9017B and 9018B selected and ground to the same thickness. They are used for mounting into multicomponent dynamometers and force plates (Fig. 2). The four force sensors are selected for uniform sensitivity and minimal crosstalk when they are mounted into a dynamometer This configuration permits a very compact mounting in a dynamometer. Fig. 2: Set consisting of four selected 3-component force sensors $\label{eq:component}$ ²⁾ without preload #### measure, analyze, innovate, #### Mounting The force sensors must be mounted under preload because the shear forces F_x and F_y require transmission through static friction from the base and cover plate to the surfaces of the force sensors. The necessary preload depends on the shear forces to be transmitted. The measuring ranges specified in the technical data apply for a standard preload of 10 kN. The provided preloading bolt is screwed into the base plate and the thread is secured with Loctite Type 221. The centering of the sensor is done with the centering sleeve. Prior to mounting the bearing surfaces of the base and cover plates must be cleaned with grease-disolving solvent. Α С olerated depth of ×45° 0,5) 5,8 Ē Rmax.0,2 Ø 6,5 +0,1 ⋖ Ø 0,02 C 0.01 Ø 0,03 A min. Ø 17 ground ◎ Ø 0,03 D min Ø nax M6 x0,75 D Ø 0,03 B B Fig. 3: Mounting of sensors The sliding washer is mounted between the cover plate and the ring nut. It reduces the friction and consequently the tightening torque. Moreover, it protects the cover plate surface and the ring nut from corrosion. Before mounting the sliding surface should slightly be greased with Kistler grease Type 1063. Before screwing in the preloading nut, its outer diameter and the thread of the preloading bolt should be greased. The tightening of the nut is done with the wrench adapter Type 9479. If the Z-component of the sensor is connected to the charge amplifier, then the preload can directly be measured. The wrench adapter Type 9479 is not included in the delivery; it must be ordered separately. Page 3/4 # measure, analyze, innovate, 1063 Type/Art. No. #### **Parallel Connections** Several sensors of identical sensitivities can be paralleled directly. The charge amplifier connected then gives an output voltage which corresponds to the sum of all forces acting. This is a great advantage when building force plates and dynamometers with which only the three components of the resulting force must be measured. #### **Electronics** Besides the force sensors, a 3-component force measuring system also requires three charge amplifiers, which convert the electrical charge signals of the sensor into voltages exactly proportional to the three components F_x , F_y and F_z of the acting force. In order to construct multicomponent dynamometers for measuring three forces and three moments, special multichannel charge amplifiers are available. #### Systems for Multicomponent Measurements For information concerning cable concept see information sheet 1687B_000-545. #### **Accessories Included** • Preloading screw 3.322.401 • Ring nut 3.322.402 · Sliding washer 3.322.352 · Centering sleeve 3.221.316 Positioning pin 3.221.315 #### **Optional Accessories** Grease | Optional Accessories | Туре | |--------------------------------------|-------| | Wrench adapter | 9479 | | Connecting cable | 1693A | | Connecting cable | 1694A | (see Fig. 1) Fig. 4: Wrench adapter Type 9479 | Ordering Key | Type | |---|-------| | 3-component force sensor with | 9017B | | standard coordinate system (see Fig. 1) | | | • 3-component force sensor like | 9018B | | Type 9017B, but with coordinate | | | system rotated 180 ° about z-axis | | • Set of four matched 3-component force sensors ground together, two of each Type 9017B and 9018B (see Fig. 2) 9016B4 Page 4/4